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We study axisymmetric radial deformations of a circular cylinder composed of an inhomogeneous
Mooney–Rivlin material with the two material parameters varying continuously through the cylinder
thickness either by a power law or an affine relation. It is found that for the exponent of the power
law function equal to 1, the hoop stress for an internally pressurized cylinder is uniform in the cylinder.
One can tailor the gradation of these two material parameters to make the maximum tensile hoop
stress occur either on the inner surface or on the outer surface. Also, the stress concentration in a
pressurized thick cylinder strongly depends upon the value of the exponent of the power law varia-
tion of the two material parameters. For an affine through-the-thickness variation of the two elastic
moduli the hoop stress at the point R =

√
RinRou is nearly the same as that in a cylinder composed of a

homogeneous material. Here Rin and Rou equal, respectively, the inner and the outer radii of the cylinder
in the unstressed reference configuration, and R is the radial coordinate of a point in the reference
configuration. The stress distribution in an everted cylinder strongly depends upon its thickness in the
reference configuration.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Rubberlike materials are often used to make tires, catheters, wa-
ter hoses, and shock absorbers. Depending upon the intended ap-
plication it may be desirable to suitably vary material properties in
one or more directions to optimize the life of the part. This can be
achieved by either changing the chemical composition or fabricating
the component from two or more materials; e.g. see [1].

Rubberlike materials are usually modeled as incompress-
ible non-linear elastic. Simple constitutive relations for studying
their mechanical deformations include the neo-Hookean and the
Mooney–Rivlin. Batra [2] studied, numerically with the finite ele-
ment method, plane strain axisymmetric deformations of a circular
cylinder made of an inhomogeneous Mooney–Rivlin material with
the two material parameters expressed as polynomials of degree one
or two in the radial coordinate, R, in the undeformed configuration.
Herewe study a similar problem analytically, find surface tension in a
thin cylinder loaded by an internal pressure, the stress concentration
in a very thick cylinder loaded by an internal pressure, and stress dis-
tributions in cylinders with the two material parameters expressed
either as power law functions of R or as affine functions of R, and
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the eversion of a cylinder made of an inhomogeneous material. We
adopt a member of Ericksen's family of universal solutions [3] cor-
responding to radial expansion/contraction of a cylinder made of a
hyperelastic material.

Explicit solutions for radial deformations of a cylinder composed
of a homogeneous Mooney–Rivlin material have been given by Rivlin
[4], who has also analyzed the eversion of a cylindrical tube made
of a neo-Hookean material [4]. The present work attempts to illumi-
nate effects of material inhomogeneities on through-the-thickness
stress distributions and how to exploit these for optimally designing
circular cylinders made of rubberlike materials. For example, it was
recently found [5] that for a circular cylinder made of an incompress-
ible isotropic Hookean material, the hoop stress is constant through
the cylinder thickness if the shear modulus is a linear function of
R. It is surprising that the same result essentially holds for finite
deformations of a cylinder composed of a Mooney–Rivlin material
with the two material moduli linear functions of R. However, it does
not hold for a circular cylinder made of a second-order linear elastic
incompressible material [6]. Bilgili [7] has analyzed plane strain
deformations of a circular cylinder made of an inhomogeneous
neo-Hookean material with circumferential displacements pre-
scribed on the inner and the outer surfaces.

Materials whose elastic moduli vary continuously in one or
more directions are called functionally graded (FG). A goal is to
exploit desirable properties of the constituents so as to optimize
the performance of the structure. It is commonly believed that the
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gradation of material properties will enhance the life of the structure
since it eliminates the delamination mode of failure often prevalent
in laminated composites. However, debonding at interfaces between
different constituents can induce cracks and cause structural failure.
From mechanics point of view, a structure made of an FG material
is inhomogeneous. Thus equations of equilibrium when written in
terms of displacements have a body force like term representing the
interaction between neighboring particles.

Homogenization techniques for deriving effective material prop-
erties of composites with a non-linear elastic material as the ma-
trix have not been fully developed. Lopez-Pamies and Castaneda [8]
have used a second-order homogenization method to determine the
overall constitutive response of an elastomer reinforced with ei-
ther rigid or compliant fibers and subjected to finite deformations.
Another possibility is to use the rule of mixtures, e.g. see [9], or
adopt numerical simulations to deduce the effective material prop-
erties of the composite from those of its constituents, e.g. see [10].
Here we assume a continuous variation in the radial direction of the
two material parameters in the Mooney–Rivlin constitutive relation,
and do not find volume fractions of constituents required to attain
these material properties. This is similar to the approach followed by
Horgan and Chan [11] who analyzed deformations of FG cylinders
composed of compressible isotropic linear elastic materials with only
Young's modulus varying in the radial direction according to a power
law relation. Whereas an incompressible material can undergo only
isochoric deformations a compressible material can admit both iso-
choric and non-isochoric deformations. Lechnitskii's book [12] has
solutions for several problems involving inhomogeneous linear elas-
tic materials. One could divide the thickness of a FG cylinder into
several layers, regard material properties in each layer as uniform,
and analyze a multi-body problem with tractions and displacement
continuity conditions imposed at interfaces between adjoining cylin-
ders. With an increase in the number of layers, the solution for the
layered cylinder should approach that for the FG cylinder. For back-
ground information on non-linear elasticity, the reader is referred to
[13–15,17,18] wherein the problem of radial expansion of a homo-
geneous cylinder has also been studied.

2. Problem formulation

We assume that the cylinder is deformed statically (or very
slowly) with pressures pin and pou applied to its inner and outer sur-
faces, respectively, and it is made of an isotropic and incompressible
Mooney–Rivlin material for which

T = −p1 + C1(R)B + C2(R)B−1. (2.1)

Here T is the Cauchy stress tensor, p the hydrostatic pressure
not determined by the deformation gradient F, B = FFT is the left
Cauchy–Green tensor, B−1 equals the inverse of B, 1 the identity
tensor, R the radial coordinate of a point in the unstressed reference
configuration, and C1(R) and C2(R) are material parameters. For a
neo-Hookean material, C2(R) = 0 in Eq. (2.1).

