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Abstract

We analyze transient finite electroelastodynamic deformations of a perfect electrically
conducting undamped clamped–clamped beam, a clamped–clamped parabolic arch and a
clamped–clamped bell-shaped arch suspended over a flat rigid semi-infinite perfect conductor.
The pull-in instability in a beam and the pull-in and the snap-through instabilities in the two
arches due to time-dependent potential difference between the two electrodes have been
studied. The potential difference is applied either suddenly or is increased linearly in time.
Since the time scale of the transient electric forces is very small as compared to that of the
mechanical forces, inertia effects only in the mechanical deformations are considered. Effects
of both material and geometric nonlinearities are incorporated in the problem formulation and
solution; however, damping due to the interaction of the structure with the surrounding
medium is neglected. The coupled nonlinear partial differential equations for mechanical
deformations are solved numerically by the finite element method and those for the electrical
problem by the boundary element method. The Coulomb pressure due to the potential
difference between the two electrodes is a nonlinear function of the a priori unknown distance
between them. The potential difference that induces either the pull-in instability in a beam or
the snap-through followed by the pull-in instabilities in an arch has been computed. Wherever
possible these results are compared with those available in the literature. With a decrease in
the rate of the applied potential difference, the pull-in and the snap-through parameters
approach those for a static problem. Also, for large rates of increase in the potential difference
between the two electrodes, the snap-through instability in an arch is suppressed and only the
pull-in instability occurs.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Microelectromechanical systems (MEMS) having
components of dimensions in the range of a few to a
hundred micrometers are used as radio frequency (RF)
switches, varactors and inductors [1], accelerometers [2],
pressure sensors, controllers for micro-mirrors [3], micro-
pumps [4] and bio-MEMS [5]. A number of different
actuation properties, such as piezoresistive, piezoelectric,
electrostatic, electromagnetic, thermal and optical, have been
exploited in MEMS. Of these, the electric actuation is widely

used because of the low power consumption and potential
for integration in a standard integrated circuit environment.
An electrically actuated MEMS consists of a deformable
electrode made of a conductive material suspended above a
rigid conductive electrode with a dielectric medium, generally
air, between them. An electric potential difference applied
between the two electrodes induces the Coulomb pressure
on the electrodes which deflect the deformable electrode
toward the rigid one. The elastic restoring force induced in
the deformed electrode restricts its motion. Electric charges
redistribute on the deformable electrode’s surface and the gap
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Figure 1. Schematic sketch of the problem studied.

between it and the rigid electrode decreases, which in turn
increases the Coulomb force and deforms the deformable
electrode more until the elastic restoring force is balanced by
the Coulomb force.

1.1. The pull-in instability in MEMS

For electrically actuated MEMS, the applied electric potential
has an upper limit, beyond which the corresponding Coulomb
force is not balanced by the elastic restoring force, resulting in
sudden collapse of the deformable electrode on the rigid one.
This phenomenon, called the pull-in instability, was observed
experimentally by Taylor [6] and Nathanson et al [7]. The
corresponding values of the potential difference and the peak
displacement of the deformable electrode are called the pull-in
voltage and the pull-in displacement, respectively; collectively
the two are called pull-in parameters.

Accurate estimates of pull-in parameters are crucial
for designing electrically actuated MEMS. In switching
applications [8], the pull-in instability is necessary for the
switch to operate. However, for micro-mirrors [9] and micro-
resonators [10], the pull-in instability restricts the range of
operational displacement of the device.

1.2. The snap-through instability in an arch-shaped MEMS

In an arch-shaped deformable electrode (e.g., see figure 1), in
addition to the pull-in instability, the snap-through instability
can occur under the Coulomb pressure; these two instabilities
have been studied in [11, 12] with a one-degree-of-freedom
system. Figure 2 shows a bifurcation diagram between
the peak displacement w of an arch-shaped MEM electrode
and the electric potential difference parameter β defined as
ε0bL4V 2/2EIg3

0 . Here ε0 is the vacuum permittivity, b is the
width, L is the length, g0 is the initial gap, V is the electric
potential difference between the two electrodes, E is Young’s
modulus and I is the second moment of the cross-section of the
deformable electrode about the neutral axis. The bifurcation
diagram has two stable branches AC and DF. Initially, with
the increase in β, w increases gradually from point A to
point C, the arch maintains its initial curved shape and the
resultant elastic restoring force balances the Coulomb force.
At point C, the deflection increases suddenly, and the arch
is inverted to a new equilibrium position corresponding to
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Figure 2. Bifurcation diagram for the snap-through and the pull-in
instabilities of arch-shaped MEMS (from [12]).

point E. This sudden jump in the deflection is called the snap-
through instability and the corresponding voltage the snap-
through voltage. From point E to point F, the elastic restoring
force induced in the arch again balances the Coulomb force.
However, just after point F, the deformable electrode collapses
on to the rigid one and the pull-in occurs. The portions CD and
FG of the curve are unstable. During the loading process, the
arch follows the path ACEFL, and it follows the path FDBA
during unloading.

Advantages of the snap-through instability have been
exploited in actuators [13–16], microvalves [17] and
transducers [18]. The snap-through instability of an arch-
shaped MEMS under slowly applied electric loads has been
observed experimentally and studied through reduced-order
models in [11, 12, 19, 20].

The snap-through instability of an arch is not guaranteed.
Various conditions such as the arch rise H (see figure 1)
for different arches (parabolic, circular or sinusoidal), arch
thickness h, type of loads (step or ramp) and the gap g0 between
the electrodes determine whether the snap-through will occur.
Pippard [21] and Patricio et al [22] have presented a phase
diagram between the arch length and the initial arch angle at the
clamped end, showing conditions for which the snap-through
can occur due to a quasistatic mechanical point load, which is
not dependent on arch deflection; they studied different arch
configurations either experimentally or numerically and joined
the points to get the phase plot. Zhang et al [19] and Krylov
et al [20] have studied static problems involving the snap-
through and the pull-in instabilities in circular and bell-shaped
arches, respectively. Krylov et al [12] have presented a phase
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diagram between H and h showing conditions for which the
snap-through can occur in static deflections of a bell-shaped
MEMS. Zhang et al [19] explained that the snap-through
and the pull-in instabilities can only be distinguished by the
physical criterion of whether or not the collision between the
deformable and the rigid electrodes occurs. Depending on
the arch shape and the load type, the following three scenarios
arise: either only the pull-in instability occurs, or the arch
undergoes the snap-through and then the pull-in instability, or
the snap-through and the pull-in occur simultaneously. In each
case, the pull-in instability occurs.

1.3. The dynamic pull-in and snap-through instabilities

In dynamic loading, transient effects may trigger either the
snap-through or the pull-in instability first. The pull-in
instability in a MEMS under a transient electric load has
been studied in [23–28], and the snap-through of arches and
shells during their transient deformations under mechanical
loads has been reported in [29, 30]. The snap-through of
laminated composite spherical caps during their transient
deformations under mechanical loads has been studied in
[31, 32]. Identifying the pull-in instability is easy because of
the physical phenomenon of the deformable electrode touching
the rigid one. The ‘dynamic snap-through’ generally means a
large increase in response, resulting from a small increase in a
load parameter [29]. Simitses [33] has proposed that for static
deformations under a distributed mechanical load, the arch
rise parameter, earch = 2

√
3H/h, must be greater than 5.0 for

the snap-through instability to occur in a shallow arch defined
as one for which (dz0(x1)/dx1)

2 < 0.05, where z0(x1) is the
shape of the bottom surface of the arch; see figure 1. However,
earch must be greater than 5.86 and 9.73, respectively, for a step
load described by a Heaviside function and an impulsive load
given by a Dirac delta function. Thus, conditions for the
dynamic snap-through to occur depend not only on geometric
parameters of the arch, but also on the type of loads. As far
as we can determine, the combined snap-through and pull-in
instabilities in transient deformations of arch-shaped MEMS
have not been analyzed.

