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Electromechanical Model of Electrically Actuated
Narrow Microbeams

Romesh C. Batra, ASME, Fellow, Maurizio Porfiri, and Davide Spinello

Abstract—A consistent one-dimensional distributed electro-
mechanical model of an electrically actuated narrow microbeam
with width/height between 0.5–2.0 is derived, and the needed
pull-in parameters are extracted with different methods. The
model accounts for the position-dependent electrostatic loading,
the fringing field effects due to both the finite width and the
finite thickness of a microbeam, the mid-plane stretching, the
mechanical distributed stiffness, and the residual axial load. Both
clamped–clamped and clamped-free (cantilever) microbeams are
considered. The method of moments is used to estimate the elec-
trostatic load. The resulting nonlinear fourth-order differential
equation under appropriate boundary conditions is solved by two
methods. Initially, a one-degree-of-freedom model is proposed to
find an approximate solution of the problem. Subsequently, the
meshless local Petrov–Galerkin (MLPG) and the finite-element
(FE) methods are used, and results from the three methods are
compared. For the MLPG method, the kinematic boundary con-
ditions are enforced by introducing a set of Lagrange multipliers,
and the trial and the test functions are constructed using the
generalized moving least-squares approximation. The nonlinear
system of algebraic equations arising from the MLPG and the FE
methods are solved by using the displacement iteration pull-in
extraction (DIPIE) algorithm. Three-dimensional FE simulations
of narrow cantilever and clamped–clamped microbeams are
also performed with the commercial code ANSYS. Furthermore,
computed results are compared with those arising from other
distributed models available in the literature, and it is shown that
improper fringing fields give inaccurate estimations of the pull-in
voltages and of the pull-in deflections. [1641]

Index Terms— Fringing fields, microelectromechanical systems
(MEMS), microelectromechanical systems (MEMS) modeling,
microactuators, microbeams, microsensors, microstructures,
meshless local Petrov–Galerkin (MLPG) method, pull-in insta-
bility, pull-in voltage, reduced order models.

I. INTRODUCTION

RECENT technological developments have opened
promising research opportunities and engineering priori-

ties in micromechanics. The study of electrostatically actuated
microelectromechanical systems (MEMS) is a branch of mi-
cromechanics. These MEMS find wide applications in switches
[1], micro-mirrors [2], and micro-resonators [3]. At the mi-
croscopic scale, high energy densities and large forces are
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available, and the electrostatic actuation may be more effective
than other kinds of actuation.

An electrostatically actuated microbeam is an elastic beam
suspendedaboveastationaryrigidplate,bothmadeofconductive
materials, and a dielectric medium filling the gap between them.
An applied electric voltage between the two electrodes results
in the deflection of the elastic beam and a consequent change
in the MEMS capacitance. The applied electrostatic force has
an upper limit beyond which the electrostatic Coulomb force
is not balanced by the elastic restoring force in the deformable
beam, the beam spontaneously deflects towards the stationary
rigid plate, and the device collapses. This phenomenon, called
pull-in instability, was simultaneously observed experimentally
in [4] and [5]. The accurate estimation of the pull-in voltage is
crucial in the design of electrostatically actuated MEM devices.
In particular, in micro-mirrors [2] and micro-resonators [3],
the designer avoids this instability in order to achieve stable
motions; in switching applications [1], the designer exploits
this effect to optimize the device’s performance.

Accurate estimates of the pull-in parameters have been
obtained by three-dimensional (3-D) numerical simulations
based on either the finite-element (FE) or the boundary element
analyses (see, e.g., [6] and [7]); however, these approaches
are time-consuming. Therefore, considerable effort has been
devoted to developing reliable one-dimensional (1-D)distributed
models of electrostatically actuated microbeams. In [3], a wide
clamped–clamped microbeam is modeled with the classical
linear beam theory, and the electrostatic force is computed by
completely discarding fringing field effects. These assumptions
are justified for small beam deflections and wide beams. In
[8], an effective Young’s modulus is considered in order
to account for plane stress and plane strain deformations
appropriate for narrow and wide beams, respectively. The
effects of fringing field is considered by accounting for the
microbeams’ finite width but neglecting their finite thickness.
In [9], the beam mid-plane stretching is accounted for in order
to treat large deflections. Nevertheless, no improvements with
respect to [3] on the electric modeling are shown, rendering
this model suitable for wide microbeams with initial gap sizes
comparable with the beam thickness. In [10], the fringing
field correction of [8] is combined with the finite deflection
approach of [9], resulting in a model that accurately predicts
the pull-in parameters of wide beams undergoing moderate
displacements. None of these works is applicable to narrow
beams where effects of fringing fields due to the finite thickness
are not negligible, as observed in [11].

Furthermore, the consideration of the mid-plane stretching
makes the governing equation nonlinear, and the problem of
numerically extracting the pull-in parameters more challenging.
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The shooting method used in [9] to solve nonlinear differential
equations relies on good initial estimates of unknown parameters
and may diverge. In [12], two variants of the Galerkin method
are employed by using the beam mode shapes as basis functions.
In the first variant, the electrostatic force is expanded in
Taylor series around the undeformed configuration, and terms
up to the fifth order are retained. The second variant accounts
exactly for the electrostatic force. The estimate of the pull-in
parameter computed with the first method does not agree
well with that obtained with the shooting method. The pull-in
parameter obtained from the second variant is very sensitive to
the number of modes used as basis, and acceptable results are
obtained only when an odd number of modes greater than one
are included in the basis functions. Both techniques neglect
fringing field effects. The use of mode shapes as a basis limits
the applicability of the method to beam geometries for which
eigenvalues and eigenfunctions can be easily computed. In
[10], the differential quadrature method is used and computed
results seem very accurate; nevertheless, the global nature of
the method seems to forbid its application to more complicated
MEMS geometries.

