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We study free vibrations of a simply supported three-layer circular cylindrical shell with the inner and
the outer layers made of the same homogeneous material and the middle layer composed of a func-
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tionally graded material. We use Flügge’s shell theory to derive governing equations, express mid-plane
displacements in terms of trigonometric functions that identically satisfy the boundary conditions, and
compute natural frequencies in terms of the geometrical and the material parameters. Computed results
show that the fundamental natural frequency decreases with an increase in the radius-to-thickness ratio,
and increases with an increase in the ratio of Young’s modulus at the mid-surface to that of the outer (or
unctionally graded materials
atural frequency

the inner) layer.

. Introduction

Thin circular cylindrical shells are widely used in civil, naval,
uclear, mechanical, chemical and aerospace applications; accord-

ngly their vibrations are of interest to structural engineers. Among
umerous works on vibrations of shells we cite a few. Loy et al.
1997) have computed natural frequencies of circular homoge-
eous cylindrical shells by a generalized differential quadrature
ethod (DQM). Li (2006) studied free vibration of isotropic and

rthotropic circular cylindrical shells and delineated the effect
f axial pressure on the fundamental frequency. Pellicano (2007)
mployed both analytical and experimental methods to study lin-
ar and nonlinear vibration response of an isotropic cylindrical
hell. A local adaptive DQM was used by Zhang et al. (2006) to
nalyze free vibrations of shells under different boundary condi-
ions. Zhang and Xiang (2006) and Xiang et al. (2002) have studied
ree vibrations of cylindrical shells with intermediate ring elastic
upports.

Vibrations of laminated cross-ply circular cylindrical shells have
een studied by Lam and Loy (1995), Zhang (2001), Ganapathi et al.
2003), Jafari et al. (2005) and Wang and Lin (2006). A functionally

raded material (FGM) is usually composed of two or more materi-
ls in which material properties vary continuously, and a structure
ade of a FGM is called a FG structure. Haddadpour et al. (2007)

ave used the Garlerkin method to study free vibrations of a FG
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cylindrical shell subjected to thermal loadings and obtained fre-
quencies as a function of the temperature rise. Loy et al. (1999)
and Pradhan et al. (2000) have investigated the effect of material
property, geometry and boundary conditions on free vibration of FG
circular cylindrical shells. Recently, Cao and Wang (2007) analyti-
cally studied free vibration of a FG cylindrical shell with small holes.
Anigeri et al. (2006) used a semi-analytical finite element method to
study free vibration of a magneto-electro-elastic cylindrical shell.

Here we study free vibration of a three-layer circular cylindrical
shell with the inner and the outer layers made of a all the same and
isotropic linear elastic material and the middle layer of an FG linear
elastic material with material properties varying continuously in
the thickness direction. The motivation for this work is provided by
our desire to study free vibrations of a double wall carbon nanotube
(DWCNT) by adjusting material properties of the FGM to simulate
van der Walls forces among atoms on the two walls of the CNT. We
note that Sears and Batra (2006) have studied buckling of DWCNTs.
Following Li and Batra (2006) we use Flügge’s (1973) shell theory
to ascertain the effect on natural frequencies of different material
and geometric parameters.

2. Problem formulation

We consider a simply supported three-layer circular cylindrical

shell of length l, wall thickness h, and mid-surface radius R, assume
that materials of the inner and the outer layers are isotropic, homo-
geneous and linear elastic, and the middle layer is made of a linear
elastic FG material with material properties varying continuously
in the thickness direction. The material properties are assumed to

dx.doi.org/10.1016/j.mechrescom.2010.07.006
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
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Fig. 1. Details of the geometry of the three-layer circular cylindrical shell.

e continuous at the interfaces between the middle layer and the
nner and the outer layers. Thicknesses of the inner, the middle,
nd the outer layers are h1, h2 and h3, respectively. We describe
eformations of the cylinder in cylindrical coordinates x, � and z in
he axial, the circumferential and the thickness directions, respec-
ively, with z and w positive when they point into the cylinder (e.g.,
ee Fig. 1a).