1.4. Modeling of electrically actuated MEMS

The modeling of electrically actuated MEMS has been
reviewed in [34]. In most cases, the Coulomb pressure on
the electrodes has been computed by using the parallel plate
approximation (PPA) which assumes that the two electrodes
are locally parallel to each other. In order to alleviate the
computational difficulty of a 3D analysis, a number of reduced-
order models approximating the deformable electrode as a
beam [35–40] have been developed. If the aspect ratio of the
deformable electrode is large, approximation of the electrode
as a plate is more appropriate [41–51]. Many MEMS devices,
such as micro-pumps made of thin glassy polymers, and
grating light valves consisted of stretched ribbons, can be
approximated as membranes, e.g. see [25, 52–54].

Reduced-order models estimate global quantities, such as
the natural frequency or the deflected shape of the deformable
electrode, with reasonable accuracy; they cannot predict

accurately local quantities such as the stress and the strain
in a MEM electrode of arbitrary geometry. Therefore, for
analysis, design, optimization and product development of
MEMS devices, continuum mechanics based simulations are
necessary.

Nishiguchi and Sasaki [55] have presented a large
deformation theory for solids subjected to electromagnetic
loads but did not solve any engineering problem. Gilbert
et al [56] developed the software CoSolve-EM to solve 3D
quasi-static electro-mechanical problems; it couples the FE
code ABAQUS and the BE code FASTCAP: the former for
analyzing mechanical problems and the latter for electrical
problems. They did not solve a transient problem. The
commercial software COMSOL can be used to study MEMS
problems using the FEM with the Eulerian description of
motion for the electric field in the medium surrounding
the electrodes and the Lagrangian description of motion
for deformations of the electrode. It needs frequent re-
meshing of the region exterior to the MEM electrodes for
analyzing both static and transient problems, which requires
considerable computational resources. Shapoorabadi and
Andrew [57] have compared three different methods available
in the commercial FE software ANSYS, namely (1) ESSOLV:
a sequentially coupled electrostatic and structural field tool,
(2) TRANS126: a directly coupled electrostatic and structural
field tool employing 1D transducer element and (3) ROM144:
a directly coupled electrostatic and structural reduced-order
model. They studied static infinitesimal deformations of a
torsional and a flexural-torsional micromirror and concluded
that predictions from the ROM144 and the ESSOLV compare
well with analytical and experimental results. However, for
problems involving large deformations, the TRANS126 should
be used instead of the ROM144 and the ESSOLV. They too
did not consider transient problems.

De and Aluru [58] used the coupled finite cloud and
the boundary cloud methods to convert partial differential
equations (PDEs) describing the balance of linear momentum
and the charge conservation to ODEs in time and solved them
using Newton’s and the relaxation schemes. They employed
the Lagrangian description of motion, computed exactly the
Jacobian matrix in Newton’s method, modeled the MEM
electrodes as 2D bodies and neglected effects of fringing fields
and material nonlinearities.

From the literature review given above, it can be
concluded that transient deformations of arch-shaped MEMS
considering both material and geometric nonlinearities have
not been studied. Here, we describe a mathematical model
for studying 3D problems and develop the needed software
to analyze the mechanical problem by the FEM and the
electrical problem by the BEM. The two are coupled with
information exchanged between them after every time step.
After validating the mathematical model, we study the pull-in
and the snap-through instabilities in arch-shaped MEMS under
time-dependent potential difference.

The rest of the paper is organized as follows. Section 2
presents governing equations for MEMS using continuum
balance laws and Maxwell’s equations, and the numerical
technique to solve the system of governing equations. In
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section 3, results for flat and arch-shaped MEMS are described
and discussed. We summarize conclusions from the present
work in section 4.

2. Mathematical model

2.1. Balance laws for MEMS

A schematic sketch of the problem studied is shown in figure 1
that also exhibits the rectangular Cartesian coordinate axes
used to describe deformations of the bodies. The deformable
electrode is modeled as a perfectly conductive solid body
undergoing finite deformations and the rigid electrode as a
semi-infinite plate in the x1x2 plane. Let �1 ⊂ �3 and �2 ⊂
�2 be regions occupied by the deformable electrode and
the rigid semi-infinite electrode, respectively; �2 ⊂ �3 is the
semi-infinite region surrounding �1 and situated above the
electrode �2, and is vacuum. �1 is the boundary of �1 with
disjoint parts �1u and �1t . The kinematic and the traction
boundary conditions are prescribed, respectively, on �1u and
�1t . The reference configurations �1 and �2 are deformed into
the current configurations ω1 ⊂ �3 and ω2 ⊂ �3, respectively;
γ 1 is the boundary of ω1, and γ 2 is the image of �2 in the
current configuration. We note that �2 = γ 2 since the bottom
electrode is rigid. We denote position vectors of a point with
Xi and xi (i = 1, 2, 3) in the reference and in the current
configurations, respectively.

The electric field vanishes in a perfect conductor. Thus,
no net charge is present inside the body. The motion of the
deformable electrode �1 is governed by the balance of mass,
the balance of linear momentum and the balance of moment
of momentum, given respectively by equations (1), (2) and (3)
in the referential description:

ρJ = ρ0 (1)

ρ0v̇i = ∂T̂ ji

∂Xj

+ ρ0fi in �1 (2)

T̂ ikFkj = T̂ jkFki in �1. (3)

The coupling between the mechanical and the electrical effects
is through the Coulomb pressure which acts as tractions on the
surface �1t of the electrode. Deformations of �1 influence
the electric field in �2 since �1 is also a boundary surface
of �2. In equations (1)–(3), ρ0 and ρ are mass densities in
the reference and the current configurations, respectively; J
is the determinant of the deformation gradient Fij = ∂xi

∂Xj
, vi

is the velocity field defined as vi = ẋi , a superimposed dot
denotes the material time derivative, T̂ ij is the first Piola–
Kirchhoff stress tensor, fi is the body force per unit mass and a
repeated index implies summation over the range of the index.
The first Piola–Kirchhoff stress tensor is related to the Cauchy
stress tensor Tpj by

T̂ ij = J
∂Xi

∂xp

Tpj . (4)

2.2. Electrostatic approximations

The electric and the magnetic fields in �2 are governed by
Maxwell’s equations [59]. Since the characteristic time scale

of mechanical deformations is much larger than that of inertia
effects in Maxwell’s equations, therefore we neglect the time
dependence of electric and magnetic fields there by eliminating
coupling between magnetic and electric fields. Henceforth, we
consider electric fields only, and assume that a scalar potential
φ(xi, t) exists. The electric field Eelec

i is given by

Eelec
i = − ∂φ

∂xi

. (5)

2.3. Constitutive relations

Even though the problem formulation and the analysis
technique are applicable to a general material, for simplicity
we presume that the deformable electrode is composed of a
neo-Hookean material for which

Tij = λEllδij + 2μEij (6)

where λ and μ are elastic constants for the material of the body
�1 and Eij is the Almansi–Hamel strain tensor defined as

Eij = 1
2 (δij − (F−1)li(F

−1)lj ). (7)

Note that equation (7) considers all geometric nonlinearities,
including the von Karman nonlinearity. With the constitutive
assumption (6), the balance of moment of momentum
equation (3) is identically satisfied, and only geometric
nonlinearities are considered. Material damping due to viscous
effects can be incorporated by modifying the constitutive
relation (6).

