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Abstract: We analyze homogeneous deformations of a rectangular rubberlike membrane loaded by equal
normal tensile dead loads on the edges, and of a spherical rubber balloon inflated by a constant pressure.
The rubber is modeled as an isotropic compressible hyperelastic material. Three material models, namely
the harmonic, the generalized Blatz—Ko, and the St Venant—Kirchhoff models, are employed. It is found that
Treloar’s instability, i.e. the occurrence of unequal principal stretches in a square membrane under equal
normal dead loads, is not admissible in the harmonic and the St Venant—Kirchhoff materials, but is admissible
in some Blatz—Ko materials. For each one of the three materials, the pressure—radius relation for the inflation
of a spherical balloon does not exhibit the non-monotonicity seen for a Mooney—Rivlin material.
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1. INTRODUCTION

Two frequently studied instabilities in non-linear elasticity are the asymmetric principal
stretches in a homogeneous isotropic square membrane under equal biaxial tensile dead loads
[1-5], and the non-monotonic pressure—radius relation during the inflation of a spherical
balloon [2, 4, 6]. In each case the deformation is homogeneous. Bifurcations of the homo-
geneously deformed spherical balloons into inhomogeneously deformed nonspherical shapes
have been analyzed by Chen and Healey [7] and Haughton [8]. Carroll [9] has given a simple
condition on the material response curve for uniaxial compression to classify incompressible
hyperelastic materials into three classes for analyzing their behavior regarding the inflation
of a spherical balloon. The pressure may increase monotonically, or it may increase and then
decrease, or it may increase, decrease and then increase again. Haughton [8] has investigated
the inflation of a spherical balloon made of a compressible hyperelastic material, and the
bifurcation of the spherical shape into nonspherical ones. He showed that, for a compressible
Ogden [10] material, bifurcation points strongly depend upon the dilatation. Haughton [8]
did not impose the requirement that the transverse stretch of the balloon thickness must be
positive.
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We note that Rivlin [11] found seven equilibrium configurations of a cube made of a
homogeneous neo-Hookean material. He showed that of the seven, only one, the undeformed
configuration, has all the symmetries of the given loading and is unstable for sufficiently
large values of tensile loads. However, asymmetric homogeneous deformations do not occur
under equal biaxial dead loads in a homogeneous and isotropic square membrane made of
a neo-Hookean material but are possible in a Mooney—Rivlin material. Previous analyses
[1-5] of deformations of the membrane have assumed that the material is incompressible.
Here we investigate if asymmetric deformations in a square membrane under equal biaxial
dead loads and the non-monotonic pressure—radius relation for a spherical balloon also occur
in a compressible hyperelastic material. We consider three constitutive relations, namely
the harmonic material proposed by John [12, 13], the Blatz—Ko material [14, 15] and the
St Venant—Kirchhoff material [16]. These materials are characterized by the shear modulus
and the Poisson ratio defined for infinitesimal deformations; the constitutive relation for the
Blatz—Ko material also has an additional non-dimensional parameter with values between 0
and 1. Treloar [17] observed unequal principal stretches during homogeneous deformations
of a square membrane subjected to equal normal dead loads on the edges; Ericksen [2] called
this phenomenon Treloar’s instability.

Batra [18] has analyzed biaxial homogeneous deformations of a homogeneous
rectangular elastic membrane with four objective constitutive relations linear in suitable
measures of stress and strain. Of these, three constitutive relations including the St Venant—
Kirchhoff material admitted the possibility of Treloar’s instability. However, the stability of
the symmetric and the asymmetric solutions was not investigated primarily because three
of these materials were not hyperelastic. One could have determined the stability of the
deformed configuration by analyzing the growth of infinitesimal deformations superimposed
upon a finitely deformed body.