We assume that Poisson’s ratio of the FGM is a constant and its
oung’s modulus varies either as a polynomial of degree one or two

n z; that is,

2(z) = E1

(
k + 2(1 − k)

|z|
h2

)
,

((−h2

2

)
< z <

(
h2

2

))
(1)

2(z) = E1

(
k + 4(1 − k)

(
z

h2

)2
)

,
(−h2

2

)
< z <

(
h2

2

)
(2)

here k = E0/E1 and E0 = E2(0).
Nie and Batra (2010) have shown that the effect of considering

patially varying Poisson’s ratio and assuming it to be a constant
or a cylindrical pressure vessel loaded by uniform pressure on the
nner surface is negligible on stresses and the two displacement

elds differ by at most 16%. Several investigators have assumed
oisson’s ratio to be constant while studying vibrations of FGMs.
his assumption is justified since Poisson’s ratios of different mate-
ials usually do not differ much. Through-the-thickness variations
f Young’s modulus given by Eq. (2) are exhibited in Fig. 2a–d.

Fig. 2. Through-the-thickness variation of the e
munications 37 (2010) 577–580

We refer the reader to Li and Batra (2006) for details of equations
governing deformations of the cylinder based on Flügge’s (1973)
shell theory. Li and Batra (2006) analyzed buckling of a simply sup-
ported three-layer cylindrical shell with forces px, p� and pz applied
per unit area of the middle surface. Governing equations for the
dynamic problem can be obtained by setting

(px, p�, pz) =
(

−�̄
∂2u

∂t2
, −�̄

∂2v
∂t2

, −�̄
∂2w

∂t2

)
= (−�̄ü, −�̄v̈, −�̄ẅ)

where �̄ =
∫ h/2

−h/2
�(z)dz, � equals the mass density (mass/volume)

of the shell material, u, v and w are displacements in the x, � and
z-directions, and a superimposed dot indicates differentiation with
respect to time t.

3. Harmonic vibrations

For simply supported cylinder edges boundary conditions are
identically satisfied by the following displacement field:

u = X1 cos(m�) cos(�nx/R) cos(ωt) (3a)

v = X2 sin(m�) sin
(

�nx

R

)
cos(ωt) (3b)

w = X3 cos(m�) sin
(

�nx

R

)
cos(ωt) (3c)

where �n = n�R/l, integers n and m are wave numbers of mode
shapes in the axial and the circumferential directions, respectively;
Xi (i = 1, 2, 3) are unknown constants representing amplitudes of
vibration of a mode shape, and ω is a natural frequency of the
shell. By introducing Eqs. (3) into governing equations (Li and Batra,
2006), the trigonometric functions drop out and we get the follow-
ing algebraic equations(

a11 − ˝2

�2
n

)
X1 + a12X2 + a13X3 = 0 (4a)

a21X1 +
(

a22 − ˝2

�2
n

)
X2 + a23X3 = 0 (4b)

( )

a31X1 + a32X2 + a33 − ˝2

�2
n

X3 = 0 (4c)

for the determination of the non-dimensional natural frequency
˝ = (ωR/�n)

√
�̄/C where C = hE1/(1 − �1

2) and dimensionless

lastic modulus E of the cylinder materials.
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Table 1
Comparisons of the non-dimensional frequencies ˝ for an isotropic cylindrical shell
(n = 1, l/R = 20, ı = 100, � = 0.3, k = 1).

m Reference (Loy
et al., 1997)

Reference (Loy
et al., 1999)

Present

1 0.016101 0.016102 0.016100
2 0.009382 0.009387 0.009383
3 0.022105 0.022108 0.022120
4 0.042095 0.042096 0.042123
5 0.068008 0.068008 0.068054
6 0.099730 0.099730 0.099798
7 0.137239 0.137239 0.137333
8 0.180527 0.180527 0.180652
9 0.229594 0.229594 0.229752

10 0.284435 0.284435 0.284632

Table 2
Dependence of the non-dimensional frequencies ˝ × 102 upon parameters ı and k
for a FG shell when n = 1, m = 4, ˇ = 1.0, l/R = 5.0 and material properties given by Eq.
(1) with �1 = �2 = 0.3.

ı k

0.1 0.2 0.4 0.6 0.8 1.0

100 7.30577 7.58806 8.12321 8.62518 9.09948 9.55021
150 4.20599 4.41010 4.79193 5.14546 5.48763 5.79894
200 3.34081 3.52443 3.87344 4.21586 4.51842 4.78937
250 2.95040 3.15372 3.48886 3.82788 4.10859 4.39992

F
ı
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oefficients aij(i, j = 1, 2, 3) are defined in Li and Batra (2006). The
equirement that Eqs. (4a)–(4c) have a non-trivial solution for the
mplitude Xi gives an algebraic equation for the determination
f ˝.