2.4. Simplified governing equations

Assuming that there are no free charges in ω2, the electric
potential distribution in the current configuration is governed
by the Laplace equation

∂2φ

∂xi∂xi

= 0 in ω2. (8)

Therefore, equations (2) and (8) constitute governing
equations for the MEMS. Substitution for Eij from
equation (7) into equation (6) and the result into equation (4)
gives the first Piola–Kirchhoff stress tensor in terms of
displacement field ui defined as

ui(Xl, t) = xi − Xi(Xl, t). (9)

Substitution from equations (6) and (9) into equation (4)
and the result into equation (2) gives a set of coupled
nonlinear PDEs for the determination of the displacement field.
Knowing the displacement field, the present mass density can
be found from equation (1).

2.5. Initial and boundary conditions

We assume that initially the deformable electrode is at rest and
occupies the reference configuration at time t = 0. That is

ui(X, 0) = 0 (10)

and

vi(X, 0) = 0. (11)

4



J. Micromech. Microeng. 19 (2009) 035008 K Das and R C Batra

For equation (8)

φ is specified as non-zero on γ1 (12)

and

φ = 0 on γ2. (13)

For equation (2), ui(Xl , t) is specified on �1u for all t and

T̂ j iNj = T 0
i on �1t for all t. (14)

Here, Ni is an outward unit normal vector on �1t and Ti
0 is the

electrostatic traction given by

T 0
i = (σsur)

2

2ε0
J (F−1)jiNj (15)

σsur = −ε0
∂φ

∂xi

ni . (16)

In equations (15) and (16), σ sur is the charge density on
the surface of the deformed electrode and ni is an outward
unit normal vector on γ 1t. Note that the coupling between
equations (2) and (8) is through equations (14)–(16).

2.6. Numerical solution of the initial-boundary-value
problem

We seek an approximate solution of the nonlinear coupled
initial-boundary-value problem defined by equations (2) and
(8)–(16). The FEM is employed to solve the linear momentum
equation (2) because previous research [60] has shown that,
at least at the present time for transient problems, the FEM is
computationally more efficient than a meshless method. To
solve Laplace’s equation, the BEM is used because it can easily
consider the semi-infinite domain ω2. The FEM and the BEM
are described in [61, 62].

We take the inner product of both sides of equation (2)
with a test function Vi , which vanishes on �1u, and integrate
both sides of the resulting equation over the domain �1 to
obtain ∫

�1

(
∂T̂ ji

∂Xj

+ ρ0fi

)
Vi d� =

∫
�1

ρ0üiVi d�. (17)

Using the chain rule of calculus, the divergence theorem and
the natural boundary condition (14), we get∫

�1

ρ0üiVi d� =
∫

�1t

T 0
i Vi d�

−
∫

�1

(
T̂ j i

∂Vi

∂Xj

− ρ0fiVi

)
d�. (18)

We express the test function and the trial displacement in
terms of basis functions ψa(Xl), a = 1, 2, . . . , as Vi(Xl) =
V aiψa(Xl), ui(Xl, t) = ubi(t)ψb(Xl), a, b = 1, 2, . . . ,

where ubi is the value of ui at node b, and conclude from
equation (18) the following:

Mabübi = F̂ ai , i = 1, 2, 3 (19)

where

Mab =
∫

�1

ρ0ψbψa d� (20)

and

F̂ ai =
∫

�1t

T 0
i ψa d� −

∫
�1

(
T̂ j i

∂ψa

∂Xj

− ρ0fiψa

)
d�. (21)

Note that F̂ ai depends on T̂ ij , which is related to ui through
the constitutive relation (6) and the strain–displacement
relation (7), and T0

i , which depends on the charge distribution
on the surface of the electrode through equations (15) and (16).

Using the identity

[M]
d

dt
{ū} − [M]{ ˙̄u} = {0}, (22)

equation (22) can be written in the matrix (or the state space)
form as[

[M] 0
0 −[M]

]
d

dt

{{ ˙̄u}
{ū}

}
+

[
0 0

[M] 0

] {{ ˙̄u}
{ū}

}
=

{{F̂ }
{0}

}
.

(23)

Equation (23) is integrated with respect to time by using the
subroutine LSODE (livermore solver for ODEs) [63].

The salient feature of our FE formulation is that no
assumption has been made with regard to the constitutive
relation, which relates the first Piola–Kirchhoff stress tensor
to the displacement gradient and/or the velocity gradient.
Therefore, a wide class of materials, such as linear and
nonlinear elastic, viscoelastic and viscoplastic, can be
considered for the MEM electrode of arbitrary geometry;
e.g. see [70, 71] for the analysis of thermoelastoviscoplastic
piezoelectric problems.

The solution of equation (8) in ω2 is [62]

φ(x0) = −4π

α

∫
γ1

G(x, x0)[n(x) · ∇φ(x)] d�1(x)

+
4π

α

∫ PV

γ1

φ(x)[n(x).∇G(x, x0)] d�1(x) (24)

where x and x0 are the field point and the source point,
respectively, α is the external angle at x0, ∇ is the gradient
operator with respect to x, PV over the integration sign
indicates the Cauchy principal value of the integral and
G(x, x0) is Green’s function of the first kind.

When analyzing a plane strain problem in the x1x3 plane,
we set x2 = X2 and solve the mechanical problem for u1 and
u3. For studying a plane stress problem in the x1x3 plane,
we set T22 = 0 in equation (6), solve the resulting equation
for E22, substitute for E22 in equations for T11, T33 and T13

and solve the mechanical problem for displacements u1 and
u3. For both plane stress and plane strain problems, we solve
the electrical problem in the x1x3 plane and use the following
Green’s function:

G(x, x0) = − 1

2π
ln(rdis) +

1

2π
ln

(
r Im

dis

)
(25)

where rdis = |x − x0|, r Im
dis = ∣∣x − xIm

0

∣∣ with x0 = (
x0

1 , x0
3

)
and xIm

0 = (
x0

1 ,−x0
3

)
. The first term on the right-hand side

of equation (25) is the free-space Green’s function for the
source point x0, and the second term is Green’s function for
the source point xIm

0 which is the image of x0 with respect to the
plane x3 = 0. Therefore, G(x, x0) vanishes on �2 and satisfies
boundary condition (13). The boundary integral equation (24)
holds only on γ 1.
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In the aforementioned problem formulation, the linear
momentum equation is written in the Lagrangian description
of motion, and Laplace’s equation for the electric field in
the Eulerian description of motion. De and Aluru [58] have
written both equations in the Lagrangian description of motion,
employed Newton’s method to solve ODEs arising from the
weak formulation of the problem and computed analytically
the Jacobian matrix. This makes the resulting numerical
algorithm computationally less intensive. However, one of
our goals is to keep the FE formulation general enough to
include a wide class of materials for the deformable electrode
that makes the analytical evaluation of the Jacobian matrix
impractical. We use LSODE with the Adam–Moultan method
[63] to integrate the coupled nonlinear ODEs (23) that does
not require the evaluation of the Jacobian matrix, and adjusts
the time step adaptively to compute the solution within the
prescribed absolute and relative tolerances.