Recently, considerable research in computational mechanics
has been devoted to the development of meshless methods;
see, e.g., [13] and [14]. These methods are especially useful
in problems with discontinuities or moving boundaries, i.e.,
problems involving large deformations, crack propagation, and
high gradients, among others. Meshless methods may also
alleviate some other problems associated with the FE method,
such as locking and element distortion. In most applications,
fewer nodes are needed in the meshless method than those with
the FE method to obtain approximate solutions with the same
accuracy. Here, we adopt the meshless local Petrov–Galerkin
(MLPG) method that has been successfully applied to the
analysis of static linear beam and plate problems in [15]–[20].
The MLPG method used here employs the generalized moving
least-square (GMLS) basis functions for representing the test
and the trial functions. Results are also computed with a
1-D FE code employing Hermitian basis functions (i.e., beam
elements) and compared with those obtained from the MLPG
method.

In this paper, we present a model for analyzing narrow mi-
crobeams undergoing finite deflections. The beam is modeled by
using a large deflection theory; see, e.g., [22]. This model does
not account for finite deformations and is applicable when the
MEMS gap size and the microbeam thickness are considerably
smaller than the beam span. Indeed, small strains are experi-
enced whenever the microbeam deflection is much smaller than
the microbeam length, even if the maximum deflection exceeds
the beam thickness. We solve the resulting nonlinear fourth-
order differential equation by using two distinct approaches:
1) reducing the distributed system to a one-degree-of-freedom
(1-DOF) system and 2) retaining the distributed system and
using the MLPG and the FE methods in conjunction with the
efficient displacement iteration pull-in extraction (DIPIE) algo-
rithm developed in [23]. In particular, we derive a consistent
electromechanical model where finite thickness of the beam is
considered in both the mechanical and the electrical models.
With the Method of Moments (MoM) (see, e.g., [24]), an ex-
pression for the electrostatic load is established which simul-

taneously accounts for the fringing field capacitance due to fi-
nite width and finite thickness of the microbeam. The approach
followed here is similar to that used in structural mechanics to
study Saint–Venant problems; see, e.g., [25], that is, deforma-
tions of a slender beam are studied by initially solving a two-di-
mensional (2-D) problem defined on the cross section of the
beam and using these results to build a 1-D model of the beam
with distributed forces/loads acting on its length. Whereas in
[6] a reduced order discrete model valid for a specific MEMS
is deduced from 3-D numerical simulations, here a 1-D dis-
tributed model of a narrow microbeam is proposed with 2-D
numerical simulations needed to determine an expression for
the electrostatic force. The present reduced order 1-DOF model
differs from the classical mass-spring model of [5], since we
account for the axial stress, nonlinear stiffening, charge redistri-
bution, and fringing fields. It also differs from that of [12] since
we retain the complete nonlinear behavior of the electrostatic
force and consider fringing fields, and it differs from that of
[11] since we simultaneously treat the pull-in voltage and deflec-
tions as unknowns, i.e., the pull-in deflection is not empirically
chosen as was done in [11]. Two sample problems, namely, a
cantilever and a clamped–clamped microbeam, are considered.
Results from the proposed 1-DOF and the distributed models are
compared with those available in the literature [8]–[10] and with
those obtained from 3-D FE simulations. Some of the 3-D FE re-
sults for a cantilever beam are borrowed from [11]. Other results
for the cantilever beam, and results for the clamped–clamped
microbeam, have been obtained by using the commercial FE
code ANSYS.

Three goals of this paper are: 1) propose a consistent 1-D dis-
tributed electromechanical model for a narrow microbeam; 2)
establish a reduced-order 1-DOF model that gives a good esti-
mate of the pull-in parameters (deflection and voltage); and 3)
extend the MLPG method employed earlier to analyze linear
beam problems to the analysis of those nonlinear beam prob-
lems where nonlinearities arise simultaneously due to electro-
static loads and membrane stretching.

The remainder of this paper is organized as follows. In
Section II, we give governing equations of an electrostatically
actuated clamped–clamped and a cantilever narrow microbeam;
in Section III, we derive an expression for the distributed elec-
trostatic force that simulates well the fringing field effects. In
Section IV, we describe a 1-DOF model, and, in Section V,
we briefly present the MLPG and the FE methods and apply
the DIPIE algorithm for extracting the pull-in parameters. In
Section VI, we compare the proposed fringing fields corrections
with some of the classical formulas available in the literature.
The proposed 1-DOF and the distributed electromechanical
models are validated by comparing their predictions with those
from other distributed models and from ANSYS and COVEN-
TORWARE FE solutions. Section VII summarizes conclusions
of this paper. In Appendix A, we briefly outline the MoM used
in Section III. In Appendix B, we recall the fundamentals of
the GMLS approximation.