For infinitesimal deformations

�(R) = C1(R) − C2(R), (2.2)

equals the shear modulus.
We use cylindrical coordinates with (r,�, z) denoting coordinates

of a material point that in the reference configuration occupied the
place (R,�, Z) with the origin on the cylinder axis and 0�Z�L,
where L equals the cylinder length in the reference configuration.
Because of the axial symmetry of the cylinder geometry, the material
properties and the external loads (or the boundary conditions) we
presume that deformations of the cylinder are axisymmetric. Thus
displacements of a point and the induced stresses are independent

of the angular position �. The three equations expressing the bal-
ance of linear momentum imply that the hydrostatic pressure p in
Eq. (2.1) is a function of r only.

In the absence of body forces, the balance of linear momentum
in the radial direction requires that the physical components of T
satisfy

�Trr
�r

+ �Trz
�z

+ Trr − T��
r

= 0. (2.3)

The pertinent boundary conditions are

Trr|r=rin = −pin, Trr|r=rou = −pou, (2.4)

where rin and rou are, respectively, the inner and the outer radii of the
deformed cylinder. When studying the radial expansion/contraction
of a hollow cylinder we assume that surface tractions on the end
faces Z=0, L needed to deform the body are available. For the eversion
problem, the inner surface, the outer surface, and the end faces are
taken to be traction free.

Because the cylinder ismade of an incompressiblematerial, there-
fore, deformations must also satisfy

det[F] = 1, (2.5)

where F is the deformation gradient.

3. Solution

We presume that deformations of the cylinder can be written as

r = r(R), � = �, z = Z/D, D�0, (3.1)

where D is a constant to be determined. The deformation (3.1) is a
member of the family of universal solutions proposed by Ericksen
[2], and can be produced in every homogeneous, incompressible and
isotropic hyperelastic body under the action of surface tractions only.
Here we assume that it can be produced in a cylinder made of an
inhomogeneous Mooney–Rivlin material.

In linear elasticity one assumes that D=1, i.e., a plane strain state
of deformation prevails. The principle of superposition can be in-
voked to treat the case of D�1 in linear elasticity. In non-linear elas-
ticity the assumption of D=1 requires that surface tractions varying
in the radial direction and as given by the solution of the problem
be prescribed at the plane end faces of the cylinder. Henceforth we
will refer to this case as plane strain axisymmetric deformations,
and tacitly assume that the required surface tractions on the end
faces z = 0, L/D can be provided. We note that a precise statement
of the St. Venant principle for a non-linear elastic body is not avail-
able. Therefore, one cannot assert that different axial tractions with
the same resultant force and moment will not affect deformations
at points away from the plane end faces.

For the deformation (3.1), physical components of the deforma-
tion gradient F and the left Cauchy–Green tensor B are given by

[F] =

⎡
⎢⎢⎢⎣
r′ 0 0

0
r
R

0

0 0
1
D

⎤
⎥⎥⎥⎦ , [B] =

⎡
⎢⎢⎢⎢⎣
(r′)2 0 0

0
r2

R2
0

0 0
1
D2

⎤
⎥⎥⎥⎥⎦ , (3.2)

where r′ = dr/dR. For the deformation (3.1) to be isochoric,

1 = det[F] = r′r
DR

.

Thus

r = (A + DR2)1/2, R = ((r2 − A)/D)1/2, (3.3)

where A is a constant to be determined.
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3.1. Power law variation of C1(R) and C2(R)

We assume the following power law variation of C1(R) and C2(R):

C1(R) = C10(R/Rin)
m, C2(R) = C20(R/Rin)

n, (3.4)

where C10 and C20 are constants having units of stress, Rin equals the
inner radius of the cylinder in the reference configuration, andm and
n are non-dimensional real numbers. For a homogeneous material
m = n = 0.

Substitution for r′ from Eq. (3.3) into Eq. (3.2), and for B from
Eq. (3.2) into Eq. (2.1) gives

[T] = − p

⎡
⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎦+ C10

(
R
Rin

)m

⎡
⎢⎢⎢⎢⎢⎢⎣

D2R2

r2
0 0

0
r2

R2
0

0 0
1
D2

⎤
⎥⎥⎥⎥⎥⎥⎦

+ C20

(
R
Rin

)n

⎡
⎢⎢⎢⎢⎢⎣

r2

D2R2
0 0

0
R2

r2
0

0 0 D2

⎤
⎥⎥⎥⎥⎥⎦ . (3.5)

Substitution for R from Eq. (3.3)2 into Eq. (3.5) and the result into
Eq. (2.3) gives

dTrr
dr

+ 1
r

[
C10

(
R
Rin

)m
(
D2R2

r2
− r2

R2

)

+ C20

(
R
Rin

)n
(

r2

D2R2
− R2

r2

)]
= 0, (3.6)

whose integral is

Trr = − pin − C10
Rmin

∫ r

rin

Rm

r

(
D2R2

r2
− r2

R2

)
dr

− C20
Rnin

∫ r

rin

Rn

r

(
r2

D2R2
− R2

r2

)
dr. (3.7)

From Eq. (3.5) we get

T�� = Trr+C10

(
R
Rin

)m
(
r2

R2
−D2R2

r2

)
+ C20

(
R
Rin

)n
(
R2

r2
− r2

D2R2

)
,

(3.81)

Tzz = Trr+C10

(
R
Rin

)m
(

1
D2 −D2R2

r2

)
+ C20

(
R
Rin

)n
(
D2 − r2

D2R2

)
.

(3.82)

Thus knowing Trr and values of constants A and D in Eq. (3.3) one
can find T�� and Tzz.