3. Results and discussion

Based on the formulation given above, we have developed a
computer code to find an approximate solution of the coupled
nonlinear initial-boundary-value problem. It uses eight-node
serendipity quadrilateral elements with 3 × 3 Gauss points
for studying 2D structural problems and uses two-node line
elements with one collocation point at the centroid of the
element and 12 Gauss points for computing the electric flux
n(x) · ∇φ(x) on the boundary of the deformable electrode.
Since, the BE has only one collocation point, the electric flux is
constant over the element and is discontinuous across the inter
element boundary. Therefore, discontinuities in the electric
flux at sharp corners of the deformable electrode can be easily
captured, as the variation of the electric flux over elements on
both sides of a corner need not be continuous at the corner.
Boundary elements with linear or quadratic variation of the
electric flux need special treatment to capture discontinuities
at a corner [64, 65], e.g. see discontinuous elements and corner
problems in [66].

The mass matrix is lumped by using the special lumping
technique. In LSODE, the relative and the absolute tolerances
are set equal to 10−6. Results for each problem are computed
with at least two meshes to assess the order of error in the
numerical solution. After every time step coordinates of
nodes for the BE mesh are updated, the boundary integral
equation (24) is solved for the electric flux n(x) · ∇φ(x)

along the boundary of the deformable electrode and surface
tractions (15) due to the Coulomb pressure are computed and
applied to surfaces of the deformable electrode. The FE and
the BE codes are fully integrated into one software and no
human intervention is needed.

3.1. Code verification

The code has been verified by comparing computed results for
three problems with those obtained by numerically analyzing
the same problems with commercial codes. The first problem
studied is a 25 μm long, 10 μm wide and 0.5 μm thick fixed–
fixed beam made of an isotropic neo-Hookean material with
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Figure 3. Time histories of the displacement u3 of the centroid of
the fixed–fixed beam under a body force f 3 = 150 kN mm−3.

ρ0 = 2231 kg m−3, λ = 12.05 GPa and μ = 79.27 GPa.
The magnitude 150 kN mm−3 of the body force is unusually
high to induce large deformations in the beam so that
effects of nonlinear strain–displacement relation (7) can be
delineated. The computed results are compared with those
derived by using the commercial FE software LS-DYNA by
implementing in it the constitutive relation (6) through the user
supplied subroutine option. Deformations of one-half of the
beam have been studied due to the symmetry of the problem.
The FE mesh for the plane strain problem has 60 × 10 eight-
node serendipity elements along half of the length and the
thickness of the beam. The element dimension along the beam
length is varied gradually, and the element length at the fixed
end of the beam is 1/5 of that at the mid-span. A similarly
graded 120 × 20 four-node FE mesh is employed to solve
the problem with LS-DYNA. The FE mesh was successively
refined to obtain converged solutions and results with only
the finest mesh, described above, are given here. As can be
seen from results plotted in figure 3, time histories of the
centroidal deflection computed with our code agree very well
with that obtained by using LS-DYNA. The variation of the
E11 component of the Almansi–Hamel strain tensor, the e11

component of the Green–St Venant strain tensor defined by

eij = 1
2 (FliFlj − δij ) (26)

and the displacement u3 along the beam span at t = 0.0102 μs
are exhibited in figure 4. It is clear that results computed
with our code agree very well with those obtained with LS-
DYNA. At points near the supports E11 and e11 exceed 0.2.
However, along most of the beam span, the axial strain is
about 0.01. Results from the Euler–Bernoulli beam theory
will significantly under estimate the axial strain at points near
the clamped edges.

The second problem analyzed is also a fixed–fixed
1000 μm × 2.4 μm × 30 μm (L × b × h) beam (cf figure 5)
suspended 10.1 μm above a rigid electrode but we now
compute the Coulomb pressure distribution due to the electric
potential difference between the rigid electrode and the beam.
For the silicon beam, we take ρ0 = 2231 kg m−3, λ = 97.5 GPa
and μ = 65.0 GPa. The domain �2 is considered as vacuum
with ε0 = 8.854 × 10−12 F m−1, and the electric potential
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(a) (b)

Figure 5. The long-section (a) and the cross-section (b) of the
deformable electrode suspended over the rigid semi-infinite
electrode.

difference between the two electrodes equals 10 V. The
boundary of the long section of the beam is discretized using
two different BE meshes, 60 × 4 and 3000 × 400 (elements
along AB and CD × elements along BC and DA). To model the
exterior domain �2 in the FE commercial code ANSYS, we use
PLANE121 and INFIN110 elements (see figure 6). The values
of r0 and l0 in figure 6 were gradually increased and the FE
mesh was refined to obtain converged solutions. We compare
in figure 7 the Coulomb pressure on edges AB, DC and BC of

Figure 6. The mesh to study the electrostatic pressure on edges of the cross-section EFGH of the deformable electrode. PLANE121
elements in ANSYS are used to discretize the area (red, dark gray) around the deformable beam up to radius r0. Beyond the radius r0,
INFIN110 elements (green, light gray) are used up to a length of l0 to take into account the infinite extent of the domain �2; r0 = 60 μm and
l0 = 60 μm are used. Similarly, r0 = 2 mm and l0 = 2 mm are used in the analysis of the long section ABCD of the beam.

the beam. As exhibited in figures 7(a) and (b), the electrostatic
pressure distribution along AB and DC from our code agrees
well with that from ANSYS except near the corners which
could be due to the non-uniqueness of the unit normal at the
corners. However, as shown in figure 7(c), mesh 1 failed
to compute the Coulomb pressure distribution along the edge
BC. Due to the very high aspect ratio (AB/BC = 1000/2.4 ≈
417), a finer BE mesh is required to compute the Coulomb
pressure distribution on sides BC and DA of the beam. The
distribution of the electrostatic pressure on the bottom surface
AB and on the top surface CD of the beam is more important
than that on edges BC and AD since it induces the downward
electrostatic pressure which actuates the MEMS. Therefore,
the BE meshes used here should suffice to compute the pull-in
and the snap-through parameters of the MEMS.