2. PRELIMINARIES

We assume that the body is made of a homogeneous, isotropic and unconstrained elastic
material. The class of homogeneous deformations studied is such that with respect to either
a local or a global orthonormal set of basis functions the deformation gradient is a constant
diagonal matrix, namely

i 0 0
F=|0 4 0 |. (2.1)
0 0 i

A1, A2 and A3 are principal stretches along the x;, x5, and x3 coordinate axes respectively.
Thus in the polar decomposition F = RU = VR of F, R is the identity matrix, and
U = V = F. The principal invariants /3 , /Iz and Il of the left Cauchy—Green tensor
B = FF’ are given by

Iy =23+ A5+ A3, Ly =275+ A505 + 2347, Il = A30525. (2.2)

For an isotropic compressible hyperelastic material, the strain energy density ¥ per unit
reference volume is a function of the three principal invariants of B. The first Piola—Kirchhoff
stress tensor T and the Cauchy stress tensor o can be derived from W through [16]
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Alternatively, W can be expressed as a symmetric function of the three principal stretches
A1, A9 and A3. The three principal stresses 741, Too and T33 are given by

ow

sa =37 @ =123 nosumona. 24)

The functional forms of the strain energy density, ¥, for the three materials studied are given
below.

a. Harmonic Material

The strain energy density for a harmonic material, proposed by John [12, 13], was motivated
by mathematical convenience rather than by experimental evidence. This material has been
studied earlier by Ogden and Isherwood [19], Abeyaratne and Horgan [20], and Jafari et al.
[21]; its properties are quite different from those of the other two materials investigated here.
The functional form of W is

W = 2u0H(ly) — Iy +1], 2.5)

where 1 is the shear modulus for infinitesimal deformations, and the scalar function H
satisfies certain inequalities [22]. We use the following expression for H proposed by
Haughton and Lindsay [23]:

1—V0

H(]U):IU_3+a(U_3) m

(2.6)
where vy # 1/2 is the Poisson ratio for infinitesimal deformations. Substitution from (2.5)
and (2.6) into (2.3) gives

14 2a (Iy — 3)

— 2R |-
T = 4 11,

U| R, (2.7)
where 1 is the identity matrix.

b. Generalized Blatz—Ko Material

For the generalized Blatz—Ko material [14]

Hof 2 q/2
w=5 [(JB— - (1113 - 1)}
to(1 —1) Iy 2 a/2
e [( 7 3) -y 1)] , 2.8)

where
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2V0

__ 2 2.9
1— 2w’ (2.9)

q =
and fis a material parameter between 0 and 1. /' = 0 describes a class of foamed polyurethane
elastomers and f' = 1 characterizes a class of solid polyurethane rubbers studied in the Blatz—
Ko experiments [14]. Equation (2.8) can also be derived theoretically; e.g., see Beatty [15].
For vq = 1/4, Equation (2.8) does not satisfy the empirical inequalities [16]. From (2.8) and
(2.3) we get

—1)/2 ~(g-1)/2 / 1-fo
o=y (—fﬂﬂq D2 (1 -y ) 1+ - B (2.10)
’ g (L =/ )L u? e
c. St Venant—Kirchhoff Material
For this material [16]
1
W= B (Ao + 2u0) 17 — 2uollg (2.11)

has the same form as in the linear elasticity theory with the strain tensor for the infinitesimal
deformations that is linear in displacement gradients replaced by the Green—St Venant strain
tensor E = (C — 1)/2, C = F’F. Note that E also has quadratic terms in displacement
gradients. A and y in (2.11) are the Lamé constants. Equations (2.3) and (2.11) give

Ho [ q -1
_ i1+ (1, —1-2, —3)\B+ 1, B 2.12
7= LT +<B 5 s )> + s @12)

The two problems studied herein are now described.

(1) Biaxial stretching of a rectangular membrane

With the x; and x, axes of a rectangular Cartesian coordinate system aligned along the
edges of a rectangular membrane, it is assumed that the deformation gradient (2.1) describes
homogeneous deformations of the membrane under the action of equal and oppositely
directed dead surface tractions T and T», at the edge surfaces X; = 0,a and X, = 0, b.
X denotes the place occupied by a material particle in the unstressed reference configuration
that in the current configuration is at x. Treloar’s [17] test data supports our assumption of
the form (2.1) of the deformation gradient F. We note that for an incompressible isotropic
elastic membrane, Chen [3] has analyzed the stability of the deformed configuration of the
membrane under all homogeneous deformations. The stretch 13 in the transverse direction
as a function of the in-plane stretches 1; and 4, is determined from the condition

ow

Toy = —
33 FYR

= 001'033 = 0, (213)
which holds because the top and the bottom surfaces of the membrane are traction free and
we are studying its homogeneous deformations. Substitution for A3 in terms of 1; and A5 in
the strain energy density function gives
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W= W1, h) = W(hy, Ao, A5(A1, 42)). (2.14)