Constants A andD are to be determined from boundary conditions
(2.4)2 and the resultant equal and opposite axial force Fa applied at
the end faces z = 0, L/D. That is, A and D are solutions of

pou − pin = C10
Rmin

∫ rou

rin

Rm

r

(
D2R2

r2
− r2

R2

)
dr

+ C20
Rnin

∫ rou

rin

Rn

r

(
r2

D2R2
−R2

r2

)
dr ≡ g1(m,n,Rin,Rou,A,D),

Fa = 2�
∫ rou

rin
Tzzr dr ≡ g2(m,n,Rin,Rou,A,D). (3.9)

By the implicit function theorem, these two non-linear algebraic
equations have a solution if and only if

det

⎡
⎢⎢⎢⎣

�g1
�A

�g1
�D

�g2
�A

�g2
�D

⎤
⎥⎥⎥⎦ �0.

The solution of the problem involving the eversion of a cylindrical
tube with free ends involves finding A and D by solving Eqs. (3.9)1
and (3.9)2 with pin = pou = 0 and Fa = 0.

The hoop stress, T��, has an extreme value either at r = rin or at
r = rou or at an interior point where

0 = dT��
dr

= 1
r

d
dr

(
r2

dTrr
dr

)

=
(

−1
r

)
d
dr

[
C10

(
R
Rin

)m
(
D2R2

r
− r3

R2

)

+ C20

(
R
Rin

)n
(

r3

D2R2
− R2

r

)]
. (3.10)

Here we have used Eqs. (2.3) and (3.7). For given values of A, D, m
and n, one can solve Eq. (3.10) for the radial coordinate r where the
hoop stress has an extreme value. Alternatively, one can fix r and
find values of m or n from Eq. (3.10).

Solid cylinder subjected to external pressure: For a solid circu-
lar cylinder with pressure applied on the outer surface, points on
the centroidal axis R = 0 cannot move radially. Therefore, A = 0 in
Eq. (3.3) and the deformation is described by r=

√
DR. Eqs. (2.1), (3.2)

and (2.4)2 give

Trr = T�� = −p̂+C10D(1−m/2)
(

r
Rou

)m

+ C20D−(1+n/2)
(

r
Rou

)n

,

Tzz = −p̂ + C10D−(2+m/2)
(

r
Rou

)m

+ C20D(2−n/2)
(

r
Rou

)n

,

p̂ = pou + C10D + C20
D

.

The constant D is determined from the resultant of axial tractions ap-
plied at the end faces of the cylinder. The cylinder's deformations are
homogeneous; however, the stress distribution in it is non-uniform
because the cylinder material is inhomogeneous.

3.1.1. Plane strain axisymmetric deformations (i.e., D = 1) of an FG
cylinder with m = n

For m = n, Eqs. (3.8)1 and (3.8)2 simplify to the following two
equations:

T�� = Trr + �0

(
R
Rin

)m
(
r2

R2
− R2

r2

)
, (3.11)

Tzz = Trr +
(

R
Rin

)m
[
C10

(
1 − R2

r2

)
+ C20

(
1 − r2

R2

)]
,

�0 = C10(1 − C20/C10). (3.12)

For �0 >0, T�� > Trr whenever A>0. That is, at any point in the FG
cylinder with m=n and undergoing radial expansion the hoop stress
is greater than the radial stress.

Let �p� = pin − pou denote the pressure difference between the
inner and the outer surfaces of the cylinder. Then, from Eqs. (2.4)2
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and (3.7) we get

�p� = − �0
Rmin

∫ rou

rin

Rm

r

(
R2

r2
− r2

R2

)
dr

= �0
Rmin

A
∫ Rou

Rin

(A + 2R2)

(A + R2)2
Rm−1 dR. (3.13)

We define the thickness parameter a and the expansion ratio � by

a = Rou
Rin

, � = rou
Rou

. (3.14)

Thus

rou = �aRin, rin = ((�2−1)a2+1)1/2Rin, A = (�2−1)a2R2in. (3.15)

For a given thickness parameter a, and the exponent m in Eq. (3.13),
the pressure difference �p� is a function of the expansion ratio �.

For a thin cylinder,

�p� = Trr|r=rou − Trr|r=rin

� dTrr
dr

|r=rin (rou − rin)

= �0
rin

(
r2in
R2in

− R2in
r2in

)
h, (3.16)

where h=rou−rin is the thickness of the cylinder in the deformed con-
figuration, and we have neglected second- and higher-order terms
in the Taylor series expansion of Trr(r) about r=rin. Here we have set
material properties of a thin cylinder equal to those of thematerial on
its inner surface which disregards their through-the-thickness vari-
ation. Another possibility is to average them over the thickness, e.g.
see [20], and account for the change of material properties through
the thickness of the cylinder.

Let the surface tension, per unit axial length in the deformed
configuration, be denoted by �. Then

� = �p�rin = �0

(
r2in
R2in

− R2in
r2in

)
h = �0

(
rin
Rin

− R3in
r3in

)
H, (3.17)

where H equals the cylinder thickness in the undeformed configu-
ration. With �̃ = rin/Rin, we can write Eq. (3.17) as

�
H�0

= �̃ − 1

�̃
3 (3.18)

implying that for a membrane composed of a homogeneous
Mooney–Rivlin material the surface tension � is a monotonically in-
creasing function of the expansion ratio �̃. We note that Eqs. (3.16)
and (3.17) hold even when m�n.

For a cylinder subjected only to internal pressure pin, Eq. (3.7)
gives

−pin = C10
Rmin

∫ rou

rin

Rm

r

(
R2

r2
− r2

R2

)
dr + C20

Rnin

∫ rou

rin

Rn

r

(
r2

R2
− R2

r2

)
dr,

(3.19)

for the determination of the constant A. When the cylinder is very
thick, Rou?Rin, rou → ∞, and Eq. (3.19) becomes

pin
A

= C10
Rmin

∫ ∞

Rin

A + 2R2

(A + R2)2
Rm−1dR + C20

Rnin

∫ ∞

Rin

A + 2R2

(A + R2)2
Rn−1dR.