Next, we compare in figure 8 the electrostatic pressure
distribution on the boundary of a cross-section of the beam.
The boundary of the cross-section of the beam is discretized
using BE meshes consisting of 1000 elements along EF and
GH and 100 elements along FG and HE. As exhibited in
figures 8(a), (b) and (c), the electrostatic pressure distributions
on EF, HG and FG from our code agree well with those from
ANSYS except near the corners which could be due to the
non-uniqueness of the unit normal at a corner. One can see
that the electrostatic pressure along EF is not uniform because
of the fringing fields due to the finite width and the finite height
of the beam. The downward electrostatic pressure pd per unit
length of the beam can be computed by integrating the pressure
along EF and HG. That is,

pd = Total Coulomb pressure along EF

− Total Coulomb pressure along HG = 0.151 Pa. (27)

If we neglect the fringing fields, then the pressure along the
width EF of the beam is uniform and the downward pressure
per unit length of the beam according to the PPA is given by

pd = εbV 2

2g2
0

= 0.130 Pa, (28)
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which is 14% less than the pressure obtained from the BEM
solution. Therefore, for this case fringing fields cannot be
neglected. The correction of the fringing fields according to
the Mejis–Fokkema formula [12, 67] gives

pd = εbV 2

2g2
0

(
1 + 0.265

(g

b

)3/4
+ 0.53

(
h

b

√
g

h

))
= 0.157 Pa, (29)

which is about 3.7% more than that from the BE solution.
Therefore, the beam problem can be analyzed as a 2D problem
in the x1x3 plane with acceptable errors if the electrostatic
pressure found from the PPA is corrected with the Mejis–
Fokkema formula.

Next, we study transient deformations of a fixed–fixed
80 μm × 0.5 μm × 10 μm silicon beam suspended 0.7 μm
above a flat rigid electrode due to a step electric potential
difference applied to the two electrodes. This problem has
been studied in [58] as a plane stress problem. However, as
the ratio of the width to the height of the beam is 20, it should
be considered as a plane strain problem. Here, we analyze
it as both plane stress and plane strain problems to delineate
differences between the two sets of results. Since, g0/b =
0.07 and h/b = 0.05, fringing fields can be neglected [39].

To demonstrate the effect of the nonlinearity in the strain–
displacement relation (7), we also study the problem with the
linear strain–displacement relation:

Êij = 1
2 (ui,j + uj,i). (30)

Two FE meshes, 30 × 4 and 60 × 8 (number of elements
along the length and the thickness respectively), with 136 and
272 BEs, respectively, are used to solve the 2D problem.
Figure 9 exhibits the time history of the downward
displacement of the centroid of the bottom surface of the beam
for an applied step electric potential difference of 2 V between
the beam and the rigid electrode; results from our code for the
plane stress problem agree well with those reported in [58].
The maximum transverse displacement and the time period of
oscillations from the plane strain analysis are about 10% less
than those from the plane stress analysis. The nonlinearity in
the strain–displacement relation has a negligible effect on both
the amplitude and the time period of oscillations. Figure 10
shows the variation of the Cauchy stress T11 along the span of
the beam at 0.7 μs. As the two meshes give virtually the same
results, for subsequent analyses we use the first mesh. The
magnitude of the axial stress near the fixed edges of the beam
is more than twice of that at the midsection of the beam.

Figure 11 depicts the downward displacement of the
centroid of the bottom surface of the beam versus time
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Figure 11. Time histories of the deflection of the centroid of the bottom surface of the fixed–fixed beam for different step applied electric
potentials from the nonlinear and the linear strain–displacement relations.

due to different applied step voltages. For the plane strain
problem with the nonlinear strain–displacement relation, the
pull-in voltage is between 16.75 V and 17.0 V since for
the 16.75 V potential difference, the peak deflection stays
bounded but for the 17.0 V potential difference it becomes
unbounded. By solving the problem for several values of
the potential difference between 16.75 V and 17.0 V, one can
compute a better value of the pull-in voltage. For the plane
stress approximation with the nonlinear strain–displacement
relation, the pull-in voltage is found to be between 15.75 V
and 16.00 V. The pull-in voltage for the plane stress problem
reported in [58] is 15.7 V. For the plane strain approximation
with the linear strain–displacement relation, the pull-in voltage
is between 14.5 V and 14.75 V. The analysis with the
linear strain–displacement relation underestimates the pull-in
voltage by 8%. For the plane strain problem, the consideration
of the nonlinear strain–displacement relation increases the
absolute maximum displacement before the pull-in instability
to 0.39 μm (=0.55 g0) from 0.34 μm (=0.48 g0) obtained
from the analysis of the linear problem. Using a spring-
mass model, the maximum pull-in displacement for a statically
loaded micro-beam equals 0.33 g0 [7]. The spring-mass model
neither accounts for the nonlinear strain–displacement relation
nor the actual distribution of the Coulomb pressure. Tilmans
and Legtenberg [35] accounted for the actual deflection
distribution but neglected nonlinear mid-plane stretching of
the micro-beam and obtained a pull-in displacement of 0.4 g0

in a static problem. Using a reduced-order model, Abdel-
Rahman et al [36] showed that the pull-in displacement equals
0.39 g0 in a static problem if both the mid-plane stretching
and the actual distribution of the Coulomb pressure are
considered.

3.2. Fixed–fixed beam as MEMS

In order to compare the pull-in parameters of a beam with
those of an arch in the next subsection, we study transient
deformations of a fixed–fixed silicon beam of length = 1 mm,
width = 30 μm and height = 2.4 μm, initial gap = 10.1 μm.
For a step potential difference of 90 V, the 30 × 2 and 50 ×
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Figure 12. Variation of the Cauchy stress T11 along the beam span
at time t = 15 μs due to 90 V step potential difference between the
rigid and the deformable electrodes.

4 FE meshes (elements along the length and the thickness
directions, respectively) with 128 and 216 BEs gave maximum
downward displacements of the centroid of the bottom surface
equal to 6.188 and 6.247 μm, respectively. The variation
of the Cauchy stress T11 along the span of the beam at time
t = 15 μs is exhibited in figure 12. It is clear that the two FE
meshes give virtually the same stresses, and for subsequent
analyses, we use the first mesh. Whereas the distribution
of axial stress T11 on the midsurface of the beam is nearly
uniform and equals ∼0.015 MPa, the magnitude of T11 at
points on the top and the bottom surfaces that are near the
clamped edges equal ∼0.07 and ∼0.04 MPa, respectively.
Furthermore, distributions of T11 on the top and the bottom
surface are not uniform.

Krylov et al [20] have studied static deformations of this
beam both experimentally and numerically with a reduced-
order model, and their values of the pull-in voltage are 100.0 V
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Table 1. Pull-in parameters for the fixed–fixed beam for different rates of the applied potential difference

Nonlinear problem Linear problem

Rate of applied potential The pull-in The pull-in The pull-in The pull-in
difference (V μs−1) voltage (V) displacement (μm) voltage (V) displacement (μm)

Step load 99.50 7.7 49.0 4.5
0.60 116.50 7.0 65.1 7.5
0.24 114.25 6.6 59.0 5.6
0.17 113.75 6.5 58.0 5.5
0.12 113.50 6.4 57.0 5.3
0.06 113.00 6.4 56.0 5.3

Experiment 100.00 5.0
ROMa (static problem) 118.50 6.5

a Reduced-order model.
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Figure 13. Time histories of the deflection of the centroid of the
bottom surface of the fixed–fixed beam for different values of the
step electric potentials from analysis of the nonlinear problem.

and 118.5 V, respectively. Figure 13 exhibits the peak
downward deflection of the centroid of the beam bottom
surface due to different step potential differences. The pull-
in voltage for the dynamic problem is found to be between
99.0 V and 100.0 V since for the 99.0 V potential difference,
the peak deflection stays bounded but for the 100.0 V potential
difference, it becomes unbounded. By solving the problem for
several values of the potential difference between 99.0 V and
100.0 V, one can compute a better value of the pull-in voltage.
We note that the presently computed pull-in voltage is very
close to Krylov et al’s [20] experimental value. The pull-in
voltage is found to be between 49.0 V and 50.0 V from the
analysis of the linear problem and is nearly one-half of that for
the nonlinear problem. Thus, assumption of the linear strain–
displacement relation gives the pull-in voltage equal to one-
half of that obtained with the nonlinear strain–displacement
relation. We note that the difference in the pull-in voltage
from the linear and the nonlinear strain–displacement relations
are problem specific; for the 80 μm × 0.5 μm × 10 μm
beam studied above, the difference in the two pull-in voltages
was only 12%. The pull-in displacements for the 80 μm ×
0.5 μm × 10 μm and the 1000 μm × 2.4 μm × 30 μm beams
equal 0.78 h and 3.25 h, respectively.