II. MODEL DEVELOPMENT

We consider a narrow microbeam of length , width , and
thickness either clamped–clamped or clamped-free, as de-
picted in Fig. 1. The microbeam is suspended above an infi-
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Fig. 1. Electrostatically actuated (a) clamped–clamped and (b) cantilever mi-
crobeams.

nite ground plane with an initial gap . Both bodies are perfect
conductors and are separated by a dielectric medium of permit-
tivity , where is the vacuum permittivity and is the
relative permittivity. A positive potential difference between
the two conductors causes the microbeam to electrostatically de-
flect downwards.

A. Governing Equation for Mechanical Deformations

Within the large deflection beam theory, see, e.g., [9], the de-
flection in the -direction is given by (see Fig. 2)

(1)

where is Young’s modulus, is the moment of inertia of the
cross section about the axis, is the axial force which is con-
stant along the beam axis, is the deflection-dependent elec-
trostatic force per unit length, and is the axial coordinate. A
beam is considered narrow, when its width is less than five
times its thickness , see, e.g., [8]. For wide beams, the me-
chanical stiffness should be modified as given in [8].

For a cantilever beam, the axial force vanishes, while for a
clamped–clamped beam it is given by

where is the area of the cross section of the beam, and
is the residual axial load. For a narrow beam, the residual axial
load is , where is the effective residual axial stress.
The residual stress is equal to , where is the initial

Fig. 2. Side view of the two microbeams: (a) clamped–clamped and (b) can-
tilever.

uniform biaxial stress in the material, see, e.g., [8], and is
Poisson’s ratio for the material of the beam.

For a fixed-fixed beam, the deflection is subjected to the fol-
lowing four kinematic boundary conditions:

(2)

while for a cantilever beam the deflection should satisfy the two
kinematic boundary conditions at the clamped end, and the two
kinetic boundary conditions at the free end

(3)

B. Distributed Force Due to Electric Field

The distributed force on the deformable microbeam
due to the electric field depends on the potential difference be-
tween the two conductors and on their geometries. Since only
small deformations of the beam are considered, it is reasonable
to assume that at every point the electrostatic force per unit
length depends only on the local deflection and equals
the force per unit length acting on an infinitely long straight
beam separated by a distance from a ground
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Fig. 3. Schematic view of the beam cross section with grounded electrode.

plane, as shown in Fig. 3. The may be computed by differ-
entiating the energy per unit length stored in the capacitor with
respect to the gap , i.e.,

Here, is the capacitance per unit length of the 2-D conduc-
tors’ system and is the voltage difference between the two
plates. The capacitance is comprised of the parallel-plate ca-
pacitance, the fringing field capacitance due to the finite width,
and the finite thickness of the beam.

C. Dimensionless Governing Equations

For convenience we introduce the nondimensional deflection
and the nondimensional abscissa . In terms

of nondimensional variables, (1) becomes

where for a clamped–clamped beam

and for a cantilever beam

The capacitance per unit length may be expressed as

(4)

where represents the fringing field function, and

(5)

is the capacitance per unit length when all fringing effects are
neglected, and

(6)

Therefore, the dimensionless electrostatic force is

where the electrostatic load parameter is given by

In Section III, we will derive an expression for applicable to
a narrow microbeam.

Henceforth, we drop the superimposed hat on dimensionless
variables and use a prime to indicate derivative with respect
to the dimensionless axial coordinate. Therefore, the governing
equation (1) in terms of nondimensional variables is

(7)

where for a clamped–clamped beam

and for a cantilever beam

D. Weak Formulation

For a clamped–clamped microbeam, we introduce the fol-
lowing weak formulation (see, e.g., [26]) of the problem de-
scribed by the governing equation (7) and the nondimensional
version of the boundary conditions (2):

(8)

Here, , , , and are Lagrange multipliers used to im-
pose the four kinematic boundary conditions (2), is a smooth
test function which does not need to satisfy the kinematic
boundary conditions, and , , , and are arbitrary scalar
numbers.

For a cantilever microbeam, (8) becomes

(9)

where only two Lagrange multipliers are employed since only
two kinematic boundary conditions are prescribed.

The consideration of Lagrange multipliers allows for the si-
multaneous application of the MLPG and the FE methods. In-
deed, the GMLS basis functions (see Appendix B) used in the
MLPG method do not have the Kronecker delta property, see,
e.g., [13], and special techniques, such as Lagrange multipliers,
are needed to enforce kinematic boundary conditions.
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Fig. 4. System of auxiliary conductors for computing the electrostatic capaci-
tance.

III. COMPUTATION OF THE ELECTRIC FORCE FIELD

The problem of computing the capacitance per unit length
of the present system of conductors has been addressed in
the literature on semiconductor-integrated circuits [27] and
microwave striplines [28]. Several empirical and analytical
expressions have been proposed, but none of them seem to be
applicable to a narrow microbeam.

We derive here an empirical formula for the capacitance per
unit length of the line to ground system, shown in Fig. 3, for a
narrow microbeam. The empirical formula is based on a least-
square fitting of numerical values obtained by using the well-
known MoM, see, e.g., [24], outlined in Appendix A for piece-
wise constant basis functions and the collocation method.