For an isotropic material ¥ is a symmetric function of 11, 4, and 15, and W is a symmetric
function of 4; and 4,. Stable equilibrium configurations of the membrane are described by
the absolute or the relative minima of the thermodynamic potential [2] or the free enthalpy [4]

E(/117/12> - W(/ll,lg) _Tll /11 —TQQ /12 (215)
for fixed values of 711 and T,. Thus, in an equilibrium configuration

_ ow - oW

Ti= ", Ty = — 2.16
11 (:M,l’ 22 8127 ( )

and for the equilibrium configuration to be stable, 4; and 1, must satisfy the following
inequalities:

- ~ N 2 .
/4 /4 /4 W oW
>0, —5 >0, <SS (2.17)
947 a3 041045 A7 9A3
For equal normal dead loads on the edges, Ty1 = Tsy. Thus
oW oW
— — — =0. 2.18
041 04y ( )

If both equal and unequal values of A; and 1, satisfy (2.18), then there is a possibility of
Treloar’s instability occurring in the material with strain energy density given by W. In the
A142-plane, let (47,4, ) be the point of intersection of the symmetric and the asymmetric
solutions of (2.18). Since a membrane cannot support compressive edge loads, therefore 4,
must be greater than 1 for the occurrence of Treloar’s instability. MacSithigh [5] has shown
that the equilibrium equations and the boundary conditions are satisfied by negative stretches
which correspond to the membrane undergoing two 180° rotations in the dead loading device.
However, laboratory simulations of dead load tests do not permit such rotations, and will not
be considered here.

(i) Inflation of a spherical balloon

We assume that a spherical balloon is deformed into a spherical balloon. With respect to
the orthonormal set of coordinate axes aligned along the longitudinal, the latitudinal and the
radial directions, the three principal stretches for the deformation gradient (2.1) are given by

(2.19)

where 7 and R are, respectively, the radial coordinates of a point in the deformed and
the undeformed configurations. The thickness of the membrane in the deformed and the
undeformed configurations is denoted by / and H respectively. The stress component 033
is very small as compared to 077 and 0y, and is usually neglected. Thus Equation (2.13)
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determines Aj as a function of A; and 1. The pressure difference, p, between the inside and
the outside of the balloon is balanced by the membranal stresses 017 = 022. Thus

prr? = oy, 27rh, (2.20)
or equivalently 3
_2H 1 oW 221)
P= R 20, ‘

p is usually called the pressure in the balloon since the atmospheric pressure on the outside
of the balloon is negligible as compared to p.

In order to discuss the stability of the deformed configuration of a spherical balloon, we
assume that it is connected to an infinite reservoir that supplies gas at a constant pressure p
and at a constant temperature. In an equilibrium configuration, the potential

4 .

E(A1) =—-p (gwRS) 23+ W), (2.22)
should have the absolute or the relative minima [2]. Here —p( %71' R?) A3 is a kind of potential
energy associated with the work done by the gas on the balloon, and

W(iy) = Ax R*HW(J1,11). (2.23)
Thus, in the equilibrium configuration,

1 oW

- 2.24

P

and for the equilibrium configuration to be stable

d2E  *W 2 oW
csE_9P 297 2.25
di2 7 a2 Aok 0, (2.25)

or equivalently

dp
—£ >o. 2.26
di, = (2.26)

That is, the pressure, p, must be a non-decreasing function of the stretch 4;.