To delineate the effect of the rate of loading on the
pull-in parameters, we increase the electric potential difference
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Figure 14. The deflection of the centroid of the bottom surface of
the fixed–fixed beam versus the applied voltage for different rates
(V μs−1) of increase of the voltage. Red dots represent experimental
data from [12] for static deformations of the beam, and the black
dashed line is the bifurcation curve reported in [12]. Solid and
dashed lines correspond, respectively, to results from analyses of the
nonlinear and the linear problems.

between the beam and the rigid electrode linearly with time.
Figure 14 shows the peak deflection of a point of the beam
versus the applied voltage for different rates of increase of the
applied voltage. Experimental data and the bifurcation curve
derived with a reduced-order model [12] are also exhibited.
As summarized in table 1, the pull-in voltage and the pull-in
deflection decrease with a decrease in the rate of increase
of the potential difference. The pull-in voltage increases by
2.7% with a tenfold increase in the rate of increase of V from
0.06 V μs−1 to 0.6 V μs−1. However, there is about 16%
decrease in the pull-in voltage when the applied potential
difference is changed from linearly varying to a step load.
The pull-in voltage of 113 V for the slowest loading rate
considered is about 13% more than the experimental static
pull-in voltage and about 4.6% less than the numerical static
pull-in voltage reported in [12, 67] with a reduced-order model
and the Coulomb pressure given by the PPA with the fringing
field correction. The present work finds the Coulomb pressure
from the charge distribution of the electric field and applies
it along the normal to the bounding surface in the deformed
configuration. For both step and linearly increasing potential
difference, the use of the linear strain–displacement relation
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Figure 15. The Cauchy stress T11 along the span of the arch at the
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potential difference from the analysis of the plane strain nonlinear
problem.

underestimates the pull-in voltage by about 50% and the pull-
in deflection by as much as 70%.

3.3. Transient deformations of a bell-shaped arch MEMS

Referring to figure 1, we consider a bell-shaped silicon arch
with base length L = 1 mm, width b = 30 μm, thickness h =
2.4 μm, initial gap g0 = 10.1 μm, the arch rise H = 3.0 μm
and its bottom-surface described by z0(x1) = H sin2(πx1/L).
Values assigned to material parameters are the same as those
for the beam of the last section. We analyze it as a plane strain
problem and consider the effect of fringing fields by increasing
the traction T 0

i (cf equation (15)) on the bottom surface of the
arch due to the electrostatic force by a factor of(

1 + 0.265

(
z0(x1) + g0(x1) + w(x1)

b

)3/4

+ 0.53

(
h

b

√
z0(x1) + g0(x1) + w(x1)

h

))
(31)

in accordance with the Mejis–Fokkema formula [12, 67].
For a step potential difference of 60 V, the two 30 × 2 and

50 × 4 FE meshes (elements along the length and elements
along the thickness directions, respectively) with 128 and
216 BEs gave maximum downward displacements of the
centroid of the bottom surface equal to 1.657 and 1.677 μm.
The variations along the span of the arch of the Cauchy stress
T11 on the top, the middle and the bottom surfaces at time
t = 20 μs are exhibited in figure 15. It is clear that the two
FE meshes give virtually the same stresses, and for subsequent
analyses, we use the first mesh. As for the beam, the maximum
values of |T11| occur at points near the clamped edges, whereas
T11 is essentially uniform on the midsurface of the arch and
equals ∼ −3 MPa, that at the edges equals ∼ −16 MPa on the
bottom surface and ∼10 MPa on the top surface. Because of
the curvature of the undeformed arch, maximum magnitudes
of the compressive and the tensile axial stress are different.

Figure 16 displays the peak displacement of the centroid
of the bottom surface of the arch versus the applied voltage
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Figure 16. For different rates (V μs−1) of increase of the potential
difference, the downward displacement of the centroid of the bottom
surface of the fixed–fixed bell-shaped arch versus the applied
potential difference. Black circles correspond to data from static
experiments [12], and the black dashed line is the corresponding
bifurcation curve reported in [12]. Solid and dashed lines
correspond, respectively, to analysis of the nonlinear and the linear
problems.

for different uniform rates of increase of the electric potential.
Results from the analysis of the linear problem, experimental
data [12] and the bifurcation curve derived with a reduced-
order model in [12] are also exhibited. The first sudden
increase in the peak displacement from the analysis of the
nonlinear problem at the potential difference of ∼75 V
corresponds to the snap-through instability of the arch. For
low to medium rates of increase of the applied potential
difference (i.e. �0.4 V μs−1), the arch vibrates around the
snapped-through shape till the applied potential difference
reaches the pull-in voltage of ∼102 V. For the loading rates
of 1.2 and 3.0 V μs−1, the snap-through instability is not
observed, and only the pull-in instability occurs at ∼105 V
and ∼129 V, respectively. We have summarized in table 2
the snap-through and the pull-in parameters for different
rates of loading. As the rate of increase of the potential
difference is decreased the snap-through voltage gradually
decreases to 73 V monotonically; however, the pull-in voltage
approaches 111 V non-monotonically. It is evident that the
response of the arch approaches that of the statically deformed
arch as the rate of loading is decreased. Krylov et al [12]
have studied static deformations of the arch experimentally
and numerically by using a reduced-order model. Their
experimental snap-through voltage of 62.3 V differs by 5%
from their numerically computed voltage of 65.7 V, and
the corresponding pull-in voltages are 106 V and 111 V.
For a step load the present analysis gives 65 V and 92 V,
respectively, for the snap-through and the pull-in voltages. We
note that the loading rate in experiments cannot be accurately
determined. Analyses with the linear strain–displacement
relation fail to predict the snap-through instability. Therefore,
the nonlinearity in the strain–displacement relation must be
considered for studying the snap-through instability. For
subsequent problems, results from analyses with the nonlinear
strain–displacement relation are reported.
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Table 2. The snap-through and the pull-in parameters for the fixed–fixed bell-shaped arch for different rates of applied potential difference
from the analysis of the nonlinear problem.