(3.20)

For m = n, the hoop stress on the inner surface is given by

T��(rin) = −pin + �0

(
r2in
R2in

− R2in
r2in

)
= −pin + �0A

R2in

(
1 + 1

A + R2in

)
.

(3.21)

The effect of the material inhomogeneity upon the stress concen-
tration in a very thick cylinder made of a Mooney–Rivlin mate-
rial appears in Eq. (3.21) through A that depends upon m and n;
cf. Eq. (3.20).

Before giving the expression for Trr for arbitrary values of m and
n, we provide it form=n=±1and ±2; results for other integer values
of m and n are listed in the Appendix. Stresses T�� and Tzz can be
computed from Eqs. (3.8)1 and (3.8)2, respectively.

Case 1: m = 0, n = 0. For a cylinder composed of a homogeneous
Mooney–Rivlin material, we get

Trr = �0

[
ln

(r2 − A)1/2

A
− A

2r2

]
+ K,

T�� = Trr + �0
A(−A + 2r2)
r2(r2 − A)

. (3.22)

Boundary conditions (2.4) imply that constants A and K are solutions
of the following two non-linear equations:

pou − pin
�0

= ln
Rin
Rou

(
A + R2ou
A + R2in

)1/2

− A
2

R2ou − R2in
(A + R2ou)(A + R2in)

,

K = −pin + A�0

2(A + R2in)
+ �0 ln

(A + R2in)
1/2

Rin
. (3.23)

For given values of pin, pou, Rin, Rou and �0, Eq. (3.23)1 can be solved
for A, and then K can be found from Eq. (3.23)2.

For a very thick cylinder subjected to internal pressure only,
Rou?Rin, Eq. (3.23)1 becomes

2pin
�0

= ln

(
1 + A

R2in

)
+ A

(A + R2in)
, (3.24)

which still is a non-linear equation for the determination of A. In
deriving Eq. (3.24) we have assumed that limRou→∞ (A/Rou) = 0.

Case 2: m = n = 1.

Trr = �0
2Rin

[
3
√
A tan−1

(
R√
A

)
− AR

r2

]
+ K,

T�� = Trr + �0
Rin

(
r2

R
− R3

r2

)
. (3.25)

Equations for the determination of A and K from boundary conditions
(2.4) are complicated, and are omitted. However, for given values of
pin, pou, Rin and Rou, they can be solved numerically for A and K.

Case 3: m = n = 2.

Trr = �0

2R2in

(
A2

r2
+ 2A ln r2

)
+ K. (3.26)

Constants A and K are solutions of the following two non-linear
equations:

(pou − pin)R2in
�0

= A2(R2ou − R2in)

(A + R2in)(A + R2ou)
+ A ln

A + R2in
A + R2ou

,

K = −
[
pin + �0

2R2in
+
(

A2

A + R2in
2A ln(A + R2in)

)]
. (3.27)
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Case 4: m = n = −1.

Trr = −�0Rin

[
1
R

− R
2r2

+ 1

2
√
A
tan−1

(
R√
A

)]
+ K. (3.28)

Case 5: m = n = −2.

Trr = − �0AR
2
in

2r2(r2 − A)
+ K,

T�� = Trr + �0
R2inr

2

(r2 − A)2
. (3.29)

Constants A and K are solutions of the following two equations ob-
tained from boundary conditions (2.4):

A2 + A(R2in + R2ou) + R2inR
2
ou(1 − �̂) = 0,

�̂ = 1

/(
1 + 2(pou − pin)R2ou

�0
(
R2ou − R2in

)
)

K = �0
2

(
A

A + R2in

)
− pin. (3.30)

For a very thick cylinder subjected to internal pressure only,
Eqs. (3.30) become

�̂ = �0
�0 − 2pin

,

A = 2R2inpin/(�0 − 2pin). (3.31)

The requirement A>0 restricts pin to be less than �0/2. Thus

T��(rin) = −pin + �2
0

�0 − 2pin
. (3.32)

We have also studied problems involving unequal integer values of
m and n; some of these results are discussed in Section 4.

3.1.2. FG cylinder with arbitrary values of m,n, and D
We first assume thatm�0, n�0,m+2�0, n+2�0, and note that

∫ (
r2

D2R2
− R2

r2

)
Rn

r
dr =

∫
Rn−2r dr −

∫
Rn+2

r3
dr,

= 1
D

∫
Rn−1 dR − D

∫
Rn+3 dR

(A + DR2)2
,

= 1
D
Rn

n
− Rn+2

A(n+2)

[
2F1

(
n
2

+1, 1;
n
2

+2;−DR2

A

)

− 2F1

(
n
2

+ 1, 2;
n
2

+ 2;−DR2

A

)]
, (3.33)

where 2F1(a, b; c; x) is the Gauss hypergeometric function [16].
Similarly

∫ (
D2R2

r2
− r2

R2

)
Rm dr

r
= D3

∫
Rm+3

(A + DR2)2
dR − D

∫
Rm−1dR

=D2Rm+2

A(m+2)

[
2F1

(
m
2

+1, 1;
m
2

+2;−DR2

A

)

− 2F1

(
m
2

+ 1, 2;
m
2

+ 2;−DR2

A
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− DRm

m
.