A. Empirical Formula for the Capacitance

The capacitance of the line to ground system of Fig. 3
equals twice the capacitance of two identical rectangular
conductors depicted in Fig. 4. Therefore, we consider this aux-
iliary system involving finite size conductors and exploit sym-
metry conditions.

By using the MoM, we numerically computed the capacitance
per unit length for different values of dimensionless param-
eters and defined in (6) ranging from 0.2 to 2 and 0.4 to 5,
respectively. The resulting data are then least-squares fitted by
a function of the following form:

(10)

where , , , , and are constants. The first term on the
right-hand side of (10) describes the parallel-plate capacitance,
the third term accounts for the fringing field capacitance due to
the finite width , and the fourth term models the fringing field
capacitance due to the finite thickness. Numerical values of the
optimized constants are

(11)

In the chosen range of variation for and , the maximum devi-
ation in the capacitance between the empirical estimate obtained

by substituting from (11) into (10) and the fully converged nu-
merical solution achieved by using the MoM is less than 2%.
Therefore, the fringing field function that we propose to use in
(4) is

(12)

B. Validation of the Capacitance Estimate

In Table I, we compare capacitance values computed from
(4) by substituting the expression for the fringing field
from relation (12) and from relations available in the literature,
i.e., Palmer’s formula [29],

(13)

the parallel-plate approximation , and the Meijs-
Fokkema relation [30]

(14)

We use a fully converged solution obtained with the MoM for
comparing accuracies of different formulas. It is clear that, for
narrow microbeams with , , the
Palmer formula and the parallel-plate approximation give erro-
neous values of the capacitance per unit line. As stated in [30],
values from the Meijs–Fokkema formula have a maximum de-
viation of 2% for , , and of
6% for and . The estimate is worst when the
gap size is larger than the beam width, i.e., . In this case,
the error in the capacitance values from the Meijs–Fokkema for-
mula is , which is usually unacceptable. It is also evident
that the proposed empirical formula provides accurate estimates
for values of and that are outside the range of their values
used for least-squares fitting.

In Fig. 5(a) and (b), we have plotted the percentage error in
the capacitance versus the gap/thickness for
(narrow beam) and (significantly narrow beam) com-
puted with the different formulas, and taking as reference the
converged numerical values obtained by applying the MoM. As
expected, the present interpolation formula (12) provides accu-
rate results for both values of . The Mejis–Fokkema relation
(14) gives precise results for a narrow beam but has moderate
discrepancies for a significantly narrow beam. The Palmer ex-
pression (13) and the parallel-plate approximation, which to-
tally neglect finite thickness of the beam, provide poor esti-
mates of the electric capacitance for narrow and significantly
narrow microbeams. The electrostatic force estimated from the
two methods is acceptable only for small gaps. Since the gap
varies as the beam deforms, formulas (13) and (14) may not give
accurate values of the pull-in voltage.

IV. 1-DOF MODEL

A closed-form solution of the boundary-value problem de-
fined by (7) and the pertinent boundary conditions cannot be
found. Here we give an approximate solution based on a 1-DOF
model of the MEMS. The approximate solution is constructed
by expressing the dimensionless deflection field as the product
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TABLE I
COMPARISON BETWEEN THE CAPACITANCES PER UNIT LENGTH COMPUTED BY THE MOM WITH THOSE FROM (4) BY SUBSTITUTING INTO IT (12) FOR THE

FRINGING FIELD AND FROM THREE FORMULAS AVAILABLE IN THE LITERATURE

of an unknown deflection parameter and a given trial function
satisfying the kinematic boundary conditions

(15)

The governing equation for is derived by multiplying both
sides of (7) by , integrating over the beam span, and substi-
tuting into the resulting equation the approximate solution (15).
After integrating by parts, the governing equation for becomes

(16)

where

Note that is linear in , therefore, is independent of . The
left-hand side of (16) represents the restoring elastic force, while

the right-hand side the electrostatic force. Furthermore, the term
multiplying represents the stiffness of a linear elastic beam
and that multiplying the strain-stiffening effect. The lumped
electrostatic force depends on the adopted fringing field correc-
tion, and it cannot in general be expressed analytically. Note
that (15) gives the admissible equilibrium states of the system.
As the parameter increases from zero the overall stiffness of
the system decreases and it vanishes at the pull-in instability.
Therefore, pull-in occurs in an equilibrium state for which the
first derivative of the equilibrium (16) with respect to the deflec-
tion parameter vanishes.

This implies that the pull-in deflection and voltage should
satisfy simultaneously (16), and its derivative with respect to

, i.e.,
(17)

By eliminating from (16) and (17), we obtain

(18)

By solving (18) for , and by substituting the value of into (16),
we determine the pull-in instability parameters, i.e., deflection
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Fig. 5. Taking the capacitance computed with the MoM as reference, comparison of the error in the capacitance per unit length for a narrow microbeam obtained
with different methods.

and voltage. We emphasize that, once the trial function
has been chosen, (18) reduces to a nonlinear algebraic equation
for , where the derivative can be computed for any

by numerical integration. In general, (16) cannot be solved
analytically, and standard root finding techniques such as the
bisection algorithm (see, e.g., [31]) may be applied.

When is different from zero, fringing fields are taken into
account and arbitrary trial functions are used, multiple solutions
may be present. We determine the pull-in parameters by consid-
ering the lowest root of (18). In our numerical simulations, we
found that (18) has one solution.