. Numerical results

While computing numerical results we consider the case of
1 = h3, i.e., the inner and the outer cylinders have the same thick-
ess. We use the Newton iteration method to find a root of the
lgebraic equation for the determination of ˝; this root depends
ot only on the geometry and the material properties of the shell
ut also on the wave numbers m and n. In order to verify our
lgorithm we first consider the case of a cylinder made of a homo-
eneous material with k = 1, �1 = �2 = 0.3. It should be clear from the
esults listed in Table 1 for different values of the axial wave number
that the presently computed non-dimensional natural frequency
= Rω

√
(1 − �2)�/E agrees well with that obtained by Loy et al.

1997, 1999).
We now consider a FG shell made of only one layer (i.e.,

= h2/h = 1) with Young’s modulus given by Eq. (1). For n = 1, m = 4,
alues of the dimensionless frequency for different values of the
adius/thickness ratio, ı = R/h, and the rigidity ratio, k = E0/E1, are

isted in Table 2. It is observed that the frequency increases with
n increase in the value of the parameter k, or equivalently with an
ncrease in the overall stiffness of the middle layer, and decreases

ith an increase in the values of ı. The incremental decrease in
he frequency is noticeable when ı is increased from 100 to 150

300 2.77536 2.96778 3.30966 3.62774 3.90422 4.17774
350 2.66555 2.86424 3.20606 3.51426 3.81422 4.07703
400 2.60209 2.78235 3.12170 3.43708 3.70848 3.97761
450 2.55051 2.74562 3.09846 3.39676 3.68808 3.94184
500 2.53686 2.72070 3.07630 3.37596 3.66862 3.93934

Fig. 3. Non-dimensional frequencies, ˝, versus the wave number, m, for ı = R/h (n = 1, k = 0.1) for a FG shell with material properties given by Eq. (1).

ig. 4. For circumferential wave number m = 1, 2, . . ., 6, dependence of the non-dimensional frequency, ˝, upon the parameter, �n , for the FG cylindrical shell with ˇ = 1,
= 200, k = 0.1.
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Fig. 5. Natural frequency, ˝, versus radius-to-thickness ratio ı for the tre

ut subsequent changes in the frequency for every increase in ı by
0 drop rather rapidly signifying a saturation of the frequency as ı
ecomes very large.

For the three-layer shell with either h2 = 0.6h or h2 = 0.8h (i.e.,
ither ˇ = 0.6 or 0.8) and for the axial wave number n = 1, we have
lotted in Fig. 3 the variation of the natural frequency, ˝, with
he circumferential wave number m for different values of the
adius/thickness ratio, R/h. It is evident that the value of m cor-
esponding to the minimum value of ˝ increases with an increase
n the value of R/h. Furthermore, the minimum value of ˝ decreases

ith an increase in the value of R/h. For a fixed value of m the
requency decreases with an increase in the value of R/h.

We note that for inextensional modes of vibration of free-
ree zigzag carbon nanotubes studied by Gupta et al. (2009) via

olecular mechanics simulations, the frequency saturated with an
ncrease in the value of the circumferential mode number.

For ˇ = 1, ı = 200, k = 0.1, and different values of m, the variation
f the frequency with the parameter �n is exhibited in Fig. 4. It can
e seen that the effect of the wave number m on the frequency is
ore significant for �n < 12.
In Fig. 5, curves of the dimensionless frequency ˝ versus ı are

resented for different values of k = E0/E1 and for the two spatial
ariations of Young’s modulus of the middle layer to illuminate the
nfluence of the parameters ı and k on ˝. These results show that
or a fixed value of ı, the frequency increases with an increase in
he value of k. Recall that for k < 1, the stiffness of the middle layer
s less than that of the inner and the outer layers, and the bending
igidity of the middle layer increases with an increase in the value
f k. For a fixed k, the frequency is greater for the parabolic variation
f E than that for an affine variation of E.

. Conclusions

Vibration of a simply supported three-layer circular cylindrical
hell with functionally graded (FG) middle layer has been studied.
aterials of all three layers are isotropic, those of the inner and

he outer layers are homogeneous and that of the middle layer
s FG with Young’s modulus varying continuously in the thick-
ess direction. Governing equations based on Flügge’s shell theory
re reduced to algebraic equations by assuming expressions for
he three displacements that identically satisfy boundary condi-

ions. Effects of the geometric and the material parameters and
f the wave number of vibration modes on the frequency have
een examined in detail. Numerical results show that the fre-
uency decreases with an increase in the radius/thickness ratio,
nd increase with an increase in the ratio of Young’s modu-
r cylindrical shell for different values of k when ˇ = 0.6, l/R = 5, n = 1, m = 1.

lus at the shell mid-surface to that of the inner or the outer
layer.
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