(3.34)

Eqs. (3.33), (3.34) and (3.7) give

Trr = −pin+
C10
Rmin

[
DRm

m
− D2Rm+2

A(m + 2)

(
2F1

(
m
2

+1, 1;
m
2

+2;−DR2

A

)

+ 2F1

(
m
2

+ 1, 2;
m
2

+ 2;−DR2

A

))]r
rin

+ C20
Rnin

[
− Rn

Dn
+ Rn+2

A(n + 2)

(
2F1

(
n
2

+ 1, 1;
n
2

+ 2;−DR2

A

)

− 2F1

(
n
2

+ 1, 2;
n
2

+ 2;−DR2

A

))]r
rin

. (3.35)

The constant A is found from the boundary condition Trr(rou)=−pou.
Knowing Trr , T�� and Tzz are determined from Eqs. (3.8)1 and (3.8)2.

For a cylinder composed of a homogeneous Mooney–Rivlin ma-
terial, m = n = 0, Trr and T�� are given by

Trr = −�1
D

(
ln

r
R

+ A
2r2

)
+ K,

T�� = Trr + �1

(
r2

D2R2
− R2

r2

)
, (3.36)

and for m + 2 = n + 2 = 0, we have

Trr = �1
R2in
2

(
1
r2

− 1

DR2

)
+ K,

T�� = Trr + �1
R2inr

2

DR2
+ K, (3.37)

where

�1 = D2C10 − C20.

For D = 1, Eqs. (3.36) and (3.37) reduce to Eqs. (3.22) and (3.29),
respectively.

3.2. Affine variation of C1(R) and C2(R)

We now consider the case when C1 and C2 are affine functions
of the radius R. That is

C1 = Ĉ10

(
1 + �

R
Rin

)
, C2 = Ĉ20

(
1 + 	

R
Rin

)
, (3.38)

where � and 	 are real numbers. The normal stresses are given by

1
D
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[
3
2

√
A
D

�
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D
A
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)
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√
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]
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A
D5
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D
A
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)
− 1
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√
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]
+ K,
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(
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R
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)(
r2

R2
− D2R2

r2

)

+ Ĉ20

(
1 + 	

R
Rin

)(
R2

r2
− r2

D2R2

)
,
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Tzz = Trr + Ĉ10

(
1 + �

R
Rin

)(
1
D2 − D2R2

r2

)

+ Ĉ20

(
1 + 	

R
Rin

)(
D2 − r2

D2R2

)
. (3.39)

For � = 	, and plane strain axisymmetric deformations, (i.e., D = 1),
Eqs. (3.39)1–(3.39)3 simplify to the following:

Trr = �̂0

[
3
2

√
A�
Rin

tan−1
[

R√
A

]
− ln

√
A + R2

R
− A

2
(1 + �R/Rin)
(A + R2)

]
+ K,

T�� = Trr + �̂0

(
1 + �

R
Rin

)(
r2

R2
− R2

r2

)
,

Tzz = Trr +
(
1 + �

R
Rin

)(
Ĉ10 − Ĉ20r2

R2

)(
1 − R2

r2

)
, (3.40)
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Fig. 1. For Rou/Rin = 10 and pou = 0, through-the-thickness distributions of the nor-
malized radial stress and the normalized hoop stress for (a) m = ±n = ±1 and (b)
m = ±n = ±2.

where

�̂0 = Ĉ10 − Ĉ20. (3.41)

For radial expansion of the cylinder, the term (r2/R2−R2/r2) >0. Thus
T�� > Trr for −Rin/Rou >� >0, and for �Rou/Rin < − 1, T�� < Trr provided
that �̂0 >0.

4. Numerical results

During the computation of numerical results we set

C10 = Ĉ10 = 1.858 × 105 Pa, C20 = Ĉ20 = −0.1935 × 105 Pa,

Rin = 1m, pin = 0.01C10,

and Rou/Rin = 10. These values of C10 and C20 are for the rubber
tested by Batra et al. [19]. When studying stress concentration on
the inner surface of a very thick cylinder we take Rou/Rin = 100.
However, while delineating surface tension in a very thin cylinder,
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Fig. 2. For Rou/Rin = 10, pou = 0, and n = 0, m = −10, −2, −1, 0, 1, 2, 5, 10,
through-the-thickness distributions of (a) the normalized radial stress and (b) the
normalized hoop stress.
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we set Rou/Rin = 1.01 and 1.001. For Rou/Rin = 1.001, we compute
results for pin = 0.001C10.

4.1. Inflation of a FG cylinder

4.1.1. Power law variation of C1 and C2
4.1.1.1. Pressure applied on the inner surface. For m = ±n = ±1 (four
cases) and m = ±n = ±2, we have plotted in Fig. 1a and b the
through-the-thickness variation of Trr/pin and T��/pin for a cylinder
loaded by internal pressure only. The Cauchy stresses are plotted
against the radius in the undeformed configuration since rin and rou
depend upon values of m and n, and one will not have the same
range of values of r for different values of m and n. For m= ±n= ±1
magnitudes of Trr and T�� are the maximum at points on the inner
surface of the cylinder. For m = n = 1, the elasticities C10 and C20
increase linearly with the radius R in the reference configuration.
That is, the material hardens as one moves outwards from the inner
surface. For this case, it is interesting to note that T�� is nearly uni-
form throughout the cylinder thickness; e.g. see the dashed curve 4
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Fig. 4. For Rou/Rin = 10 and pin = 0, through-the-thickness distributions of the nor-
malized radial stress and the normalized hoop stress for (a) m = ±n = ±1 and (b)
m = ±n = ±2.

in Fig. 1a. For a cylinder composed of an incompressible Hookean
material it was proved in [6,8] that T�� is a constant when the shear
modulus is a linear function of the radius R. However, for a com-
pressible Hookean material studied in [11] the hoop stress is not
uniform through the cylinder thickness for a linear variation of
Young's modulus.