We choose as a trial function the normalized linear static
deflectionofthemicrobeamduetoauniformlydistributedapplied
load. Therefore, for a clamped–clamped microbeam, we take

and consequently

For a cantilever microbeam, we choose

thus

In the beam’s undeformed configuration, the electrostatic force
acts as a uniformly distributed load, and the nonlinear mechan-
ical stiffness is zero. Therefore, the chosen trial function repre-
sents the actual microbeam deflection when small voltages are
involved. Moreover, from the analysis of the distributed model
with the MLPG and the FE methods, it appears that the shape of
the deformed beam does not change appreciably as the voltage is
increased. These ensure the effectiveness of the present choice,
which is validated by numerical results presented in Section VI.

V. NUMERICAL METHODS

A. Discrete Nonlinear Formulation

In order to seek an approximate solution of the nonlinear
problem, we find the deflection by using either the MLPG
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method with the GMLS basis functions [15] outlined in Ap-
pendix B or the FE method with the Hermite polynomial basis
functions [32]. In both cases, indicating by the number of
nodes on the beam, the trial solution is expressed as

(19)

where is a vector comprised of the basis functions,
and is the vector of nodal unknowns. For the GMLS ap-
proximation, represents the fictitious nodal values [15]. The
number of unknowns in the problem is where
is the number of Lagrange multipliers. From (8) and (9),
equals 4 for a clamped-clamped beam, and 2 for a cantilever
beam. By substituting the approximation (19) into either (8) or
(9), by considering displacement test functions of the form

where is a row vector of arbitrary constants, and by in-
troducing a vector of arbitrary constants, we get the fol-
lowing discrete nonlinear equations:

(20a)

(20b)

where

-

and .
Let rows of the matrix be comprised of

linearly independent null vectors of the
matrix , and set

(21)

Substitution from (21) into (20b) gives

which are identically satisfied for every -vector .
Premultiplying both sides of (20a) by and substituting from
(21), we obtain the following reduced system of
nonlinear equations for :

(22)

where

Having found from (22), is computed from (21).

B. DIPIE Algorithm

We use the DIPIE algorithm (see, e.g., [23]) to solve the set of
equations (22) and find the complete bifurcation path. It treats
the applied voltage as an additional unknown, using the deflec-
tion of a prechosen beam point as the driving parameter for
the iteration scheme. In this way, the original problem, which
has both stable and unstable equilibrium states, is replaced by a
sequence of equivalent problems.

If the deflection is known, the solution
at the deflection

is found by solving the system of equations

(23a)

(23b)

The solution of the set of nonlinear equations (23), in terms
of the unknowns and , is found by using Newton’s
iterations. Hence, at the generic th iteration

where indicates the th solution increment;

is the updated solution at the th iteration,
i.e.

and is the tangent stiffness at the th iteration,
i.e.

with
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The iterations are performed until the infinity norm of the in-
cremental solution, i.e., its maximum value over the beam span
satisfies

where

(24)

and and are preassigned small numbers. For a
clamped–clamped microbeam, we choose equal to the
mid-span, and for a cantilever microbeam, we take equal to
the beam length. In order to extract the pull-in parameters, we
monitor the electrostatic parameter , since pull-in occurs
when this parameter changes sign. We use a constant step for
iterating the deflection and, if necessary, additional iterations
are performed for pull-in parameters.

VI. RESULTS AND COMPARISONS

In [8], the mid-plane stretching and the fringing field capaci-
tance due to the finite thickness of the beam are neglected, and
the Palmer approximate formula (13) is used. Therefore, expres-
sions of the dimensionless axial load, and for the dimensionless
force per unit length are

clamped-clamped
cantilever

(25)

In [9], the mid-plane stretching is considered but all fringing
field effects are neglected. Consequently, the electric force per
unit length is given by

(26)

In [10], the mid-plane stretching is accounted for, and the
fringing field effects are treated as in [8].

Here we compare predictions of the models developed in
[8]–[10] with those of the present model for two sample prob-
lems: a cantilever and a clampled-clamped microbeam. Both
geometries have been analyzed in [11] by using the software
COVENTORWARE. Recent findings [33] do not agree with the
results of [11] for the clamped–clamped beam. Moreover, for
the problem analyzed in [11], the microbeam deflections are rel-
atively small, the nonlinear stiffening does not seem significant,
and the numerical findings do not include the pull-in deflection
which is a crucial design parameter.

Therefore, we performed our own 3-D FE simulation using
ANSYS. Details of the performance of simulating MEMS
problems with ANSYS are given in [34]. Following guide-
lines [34] on the accuracy of different simulation options, we
used the tool ROM 144. We adapted the “Sample Miniature
Clamped–Clamped Beam Analysis” [35, Example 6.6] to a
narrow microbeam by extending the surrounding dielectric
medium in order to accurately model the fringing fields. The
region analyzed and its discretization into FEs are reported in

Fig. 6. Schematics of the 3-D FE mesh used for ANSYS simulations of the
clamped–clamped beam. The domain in light gray is the dielectric, and the one
in dark gray is the microbeam.