3. ANALYSIS OF THE TWO PROBLEMS

3.1. Biaxial Stretching of a Rectangular Membrane
3.1.1. Harmonic Material

Substitution from (2.5) and (2.6) into (2.13) gives
/13 = (/11/12 — 1)/2a - (ll +/12 - 3) (31)
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Since A3 > 0, therefore positive values of 1; and A, must be such that

}.112 — 1> 2a (ll —|—)~2 — 3) (32)
Equation (3.1) when combined with Equations (2.5) and (2.6) gives

V- ;‘_2 [~ (Aids — 1)? + 4a 2y A2(21 + 2o — 3) + 4a] . (33)

Substitution from (3.3) into (2.16) yields

Ty, = %[12 — M A2 4 4o Ay Ay + 20 A% — 6a k),
Ty = ‘ful — 29 A2 daly Ao+ 2003 — 6adi). (3.4)

Thus
711—7"22:%(12—/11)(1—}—205(11 +)~2—3>—ﬂ,1),2) (35)

Because of (3.2), Equation (3.5) gives A; = A, for T1; = Ts,. Thus this material does not
admit Treloar’s instability. In order to see if the deformed equilibrium configuration is stable
or not, we substitute for /¥ from (3.3) into (2.17) and obtain

(4o —2) >0, (8ai +1—6a —21%)? < 1*(4da — 1)?, (3.6)
where we have set A; = A, = 1. Recalling (3.2), 4 must also satisfy
22 —1>2a (24— 3). (3.7)

Inequality (3.7) implies (3.6),. Fora given vq, one can find the maximum value of 1 satisfying
the two inequalities (3.6); and (3.7). For 4 < 4a, strict inequality holds in (3.6);. However,
(3.7)is violated for A = 2a ++v/40? — 6a + 1. Forexample, fora = 1.5 which corresponds
to vg = 0.4, (3.7) is violated for 2 < A < 4. Thus if equal dead normal edge loads on a
rectangular membrane made of this material are gradually increased, then the maximum equal
biaxial stretches that can be observed are 2. If 0 < vy < 0.382, then 4a* < (6o — 1) and
inequalities (3.6); and (3.7) are satisfied for A < 5.236.
The nominal normal edge traction T required to produce the stretch / is given by

T= ’f(z — 1) [(6a — 1)i—2%]. (3.8)

The plot of T'vs A depends strongly upon the value assigned to vo. For v, close to 0.25 the
curve T'vs A is concave downwards; the maximum value of T occurs for the largest value
of A that satisfies inequalities (3.6) and (3.7). For vg > 0.3, the maximum value of A that
satisfies inequalities (3.6) and (3.7) and where T attains a maximum value do not coincide
with each other.
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3.1.2. Generalized Blatz—Ko Material
Substitution from (2.8) into (2.13) gives
Dy = (A1 22)" 3=, (3.9)

and all finite values of 1; and 1, are admissible. Equations (3.9), (2.16) and (2.8) give

2 - 2 2 2L _2 2L
M—OW_f[(zl F 224 (Ar do) 3) ; ((mg) 1)]
1 2
F(1—1) [ 7t k) 2 3 ; ((,1 PR 1)] . (3.10)
i_ = f i = Al d) 3]+ (0 =) [ 7 +allade) } | (3.11)
T22 3¢=2 q+2
™ :f[zQ 21 ds) H} 1-1) [ — 41 (/1112)42} . (.12)

The equality of normal dead loads on the edges (i.e. T;; = Tyy) gives the following:
either A, = Ay or

3q—2 A2 +/12 + A 2
f(1 + (Mﬁv) +(1-f) (% - (Mgﬁ%) = 0. (3.13)
143
Note that
-2 1 2 1-—
3q _ +vo g+ _ 3Vo' (3.14)

2—¢q 1—vy g—2 1—vo

For f = 1, Equation (3.13) cannot be satisfied by positive values of A, and A,. Thus
normal equal dead loads at the edges result in equal biaxial stretches.
For f= 0, the unequal roots of the equation T1; = T», satisfy

The point (4;,4,) in the A; As-plane where the symmetric and the asymmetric solutions

intersect is given by
2(14vq)

1 (1=vo)

For 0 < vy < 0.5, As < 1. Thus Treloar’s instability will not occur in the generalized
Blatz—Ko material with /= 0.