For a cylinder comprised of an incompressible second-order elas-
tic material it was found in [6] that T�� is not uniform through the
cylinder thickness when the two elasticities, � and �, in

T = −p1 + �(H + HT + HHT) + �(H + HT)2, (4.1)

are linear functions of R. Here H = F − 1 equals the displacement
gradient. The admissible radial displacement field, u, in [6] was found
to be

u = Ã
R

− B̃
R3

, (4.2)

where constants Ã and B̃ are, respectively, linear and quadratic func-
tions of the applied pressure. Setting F=I+H in Eq. (2.1) and keeping
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Fig. 5. For Rou/Rin = 10, pin = 0, and n = 0, m = −10, −2, −1, 0, 1, 2, 5, 10,
through-the-thickness distributions of (a) the normalized radial stress and (b) the
normalized hoop stress.

second-order terms in H gives

T = −p1 + (C1 − C2)(H + HT + HHT) + C2(H + HT)2, (4.3)

which is the same as Eq. (4.1) when � = (C1 − C2), and � = C2.
Setting D = 1, and r = R + 
u(1) + 
2u(2), A = 
A(1) + 
2A(2) in

Eq. (3.3)1 gives Eq. (4.2) for the displacement field for an incom-
pressible isotropic second-order elastic material. Here 
>1, and A(1)

and A(2) are constants. However, we are unable to find constants A(1)

and A(2) from Eq. (3.9) since g1 is a complicated function of A.
Form=n=−2 the magnitude of the radial stress decreases rapidly

from pin on the inner surface of the cylinder to almost zero at points
where R/Rin = 2; see the solid curve 1 in Fig. 1b. The hoop stress
for m = n = −2 is also high in this boundary-layer region. Whereas
T��(Rin) is tensile for m= n= −2 and m= −n= −2, it is compressive
for m = −n = 2 and m = n = 2. The through-the-thickness variations
of Trr and T�� for m = n = 2 and m = −n = 2 (i.e., curves 3 and 4 in
Fig. 1b) are nearly coincident. Thus the sign and the magnitude of the
hoop stress on the inner surface strongly depend upon the values of
m and n.
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Numerical results were also computed for m= ±n= ±5 and ±10
but are not shown here for the sake of brevity. However, we describe
a few features of these results. The thickness of the boundary layer
in Fig. 1b for m= n= −2 decreases further to 0.3Rin for m= n= −10.
Whereas the hoop stress at points near the inner surface of the
cylinder is tensile for m = n = −1 (dashed curve 1 in Fig. 1a), it is
compressive for m = n = 2 (dashed curve 4 in Fig. 1b), m = −n = 5,
m = n = 5 and m = n = −10. For m = n = 10, the hoop stress and the
radial stress are compressive and equal nearly pin for Rin�R�5Rin;
however, their magnitudes equal, respectively, zero and 8pin on the
outer surface R = Rou = 10Rin. Hence through-the-thickness variation
of stresses can be dramatically altered by suitably grading the elastic
parameters C1 and C2.

For n = 0 and different values of m, Fig. 2a and b exhibits
through-the-thickness variations of Trr/pin and T��/pin for an in-
ternally loaded thick cylinder. Results for a cylinder composed of
a homogeneous material correspond to m = n = 0. For m = −10,
−2, −1, 1 and 2 the distribution of the radial stress in the cylinder
wall is qualitatively similar to that in a cylinder composed of a
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Table 1
For different values of m and n, the hoop stress at the inner and the outer surfaces
of an internally pressurized FG cylinder.

m n T��(Rin)/pin T��(Rou)/pin

−10 0 7.3358577 0.000080108
−2 0 2.6833819 0.000035065
−1 0 1.87920980 0.0000299587
0 0 1.00476505 0.0002013863
1 0 0.059661719 0.0096301738
5 0 −0.99999668 3.0000025314
10 0 −0.99999999 8.000000000
0 −10 1.17640223 0.000198083
0 −2 1.10446762 0.000191507
0 −1 1.07017190 0.000188565
0 1 0.83410685 0.001903936
0 2 0.12697982 0.106671662
0 5 −0.99996819 2.99995979
0 10 −0.99999999 7.99999999

−1 −1 2.01650849 0
−1 1 1.538883307 0.002410782
1 −1 0.077613245 0.009783626
1 1 0.010126479 0.010124365

−2 −2 3.0368995501 0
−2 2 0.512832756 0.143180973
2 −2 −0.76167153 0.2159655001
2 2 −0.78292469 0.217181990
5 5 −0.99999699 3.00000300
5 −5 −0.99999668 3.00000286

−5 5 −0.99996819 2.99999065
−5 −5 6.15366193 0
10 10 −1 8
10 −10 −1 8

−10 −10 11.55154263 0
−10 10 −1 8
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Fig. 7. The normalized hoop stress at R=Rin for different values of m and n for thin
cylinder (Rou/Rin = 1.01, 1.001).

homogeneous Mooney–Rivlin material. However, for m = 5 and 10,
the curvature of the Trr vs. R curve (curves 7 and 8 in Fig. 2a) is
opposite to that of the curves for other values of m considered here.
For m = 10, Trr = T��= ∼ −pin for Rin�R�5Rin. For m = −10 the
hoop stress, as indicated by curve 1 in Fig. 2b, is concentrated in the
region Rin�R�1.3Rin, and T��(rin) � 7.5pin. For m = 1, T��(r) equals
∼0.15pin throughout the cylinder thickness; e.g. see curve 5 in
Fig. 2b. The curvature of the curve T�� vs. R form=2 is different from
that for other values of m, and through-the-thickness variations of
T�� for m = 5 and 10 differ quantitatively and qualitatively from
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ness distributions of (a) the normalized radial stress and (b) the normalized hoop
stress.

those for other values of m. For m= 5 and 10, the maximum tensile
hoop stress occurs on the outer surface of the cylinder, and equals
∼3pin and ∼7.8pin, respectively. Whereas the tensile hoop stress is
maximum on the inner surface for m = −10, it is maximum at the
outersurface for m = 10, and their magnitudes are nearly equal.