TABLE II
GEOMETRIC AND MATERIAL PARAMETERS FOR THE PROBLEMS STUDIED. FOR

THE CANTILEVER BEAM PROBLEM, CASE (1) REFERS TO THE GEOMETRY

ANALYZED HEREIN WITH ANSYS, WHILE CASE (2) TO THE PROBLEM

ANALYZED IN [11]

Fig. 6 for the clamped–clamped microbeam; only half of the
system is modeled due to symmetry conditions, and a refined
mesh is employed in the gap region. In particular, the dielectric
medium is considered as a block of length 100 , semi-width
of 24 , and thickness of 24 . For the cantilever microbeam
problem, the dielectric domain has been also increased along
the beam axis by 24 in order to model fringing fields at the
free end. The elements SOLID 145 (eight-node brick elements)
were used to model the microbeam, while SOLID 122 (20-node
tetrahedral elements) were used to model the dielectric. Geo-
metric nonlinearities have been included in the simulation.
Table II lists the geometry and the material properties of the
problems studied. The adopted mesh densities and dielectric
region dimensions correspond to the minimum required to
obtain a fully converged solution for the pull-in parameters.
Indeed, performing numerical experiments by varying both the
dielectric region and the mesh density for the beam and the
dielectric, we established that the third significant digit of the
pull-in voltage and the pull-in deflection does not change either
considering a more refined mesh or a larger dielectric domain.

While using (22), a uniform grid of nine uniformly spaced
nodes has been used for both the MLPG and the FE methods,
and results were found to be practically indistinguishable
from those obtained by considering more nodes. Numerical
integrations have been performed by using 10 Gauss quadrature
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TABLE III
COMPARISON OF PULL-IN VOLTAGES, V , AND PULL-IN DEFLECTIONS

INFINITY NORM, kw k , OF THE CLAMPED-CLAMPED MICROBEAM

OBTAINED FROM DIFFERENT MODELS, DIFFERENT METHODS, AND WITH THE

INITIAL STRESS, � , EQUAL TO (A) � = 100 MPa, (B) � = 0, AND (C)
� = �100 MPa. THE MLPG AND THE FE REFER TO SOLUTIONS OF THE

ONE-DIMENSIONAL BOUNDARY-VALUE PROBLEM WITH THE MLPG AND THE

FE METHODS, RESPECTIVELY

points located in each element for the FE method and, in each
subinterval, partitioning the entire domain [15] for the MLPG
method. The GMLS basis functions are generated by complete
monomials of degree 3 ; cf. (29) in Appendix B. The
radius of the weight functions in (36) for the GMLS approx-
imation is five times the distance between two adjacent nodes.
The power in (36) is set equal to 5; see [15] for a discussion
of the effect of on the trial function’s degree of smoothness.
The tuning of parameters for the MLPG analysis stems from
the results in [17], where the effect of different parameters
are analyzed, and general guidelines are given. As a rule of
thumb, increasing any of the parameters , , and results
in a more accurate solution but with more computational time.
In the DIPIE algorithm for the clamped–clamped microbeam,
the increment of the driving parameter equals 2.5 ,
while for the cantilever microbeam the increments of the
driving parameter are 4.0 for case (1) and 1.0
for case (2) in Table II. These choices are motivated by the need
to estimate the third significant digit in the dimensional pull-in
maximum deflection. The tolerances in Newton’s iterations for
the DIPIE algorithm are and ; see (24).

Results of different computations on the clamped–clamped
microbeam are given in Table III; results of the ANSYS FE
simulations are considered to be most reliable since they do

Fig. 7. Plots of the maximum displacement versus the applied voltage for the
clamped–clamped microbeam problem under different initial states of stress.
Results from all models are reported up to their predicted pull-in instability. (a)
� = 100MPa. (b) � = 0 MPa. (c) � = �100MPa.

not involve a priori assumptions on the mechanical and the
electrical behavior of the system. Three different values of the
initial stress , representative of pretensioned, stress-free, and
precompressed beams, have been examined. Results for the pre-
compressed beam have been computed by tacitly assuming that
the beam is constrained from buckling. Results from models of
[8]–[10] have also been computed with the MLPG and the FE
methods, and with the corresponding reduced 1-DOF models.
The accuracy of the proposed 1-DOF model explained in
Section IV can be ascertained by comparing predictions from it
with those from the MLPG and the FE methods. The complete
neglect of the fringing field effects leads to significant underes-
timation of the electrostatic force, consequent overestimation of
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TABLE IV
COMPARISON OF PULL-IN VOLTAGES AND PULL-IN DEFLECTIONS OF

THE CANTILEVER MICROBEAM OBTAINED FROM DIFFERENT MODELS,
DIFFERENT METHODS. THE MLPG AND THE FE REFER TO SOLUTIONS OF THE