For0 < f< 1land 0 < vy < 0.5, the second term in (3.13) will become negative for
large values of 4; and 4, and (3.13) is satisfied by positive values of 4, and A5, and A, is
given by
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Table 1. Roots of Equation (3.17) for different values of vy and f.

Vo
f 0.25 0.30 0.40
0.1 1.4775 — 1.301
0.2 1.6324 1.505 1.348
0.3 2.167 1.686 1.415
0.4 — 2.447 1.520
0.5 — — 1.712
_204vg) _2(1-3vg)
f(l +A, ) +(1—f) (3@4 — A 0TV ) =0. (3.17)

We now have a two-parameter family of possible unequal principal stretches for equal biaxial
loads. Out of the symmetric and the asymmetric solutions, the one that satisfies strict
inequalities in (2.17) can be observed experimentally. Substitution from (3.10) into (2.17)
gives

[ 3g — 2 4(g—1 3 +2 4
g =f|1— 22020 ) (1 — 1) =t I =33 20)7 | 20, (3.18))
i 2— ] 4T q—2 _
[ 3¢—2 a1 | (3 g+2 |
2 Ef-l ~ 5 A3 (A1 A2) =00 | +1-f) 7 + ml?ulb)q”- >0, 3.182)
2q ? 3¢=2 a+2]?
G=gig — 2—q [f(}n/b) = + (1 =f)(A1d2)=2| >0. (3-183)

For vy = 0.25, 0.3 and 0.4, and starting from f = 0.1, fwas incremented by 0.1 until
Equation (3.17) ceased to have roots greater than 1.0; results are summarized in Table 1.

For f= 0.3 and vy = 0.3, Figure 1 depicts values of 1; and 4, that satisfy (3.13) and also
the line 4; = A5. The two curves intersect at the point (1.686, 1.686). Both equal and unequal
roots of (3.13) satisfy strict inequalities (3.18);-3 and thus correspond to stable solutions.
The tractions for the symmetric solution increase monotonically with the stretch while that
for the asymmetric solution monotonically decrease; see Figure 2. Thus in the laboratory,
the membrane will begin deforming symmetrically till ., = A, = A,. For a further
increase in the tractions both symmetric and the asymmetric solutions are possible. Since
the free enthalpy of the asymmetric solution is less than that of the symmetric solution for
A1 = Ay > Ay, the deformations will suddenly switch from the symmetric to the asymmetric
pattern.

For the Mooney—Rivlin material the symmetric solution is unstable for 1, =45 > 4,.
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Figure 1. Asymmetric (——) and symmetric (- - -) solutions for principal stretches in a biaxially loaded
rectangular Blatz—Ko membrane with equal nominal surface tractions.
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Figure 2. Normalized nominal axial traction rs. \; for a biaxially loaded rectangular Blatz—Ko membrane
with equal nominal surface tractions; —— unequal biaxial stretches, - - - - - equal biaxial stretches.
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3.1.3. St Venant—Kirchhoff Material

Recalling that
1
Iy = 5[IE2 — tr(E?)], (3.19)
Equation (2.11) becomes
A
W= 203423+ -3+ 20 -1+ (- 1)+ (@3- 1Y (320

Substitution from (3.20) into (2.13) yields
3ho + 2u0 — Ao(AT +43)

2= , 3.21
3 10 4 2#0 ( )
where we have assumed that 19 + 2uy > 0. Since A3 > 0, therefore
lf+/1§<3—|—2’%:1+1/v0. (3.22)
0

Thus a material with a small positive value of v can possibly sustain large values of 4, and
Ao. Equations (3.20) and (3.21) give the following expression for the strain energy density
per unit reference volume as a function of 4; and 4,:

w 1
B L B (/I LR IV N CES
Ho
where ]
0 Vo
= = . 3.24
fo Ao+21p  1—v (3.24)
Equations (2.16) and (3.23) give
T _ g2 +43 (i3
,U_o_ﬁo 1A+ 245 = 2) + (45 = 1), (3.25)
Ty _ Ao(A2 + 22— 2) 4 Ao (A2
m—/”oz(ﬁ' 5—2) +A2(7 = 1). (3.26)
Thus 7;; = Ts, holds when either 1; = 1, or
_ _ 932 _9j2 200 _ 72\]1/2
2y = A+ [4 =323 +480(3—243) +485(2 — A9)] . (327)