Through-the-thickness distributions of Trr and T�� for m = 0 and
different values of n are exhibited in Fig. 3a and b. Whereas the
variations of Trr with R for m = 0 and n�0 are qualitatively similar
to those of Trr with R for n = 0 and m�0, those of T�� vs. R for the
two cases are quite different. Results plotted in Fig. 3a and b are
essentially the same for n=−10,−2,−1 and 0; those for n=1 and 2 are
qualitatively similar to the ones for n=0, i.e., the cylinder composed
of a homogeneous Mooney–Rivlin material. However, through-the-
thickness variations of Trr and T��, as indicated by curves 7 and 8,
for n = 5 and 10 are remarkably different from those for n = 0 with
T�� being tensile in the cylinder material near the outer surface. For
n=5 and 10, T��(Rou)/pin equal ∼2.85 and ∼7.9, respectively. Thus if
the cylinder material were to fail because of the maximum principal
tensile stress exceeding a critical value, the gradation of material
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properties will determine whether the failure occurs on the inner
surface or on the outer surface.

4.1.1.2. Pressure applied on the outer surface. For a thick cylinder
loaded by a pressure, pou = 0.01C10, on the outer surface, through-
the-thickness variations of Trr and T�� for different values of m and
n are plotted in Figs. 4a,b, 5a,b and 6a,b. For n = 0 and m = 1, the
hoop stress is essentially uniform through the cylinder thickness.
However, for m = 0 and all integer values of n considered the hoop
stress is non-uniform through the cylinder thickness. For (n,m) equal
to (0, 5), (0, 10), (5, 0) and (10, 0) the maximum compressive hoop
stress occurs on the outer surface and its magnitude equals 4, 9, 3.8
and 10, respectively; for other values of m and n studied the magni-
tude of the compressive hoop stress is maximum at a point on the
inner surface of the cylinder.

4.1.1.3. Cylinder with Rou/Rin = 100. For either m = 0 or n = 0 and
values of n and m the same as those considered above, the qual-
itative variation of Trr and T�� through the cylinder thickness for
an internally pressurized cylinder is unaltered even when the
ratio of the outer radius to the inner radius in the undeformed
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Fig. 10. For eversion of a cylinder with Rou/Rin =1.2, and m=n=0, ±1, ±2, ±5, ±10,
through-the-thickness distributions of (a) the normalized radial stress and (b) the
normalized hoop stress.

configuration is increased from 10 to 100. Thus results are summa-
rized in Table 1. It is clear from the values listed in Table 1 that,
in a FG very thick cylinder with pressure applied only to the inner
surface, the maximum tensile hoop stress at the outer surface can
be very large; this result is counter-intuitive.

4.1.1.4. Cylinder with Rou/Rin = 1.01, 1.001. For a thin cylinder with
Rou/Rin =1.01 and loaded internally, T��/pin varies through the cylin-
der thickness, and decreases nearly affinely from its maximum value
on the inner surface to the minimum value on the outer surface, ex-
cept for m = 0 and n = 5, 10. For these two cases, T��/pin increases
affinely from its minimum value on the inner surface to its maxi-
mum value on the outer surface. For either m=0 or n=0, Fig. 7a and
b exhibits the variation with n and m of (HT��(Rin))/(pinRin) on the
assumption that T��(Rin) is a continuous function of m and n. Thus
the hoop stress in a thin cylinder can be controlled by suitably grad-
ing the material properties. Here H = (Rou − Rin) equals the cylinder
thickness in the reference configuration. We note that a thin cylinder
has not been approximated as a membrane, thus stresses induced in
it depend upon values assigned to exponents m and n.
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Fig. 11. For eversion of a cylinder with Rou/Rin = 1.2, and m = 0, n= 0, ±1, ±2, ±5, ±10, through-the-thickness distributions of the normalized hoop stress.

4.1.2. Affine variation of C1 and C2
For an internally pressured cylinder Fig. 8a and b shows the

through-the-thickness variation of the radial and the hoop stresses
for different values of � = 	. It is clear that values of � and 	 have
a little effect on the variation of Trr but influence noticeably the
through-the-thickness distribution of the hoop stress. It is interest-
ing to note that T�� at the point R=√

RinRou = 3.16 is essentially un-
changed by the values of � and 	, and is the same as that in the cylin-
der made of a homogeneous material. For an FG cylinder composed
of an incompressible Hookean material with the affine variation of
the shear modulus, one can prove analytically that the hoop stress
at R=√RinRou is the same for all affine variations of the shear modu-
lus. However, for the FG cylinder made of a Mooney–Rivlin material,
computed values of T��(

√
RinRou) are the same but we cannot prove

the result analytically.
In a FG cylinder subjected to pressure on the external surface

only, through-the-thickness variations of stresses plotted in Fig. 9a
and b evince that both Trr and T�� are compressive throughout the
cylinder, and the maximum magnitude of T�� occurs at points on
the inner surface of the cylinder. For a cylinder with Rou = 10Rin,
T�� varies noticeably with the values of � and 	 only in the region

Rin�R�3Rin. At R = √
RinRou = 3.16, |T��| is nearly independent of

the equal values assigned to � and 	.

4.2. Eversion of a FG cylinder

4.2.1. Power law variation of C1(R) and C2(R)
We find stresses induced during the eversion of a circular cylin-

drical tube by setting pou = pin = 0 and Fa = 0 in Eqs. (3.91)1 and
(3.91)2, respectively. The resulting two equations are solved for
constants A and D. Note that A must be negative for the eversion
problem.

For Rou/Rin = 1.2 and different values of m = n, we have plotted
in Fig. 10a and b through-the-thickness variations of the radial and
the hoop stresses. The abcissa in these plots represents the radial
coordinate in the unstressed reference configuration. For all values
of m=n considered, the hoop stress is tensile on the inner surface of
the everted tube and compressive on the outer surface. Form=n=10
and −10, the maximummagnitude of the hoop stress equals ∼3.2C10
and ∼0.2C10. The radial stress is everywhere compressive and the
maximum magnitude of Trr is very small as compared to that of T��.
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Fig. 12. For eversion of a cylinder with Rou/Rin = 1.2, and � = 	 = −Rin/(2Rou), 0, 1,
2, 5, 10, through-the-thickness distributions of (a) the normalized radial stress and
(b) the normalized hoop stress.