ONE-DIMENSIONAL BOUNDARY-VALUE PROBLEM WITH THE MLPG AND THE

FE METHODS, RESPECTIVELY

the pull-in voltage and underestimation of the pull-in deflection
as is evident from the results computed with the model in [9].
By introducing into the model of [9] the fringing field (13), as
is done in [10], the pull-in voltage and the pull-in deflection
are significantly improved; nevertheless, the pull-in voltage is
still overestimated due to the neglect of the finite thickness of
the beam in the computation of the electrostatic force. Instead,
the pull-in deflection computed by using the model of [10] is
in good agreement with the ANSYS FE solution. The removal
of the mid-plane stretching effect [8] for the clamped–clamped
beam significantly decreases the accuracy of the pull-in deflec-
tion, since it completely ignores the nonlinear stiffening which
for the present geometry is extremely relevant. The
model developed in [8] is based on assuming small deflections
of the microbeam, and therefore it is incapable of accurately
estimating pull-in parameters for the present geometry. The
pull-in voltage is instead underestimated, since, by neglecting
the membrane stretching, the overall mechanical compliance is
overestimated. As is evident from the results listed in Table III,
the present work, by properly accounting for the fringing field
effects due to the beam finite thickness, provides a consistent
electromechanical theory that gives accurate results for narrow
clamped–clamped microbeams undergoing severe displace-
ments. Fig. 7(a)–(c) reports the voltage versus the maximum
deflection for the three values of the initial stress obtained
using the five models. The curves are computed by using the
simple 1-DOF model explained in Section IV. For increasing
voltages, the maximum deflections predicted by these models
significantly differ; the response predicted by the present model
is closest to that given by ANSYS.

Results of computations on the two sample cantilever mi-
crobeams whose parameters are listed in Table II are given
in Table IV(a) and (b). The discrepancy between the pull-in
voltage predicted by [9] and the ones resulting from either
ANSYS or COVENTORWARE [11] signifies the importance
of fringing fields for a reliable understanding of the pull-in
instability in a narrow microbeam. Wherease we computed
results with ANSYS, those with COVENTORWARE are

Fig. 8. Plot of the maximum displacement versus the applied voltage for the
cantilever microbeam of case (1) in Table II. Results from all models are re-
ported up to their predicted pull-in instability.

Fig. 9. Deformed shapes of microbeams just prior to the pull-in voltage. Di-
mensions along the x- and the y-axes are in �m. (a) Cantilever microbeam of
case (2), Table II. (b) Clamped-clamped microbeam with � = 0MPa.

from [11]. When compared with the models of [8] and [10],
the present model improves both the estimates of the pull-in
voltage and the pull-in deflection. Indeed, the models of [8]
and [10] underestimate the electrostatic force by neglecting the
fringing field effects due to the beam finite thickness and there-
fore overestimate the pull-in voltage and lead to less accurate
estimates of the pull-in deflection. For the five different models,
Fig. 8 exhibits the voltage versus the maximum deflection for
the geometry identified as case (1) in Table II. The curves
are computed by using the simple 1-DOF model presented
in Section IV. As for the clamped–clamped microbeam, the
complete neglect of fringing fields yields severely erroneous
predictions. Accounting for fringing fields in narrow cantilever
microbeams dramatically increases the accuracy, and a detailed
model of fringing field effects, as has been done in the present
work, gives results with relatively low errors.
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Fig. 10. For the cantilever beam identified as case (2) in Table II, comparison
of the nondimensional pull-in voltage � versus 1=� computed from the present
1-DOF model with those from [8]–[10].

Fig. 11. For the clamped–clamped microbeam of Table II with � = 0MPa,
comparison of the non-dimensional pull-in voltage � versus 1=� computed
from the present 1-DOF model with those from [8]–[10].

For the second cantilever microbeam geometry and for the
stress-free clamped–clamped microbeam Fig. 9(a) and (b) de-
picts the deformed shape of the microbeams just prior to the
pull-in voltage. They give an idea of the maximum deflection of
the beam just before the pull-in voltage is reached.

The nondimensional pull-in parameter for different values
of the beam width , and with values of other parameters listed
in Table II, computed with different MEMS models, is given in
Figs. 10 and 11 for a cantilever and a clamped–clamped beam,
respectively; the corresponding results for the maximum pull-in
deflections are exhibited in Figs. 12 and 13. The curves are
computed by using the simple 1-DOF model. For each beam,
the nondimensional pull-in parameter increases monotoni-
cally with a decrease in the value of from 2.0 to 0.2. From
Figs. 12 and 13, it is clear that the nondimensional pull-in max-
imum deflection significantly changes with the width of the
beam, and consistently differs from the values used in [11] for
deriving empirical estimates of the pull-in voltage (0.45 for can-
tilever and 0.40 for clamped–clamped microbeams). Indeed, for
the narrow microbeam with , the nondimensional pull-in
maximum deflections are 0.56 and 0.66 for the cantilever and
the clamped–clamped configurations, respectively.

VII. CONCLUSION

The main contributions of this study can be summarized as
follows.

• The previously available models in the literature for
studying electrically actuated microbeams do not give

Fig. 12. For the cantilever beam identified as case (2) in Table II, comparison of
the maximum pull-in non-dimensional deflection kwk versus 1=� computed
from the present 1-DOF model with those from [8]–[10].

Fig. 13. For the clamped–clamped microbeam described in Table II with � =

0MPa, comparison of the maximum pull-in nondimensional deflection kwk
versus 1=� computed from the present 1-DOF model, with those from [8]–[10].

good estimates of the pull-in voltage for a narrow mi-
crobeam with width smaller than five times the thickness.
The proper choices of the beam bending stiffness and the
fringing field due to the finite width of the beam are gener-
ally not sufficient to accurately model narrow microbeams.
The effect of the beam finite thickness should be consid-
ered in order to derive a consistent electromechanical
model.