The snap-through
instability The pull-in instability

Rate of applied potential Voltage Displacement Voltage Displacement
difference (V μs−1) (V) (μm) (V) (μm)

Step load 65.0 2.6 92.0 11.0
3.000 – – 123.0 11.0
1.200 – – 100.0 6.0
0.400 77.5 2.0 111.5 9.0
0.240 75.5 1.9 111.0 8.0
0.120 74.0 1.8 113.0 9.0
0.060 73.5 1.7 111.0 8.0
0.024 73.0 1.7 116.0 8.5

Experiment 62.3 106.0
ROM (static problem) 65.7 111.0
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Figure 17. Time histories of the downward displacement of the
centroid of the fixed–fixed bell-shaped arch for different applied
step voltages.

Figure 17 shows time histories of the deflection of the arch
for different values of the applied step potential difference.
A significant difference in the response of the arch occurs
when the applied potential difference is increased from 65 V
to 66 V in that the amplitude and the time period of oscillations
increase noticeably. This sudden change in the response due
to a small change in the applied potential difference indicates
the snap-through instability. It should also be evident from the
plot of the peak displacement versus the applied step voltage
shown by the red curve in figure 18. The pull-in voltage is
found to be 92 V which is nearly 40% more than the snap-
through voltage. The snap-through and the pull-in voltages
due to step electric potentials are lower by 15% and 20%,
respectively, than those due to a linearly increasing electric
potential of 0.024 V μs−1; we recall that the pull-in voltage
for the beam studied above exhibits the same trends.

Since the rise parameter, earch, for the shallow arch
is 4.33, according to the criterion given in [33], it should
not experience a snap-through instability under a deflection-
independent distributed static or transient mechanical load.
However, under the step electric potential difference which
induces a deflection-dependent distributed force, the arch
experiences the snap-through instability. Therefore, the
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Figure 18. The maximum absolute deflection of the centroid of the
bottom surface of the fixed–fixed bell-shaped and parabolic arches
for different applied step voltages.

criterion developed with the assumption of displacement-
independent loads does not apply for displacement-dependent
(or follower type) loads.

3.4. Transient deformations of a parabolic arch MEMS

The parabolic arch studied in this subsection differs from
the bell-shaped arch analyzed above primarily in the nonzero
slopes of the parabolic arch at the two fixed edges and zero
slopes for the bell-shaped arch. The geometric and material
parameters of the parabolic arch are L = 500 μm, b = 50 μm,
h = 2.6 μm, H = 2.9 μm and g0 = 6.4 μm (see figure 1);
ρ0 = 2310 kg m−3, λ = 73.95 GPa and μ = 63.0 GPa. Since
the average gap to the width ratio (H/2 + g0)/b of 0.157
and h/b of 0.052 is less than 0.5, effects of fringing fields
can be neglected [39]. Even though, in [39] an initially flat
beam is considered, for the present problem, the arch height is
negligible as compared to its width and length, and neglecting
fringing fields should not introduce an appreciable error in the
pull-in parameters. We analyze it as a plane strain problem.
The 20 × 3 and the 40 × 4 FE meshes with 92 and 176 BEs
gave the maximum centroidal deflections of 0.442 and
0.444 μm for 110 V step potential difference. Variations of
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the Cauchy stress T11 along the span of the beam at time t =
4 μs are exhibited in figure 19. As results are virtually the
same from the two meshes, for the subsequent analyses we
use the first mesh.

Figure 20 evinces time histories of the peak deflection
of the centroid of the bottom surface of the arch for different
uniform rates of increase of the electric potential. A sudden
increase in the peak displacement, observed for a potential
difference of 210 V, signifies the pull-in instability. The pull-
in voltage depends weakly upon the rate of increase of the
applied potential difference. No snap-through instability is
observed. Recall that for the bell-shaped arch both instabilities
were found.

For different step potential difference, figure 21 exhibits
the downward displacement of the centroid of the bottom
surface of the arch versus time. Unlike for the bell-shaped
arch, the amplitude of vibration increases gradually with
the increase in the applied step voltage till the potential
difference equals 206 V. A sudden change in the response
occurs when the applied step voltage is increased to 207
V; thus the dynamic pull-in voltage is between 206 V and
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Figure 21. Time histories of the peak downward displacement of
the centroid of the fixed–fixed parabolic arch for different applied
step voltages.
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Figure 22. Time histories of the peak downward displacement of
the centroid of the parabolic arch for different values of the steady
potential difference.

207 V. The blue line in figure 18 shows the variation of the
peak downward displacement with the applied step potential
difference. Unlike the bell-shaped arch, no sudden change in
the peak displacement is seen other than the one at the pull-
in voltage. Therefore, the snap-through instability did not
occur under step loading also. We note that dimensions of the
sinusoidal and the bell-shaped arches are different.

For the applied voltage increased linearly from zero to the
desired value in 40 μs, and then held there, figure 22 shows
time histories of the downward displacement of the centroid
of the bottom surface of the arch for various values of the
steady voltages. A noticeable difference in responses of the
arch for applied steady potential differences of 206 V and
207 V is found. For 207 V, the arch oscillates with larger
amplitude (see figure 23) and larger time period than those for
206 V. This sudden change in the response of the arch due to a
small change in the applied potential difference indicates the
snap-through instability. The pull-in voltage is found to be
210 V. We recall that no snap-through instability occurred for
this arch under both a step potential difference and a linearly
increasing potential difference.
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3.5. Variation of the lowest natural frequency of
arch MEMS with applied voltage

The natural frequency of a MEMS device is an important
parameter as it indicates its stiffness, and it affects the
quality factor and the switching time. The lowest natural
frequencies, ω, 37.9 kHz and 136.8 kHz, of the bell-shaped
and the parabolic arches, respectively, deformed by a potential
difference of 5 V are very close to their natural frequencies,
ωn, 36.0 and 135.5 kHz obtained from a converged modal
analysis of the undeformed arches with the commercial FE
code ANSYS. Figure 24 shows the variation of the lowest
natural frequency (ω/ωn) with the applied step voltage (V/Vpi),
where Vpi is the pull-in voltage from the analysis of the
dynamic problem. With an increase in the deformation of the
arches due to an increase in the applied potential difference,
the lowest natural frequencies of the deformed arches decrease
gradually. This decrease in the lowest natural frequency
can be explained with the Mises truss model [58, 20]. The
nondimensional electrostatic force between the deformable
and the rigid electrodes with the PPA is given by [12]:

Fe = β

(1 − w)2
. (32)

Here, w is the ratio of the peak displacement of the deformable
electrode to the initial gap, and β is the nondimensional
potential difference parameter between the two electrodes. For
w < 1, using the Binomial theorem, we get

Fe = β(1 + 2w + 3w2 + 4w3 + · · ·). (33)

For relatively small voltages and hence small displacements,
the electrostatic pressure Fe depends only on β; however,
as β increases, w also increases, and Fe depends on w

and β. This makes Fe a negative spring, which decreases
the natural frequency, and this effect is known as the
electrostatic softening [36]. However, as β increases, so
does w, and the strain hardening due to nonlinearities in the
strain–displacement relation compensates for the electrostatic
softening.