The point where |Trr| is maximum depends upon the values ofm and
n.

For m = 0 and ±n = 0, 1, 2, 5 and 10, T��(R) does not change
much with n except at points for which 1.13Rin < R�1.2Rin = Rou,
i.e. at points near the inner surface of the everted tube; e.g. see
Fig. 11. For n = −10, 5 and 10, |T��(Rou)|/C10 equals ∼0.7, ∼0.8 and
∼1.1, respectively.

4.2.2. Affine variation of C1(R) and C2(R)
For Rou/Rin = 1.2, � = 	 = −Rin/(2Rou), 0, 1, 2, 5 and 10, Fig. 12a

and b evinces through-the-thickness variations of Trr and T��. The
magnitude of T��(

√
RinRou) is essentially independent of the value

of �. The hoop stress T�� on the inner surface of the everted tube
increases from ∼0.3C10 to ∼9.8C10 when � is increased from −0.42
to 10. Except for � = 10, the variation of T�� through the cylinder
thickness if affine.

For a cylinder with Rou = 5Rin, we have plotted in Fig. 13a and
b the through-the-thickness distributions of Trr and T�� for six dif-
ferent values of � = 	. With an increase in the cylinder thickness
from 0.2Rin to 4Rin, the maximum magnitude of Trr increases from
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Fig. 13. For eversion of a cylinder with Rou/Rin =5, and �=	=−Rin/(2Rou), 0, 1, 2, 5,
10, through-the-thickness distributions of (a) the normalized radial stress and (b)
the normalized hoop stress.

∼0.43C10 to ∼26C10, and that of T�� from ∼10C10 to ∼350C10. These
stresses are too large to be sustained by the material without fail-
ure suggesting thereby that such a large cylinder cannot be inverted
without fracturing it.

For Rou = 1.2Rin and different values of � and 	 considered
above, the change in the cylinder length was ∼0.5%, and the de-
crease in the cylinder thickness 0.14%. However, for Rou = 5Rin and
� = 0, values of (D, % change in thickness) were found to be
(−0.8045,−29), (−0.8128,−28.98), (−0.8811,−28.1), (−0.9303,−26),
(−1.0164,−25.2) and (−1.078,−23.92) for 	 = −0.42, 0, 1, 2, 5 and
10, respectively. The corresponding values of the inner radius of the
everted cylinder equaled 1.98, 2.013, 2.238, 2.369, 2.579 and 2.73,
respectively. One can thus discern changes in the geometry of the
everted cylinder.

4.3. Remarks

We have exhibited results for integer values of exponents m and
n in Eq. (3.4). These results vary smoothly with changes in m and n.
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If desired, one can compute the radial stress from Eq. (3.35) for non-
integer values of m and n, and the hoop and the axial stresses from
Eqs. (3.8)1 and (3.8)2.

5. Conclusions

We have used a member of Ericksen's family of universal solu-
tions to analyze radial expansion/contraction of a cylinder made of
an isotropic and inhomogeneous Mooney–Rivlin material. The two
material parameters are assumed to vary continuously in the radial
direction either according to a power law or a polynomial of degree
one in the radial coordinate R in the reference configuration. When
the twomaterial parameters are linear functions of R, the hoop stress
is constant through the wall thickness. When the two material pa-
rameters increase rapidly with an increase in R, the maximum tensile
hoop stress in an internally pressurized cylinder occurs on the outer
surface in contrast to its occurring on the inner surface when the
two parameters either decrease or slowly increase with an increase
in R. For values assigned to the two material parameters, the tensile
hoop surface on the inner surface of an internally pressurized thin
cylinder with inner radius/thickness equal to 100 is about 300 times
the applied pressure; the exact value depends upon the gradation of
material parameters. For an internally pressurized cylinder with the
outer radius equal to 100 times the inner radius, the tensile hoop
stress on the inner surface equals eight times the applied pressure.

With a suitable tailoring of material properties in the radial di-
rection the hoop stress can be made to be compressive on the in-
ner surface and tensile on the outer surface, or uniform through the
cylinder thickness. Thus the variation in the radial direction of the
two elastic parameters in the Mooney–Rivlin constitutive relation
has a dramatic effect on the stress distribution in the cylinder.

We have also studied eversion of a cylinder made of a FGmaterial.
The through-the-thickness variation of the hoop stress in the everted
tube strongly depends upon the gradation of material properties. The
hoop stress is not uniform through the cylinder thickness when the
two elastic parameters vary linearly with R. For a thick cylinder, the
thickness and the length of the everted cylinder change significantly
during the eversion process.
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Appendix

Expressions for the radial stress, Trr , for several integer values of
m and n are listed below.

Case A1: m = n = 5.

Trr = �0A

R5in

[
2
3
R3 − 3AR − A2R

2r2
+ 7

2
A3/2 tan−1

(
R√
A

)]
+ K. (A1)

Case A2: m = n = 10.

Trr = A�0

2R10in

[
R8

2
− AR6 + 2A2R4 − 5A3R2+A5

r2
+7A4 ln r2

]
+K. (A2)

Case A3: m = n = −5.

Trr = �0R
5
in

[
− 1
5R5

+ 1
A2R

+ R
2A2r2

+ 3
2A5/2

tan−1
(

R√
A

)]
+ K. (A3)

Case A4: m = n = −10.

Trr = − �0
2

R10in

(
1

5R10
− 1

3A2R6
+ 1

A3R4
− 1

A4r2

+ 8 ln r
A5 − 3

A4R2
− 8 lnR

A5

)
+ K. (A4)
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