• The classical empirical formulas for computing the line
to ground capacitance cannot be applied to narrow mi-
crobeams, since the aspect ratio of the microbeam cross
section may exceed the typical aspect ratios of integrated
circuits. Furthermore, when large deflections are consid-
ered, the gap size along the microbeam span may attain
values larger than those encountered in typical electronic
circuits. Therefore, empirical formulas are needed to
properly describe the electrical capacitance of narrow
microbeams. In this study, an empirical formula suitable
for narrow microbeams is derived from least squares fit
to values computed by the method of moments. Values
obtained from this formula are compared with those from
other formulas in the literature, and predictions from its
use are shown to be valid for a narrow microbeam.

• A 1-DOF model that gives very good values of the pull-in
voltage for narrow clamped–clamped, and cantilever
beams has been proposed. It differs from the classical
spring-mass model since the nonlinear stiffening due to
the axial stress, charge redistribution and fringing fields
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are taken into account. Moreover, the complete nonlinear
behavior of the electrostatic force is retained and the
pull-in voltage and deflections are treated as unknowns,
i.e., the pull-in deflection is not empirically chosen as
was done in [11]. It is shown that the pull-in deflections
noticeably change with the aspect ratio of the beam cross
section and cannot be determined a priori.

• The 1-DOF model results have been validated by com-
paring them with those obtained by solving the nonlinear
1-D boundary-value problem with the MLPG and the FE
methods in conjunction with the DIPIE algorithm. Results
from the MLPG, and the FE methods are virtually indis-
tinguishable when the same number of nodes are used.
The convergence rate of the DIPIE method does not vanish
when the pull-in state is approached, and the number of it-
erations remains reasonable.

• The MLPG method represents an efficient alternative to
the FE method for studying microbeams and estimating
the pull-in parameters. In particular, the MLPG method is
applicable to any microbeam geometry, and it does not re-
quire the use of a mesh on the MEMS domain. This alle-
viates mesh entanglement problems and remeshing diffi-
culties that may arise when analyzing finite deformations
of MEMS devices, and simplifies the generation of the
numerical model since no interconnectivity rules among
nodes are required.

• The computed pull-in voltage for a clamped–clamped and
a cantilever microbeam is found to match well with that ob-
tained from the solution of the 3-D problem with the com-
mercial computer code ANSYS. The 3-D simulations are
considerably more expensive than those for the proposed
1-D distributed model.

APPENDIX A
MOM

The potential for an arbitrary charge distribution per unit
surface is given by

(27)
where is the distance
from the source point to the observation point , is
the overall boundary of the conductors, and is a constant that
may be neglected since it does not affect the charge distribution.
Boundary conditions on the top and the bottom rectangle, say

and , are and , espectively. The boundary of
each plate is subdivided into small elements,and the charge den-
sity is assumed to be constant in element (piecewise con-
stant basis functions). For convenience we use the same mesh of

elements for the two identical rectangles. By substituting the
charge approximation into (27) and by imposing the boundary
conditions at the geometric centers of the elements (col-
location method), we obtain the following linear system of
equations in unknowns collected in the vector :

The generic entry of the coefficient matrix is given by

where is the length of the th element, and are
the extrema of the th element, is the angle between the
segments and , and is the angle between the

segments and . We note that these angles can be
computed by using Carnot’s theorem. The element of the vector

equals if it refers to an element of and 0 if it refers to an
element of . From the knowledge of the distributed charge
per unit surface area, the charge stored per unit line in each
plate may be directly computed, and the capacitance per unit
line estimated.

APPENDIX B
GMLS APPROXIMATION

The GMLS approximation [15] constructs a trial function on
the entire domain from the knowledge of its values and of its first
derivatives at some, suitably chosen, scattered points. Here,we
briefly report a special case of the general formulation of [15]
for the present problem.

Consider the function having continuous first deriva-
tive on the domain . The fictitious nodal values, and
fictitious values of its first derivative at scattered points

in are collected into two -vec-
tors , and , respectively,
where the superscript indicates matrix transposition. The
global approximation on is defined by

(28)

where

(29)

is a complete monomial basis of degree .
The -vector is comprised of

coefficients, which vary with the abscissa and are to be deter-
mined. At each location in , these coefficients are deter-
mined by a local least square approximation of on a small
neighborhood of . The local approximation is de-
fined by

(30)

In the neighborhood of , the coefficients are treated as
unknown constants of a classical polynomial least square ap-
proximation. Therefore, they are determined by minimizing the
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functional representing the weighted discrete error norm
and defined by

(31)

Functions are weight functions of node and are charac-
terized by the following properties: 1) they are continuous; 2)
they equal one at ; and 3) they vanish when

and are positive elsewhere. The parameter mea-
sures semi-supports of the weight functions .

The stationarity of with respect to yields

(32)

where the and the matrices and and the
vector are defined by

(33)

Here, and are the matrices of real numbers defined
by

and is the diagonal matrix defined by

Solving (32) for and substituting for in the global
approximation (28), we get the GMLS approximation

(34)

where the basis functions are given by

(35)

The GMLS expansion (34) is well defined only if the matrix
in is nonsingular; see [15] for necessary conditions. We

assume the same structure for all weight functions

if

if .

(36)
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