An examination of values of the maximum Green–St
Venant principal strain, Epr, plotted in figures 25–27 on
the deformed shapes of the arches at different applied step
potential differences provides a qualitative explanation of the
strain hardening effect. For the bell-shaped arch, as indicated
in figure 25, at the potential difference of 65 V (V/Vpi = 0.69),
Epr in an extreme shape of the arch equals 0.008% which is too
small for nonlinearities in the strain–displacement relation to
have a noticeable effect. Therefore, the electrostatic softening
effect dominates the strain hardening effect. The natural
frequency declines sharply at 66 V due to the snap-through
instability. Under a potential difference greater than 65 V, the
arch oscillates with Epr = 0.014% and 0.02% at 66 V and 92 V,
respectively. Hence, after the snap-through the lowest natural
frequency increases because hardening due to stretching of
the arch compensates for the electrostatic softening. However,
the lowest natural frequency again suddenly falls to zero at the
pull-in voltage of 92 V when the softening and the hardening
effects cancel each other.

For the parabolic arch deformed by a step potential
difference, the lowest natural frequency also decreases
initially. As the snap-through instability does not occur
in this arch under a step electric potential difference, the
lowest natural frequency does not drop sharply; cf figure 24.
Instead as the arch oscillates with increasing amplitude, the
strain hardening effect gradually compensates the electrostatic
softening and the lowest natural frequency starts to increase.
The Epr for 130 V (V/Vpi = 0.62) step electric potential
difference equals 0.005%, which increases to 0.04% at 196 V
(V/Vpi = 0.96) (see figure 26). For higher potential
differences, the arch gets inverted during its oscillations. By
examining shapes of the arch at 196 V (see figure 28(a)), we
found that the equilibrium shape of the arch is about to invert,
which means that the arch oscillates in the inverted shape
only during at most half of the vibration cycle. We define
the equilibrium shape of the arch as the one in which the
downward velocity of the centroid is the maximum. However,
for a potential difference higher than 196 V (see figure 28(b)),
the equilibrium shape of the arch also inverts, which indicates
that the arch is in the inverted shape during more than half
of the vibration cycle. Thus, the arch experiences a higher
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Figure 25. The maximum principal Green–St Venant strain (MPS in %) on the extreme deformed shapes of the bell-shaped arch for the
three values of the applied step potential differences. Top: 65 V; middle: 66 V and bottom: 92 V.

Figure 26. The maximum principal Green–St Venant strain (in %) on the extreme deformed shapes of the parabolic arch for the three values
of the applied step potential differences. Top: 130 V; middle: 196 V and bottom: 205 V.

Figure 27. The maximum principal Green–St Venant strain (in %) on the extreme deformed shapes of the parabolic arch for the two values
of the applied ramp potential difference. Top: 206 V and bottom: 207 V.

level of strain during most part of the cycle (see figure 26).
Therefore, during deformations of the arch for a step potential
difference between 196 V and 206 V, the strain hardening

dominates the electrostatic softening and the lowest natural
frequency increases. However, the lowest natural frequency
again suddenly falls to zero at the pull-in voltage of 207 V.
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Figure 28. Two extreme and one intermediate shapes of the
parabolic arch for the two values of the potential difference:
(a) 196 V and (b) 205 V.

When the parabolic arch is loaded with the electric
potential varying linearly from zero to a steady value in 40 μs,
we observe the snap-through instability. In this case, the
lowest natural frequency of the arch decreases sharply at
207 V due to the snap-through instability. As indicated in
figure 27, the Epr increases from 0.025% before the snap-
through to 0.06% after the snap-through. Hence, after the
snap-through, the lowest natural frequency increases because
hardening due to stretching of the arch exceeds softening due to
the Coulomb pressure. However, the lowest natural frequency
again suddenly falls to zero at the pull-in voltage when the
structural stiffness drops to zero.

The sharp drop in the lowest natural frequency of the arch
at the snap-through and the pull-in instabilities agrees with
the observation that the lowest natural frequency of the arch
becomes zero at bifurcation points C and F in figure 2.

3.6. Discussion

Results for the fixed–fixed beam (cf section 3.2) and the two
arches (cf sections 3.3 and 3.4) indicate that for the step loading
inertia effects cannot be neglected. The pull-in voltage of
the fixed–fixed beam equals 99.5 V under the step load and
113.0 V for the slowest rate of increase of the potential
difference. The snap-through and the pull-in voltages of the
bell-shaped arch equal 65 V and 92 V, respectively, under the
step load and 73 V and 116 V, respectively, for the slowest rate
of increase of the potential difference (cf table 2). The pull-in
voltages of the fixed–fixed parabolic arch equal 207 V and
215 V, respectively, under the step load and the slowest rate
of increase of the potential difference. The bell-shaped arch
experiences the snap-through instability under both slowly
and rapidly applied potential differences. However, the
parabolic arch exhibits the snap-through instability only when
the potential difference is increased linearly from zero to a
steady value in 40 μs and subsequently held constant. Whether
or not an arch exhibits the snap-through instability depends on
a number of parameters, such as the ratio of the arch thickness
to the arch rise [33], the angle of the arch at the fixed end (for
of a circular and a parabolic arch) [22], the ratio of the arch
thickness to the maximum distance from the flat rigid electrode
and the rate of increase of the applied potential difference.
Finding a phase diagram that shows values of parameters for
which the snap-through instability occurs is not easy.

We have neglected the effect of damping. The damping
coefficient of a MEMS device is determined by several
variables such as the pressure in the surrounding fluid medium
and visco-elastic/plastic behavior of the MEMS material.
Most silicon MEMS operate at atmospheric pressure and the
damping coefficient is dominated by the squeeze-film damping
[68]. Reference [69] studied snap buckling of a shallow
sinusoidal arch under a transient step mechanical pressure
load and considered viscous damping. It has been reported in
[69] that the critical pressure for the snap-through instability
increased by about 3% due to a viscous damping coefficient
of 1% of the critical damping and the large-amplitude motions
after snap-through instability decay over time and the structure
tends to the static snapped configuration.

4. Conclusions

Nonlinear governing equations (i.e. the continuum balance
laws and Maxwell’s equations) for an electrically actuated
MEMS device have been summarized. These equations have
been numerically solved to study finite transient deformations
of a perfectly conductive body under the Coulomb pressure by
coupling the FEM and the BEM: the former for the structural
part of the problem and the latter for the electrical fields.
The snap-through and the pull-in instabilities of micro-arches
for different potential differences between the two electrodes
have been studied. Depending upon how the electrical load
is applied a micro-arch may experience either only the pull-in
instability or the pull-in and the snap-through instabilities. It
has also been found that the pull-in displacement is more for
a micro-arch than that for a micro-beam of the same length,
width, thickness and the initial gap as the micro-arch. The
pull-in voltage obtained by analyzing the beam problem with
the linear strain–displacement relation is nearly one-half of
that for the same problem studied with the nonlinear strain–
displacement relation.

The present work is of theoretical and practical
significance and provides general theoretical results of the
nonlinear behavior and instabilities of a micro-arch under
transient nonlinear displacement-dependent electric loads. As
a MEM electrode, micro-arches are advantageous over micro-
beams because a micro-arch can have a larger operational
range without the pull-in instability than a corresponding
micro-beam. Moreover, by changing the rate of application of
the potential difference between the two electrodes, the snap-
through instability may be avoided. This provides another
means to control the response of a MEMS device. Also,
in a micro-arch under an electric load, the softening effect
may be dominant before it experiences the snap-through
instability but the strain-hardening effect may initially exceed
the softening due to electric forces subsequent to the snap-
through instability. This can be exploited in designing novel
MEMS devices.
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