2(14250)

Equation (3.27) could have also been deduced from Equation (12a) of [18]. The point (17,4, )
in the 1;45-plane where the symmetric and the asymmetric solutions intersect is given by
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_1+2,80_1+V0

/1-?_3+2,80 33—y (3.28)
For0 < vy <0.5,4, < 1.
The stability conditions (2.17) become
Bo(322+22) + 322 — (1 +2p) > 0,
Po(33 +325) + 345 — (14 2f,) > 0,
[Bo(325 +A3) + 347 — (1 + 20)][Bo(41 + 323)
+325 — (1 +2p0)] —4B323 435 > 0. (3.29)

When A; = 15 = A, the satisfaction of (3.29); implies that conditions (3.29); and (3.29),
are satisfied. Furthermore, (3.22) and (3.29); require that

1+V() 12>1+2ﬁ0_1+\/0
2vo T 34+28 3—v

(3.30)

From (3.28) and (3.30) we conclude that equal normal dead loads on the edges of a rectangular
membrane made of the St Venant—Kirchhoff material produce equal principal stretches in
the directions of the dead loads. Thus Treloar’s instability can not occur in a rectangular
membrane made of the St Venant—Kirchhoff material.

3.2. Inflation of a Spherical Balloon
3.2.1. Harmonic Material
Substitution from (3.3) into (2.21) and setting A, = A; = r/R gives

aR R r
=6a — (6o —1)— — = 3.31
S’ = 6 (6a —1)— — =, (3.31)

p
for the non-dimensional pressure, p, as a function of the present radius 7. It follows from
Equation (3.2) that Equation (3.31) holds so long as

r? — dorR + (6o — 1)R* > 0. (3.32)

The pressure, p, becomes maximum at 7 = 7y, = Ry/(6a — 1), and deformations become

unstable for 7 > ry.,. Forvg = 0.25, ry,. = V3.5R. Since dp/dr = 0 has only one
root, 7 = Fyax, and d213 /dr?|,—,... <0, therefore the pressure vs the present radius curve
is monotonically increasing until » = 7y, and monotonically decreasing for 7 > 7,..

3.2.2. Generalized Blatz—Ko Material

From (2.19), (2.21) and (3.10) we obtain the following expression for the non-dimensional
pressure, p, in a spherical balloon made of a generalized Blatz—Ko material:
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B (-7 () o

Equation (3.9) relates, in the current configuration, the thickness of the balloon to its radius

% - (%)_L . (3.34)

The deformed configuration of the balloon will be stable or metastable according as inequality
or equality holds in the following:

(B (5T ) +a-n (5 (§)6 +1E (%)_> >0, (339

Note that

79—6  (34+vy) q+6 (Tvg—3)

2—q  (1—=vy) g—2 (1—vy)"~

For f = 0 and 3/7 < vy < 0.5, the deformed shape of the balloon is always stable. For

g9=2

0 < vg < 3/7, only those shapes for which » < R (% %) ™ are stable. For f= 0 and

g = —1 Haughton [8] found that the maximum in the pressure occurs at /R = 1.39, which
agrees with our result.
For f= 1, stable configurations of the balloon are given by

2-9q
3 + V0:| 4—0q

<R
d |:1—V0

For vy = 0.3 and f = 0, 0.3 and 1.0, plots of p vs /R show that the pressure increases
monotonically until /R ~ 1.441, 1.463 and 1.518 respectively. For stretches exceeding
these values, dp/dr < 0 and the deformed shape of the balloon will be unstable.

3.2.3. St Venant—Kirchhoff Material

Equations (2.21) and (3.23) yield the following relation between the non-dimensional
pressure, p, as a function of the present radius 7

. _DP R ¥ R
=——=(14+2 ———. 3.36
p=Lon =20 (5-7) (.36
Equation (3.22) implies that
r < R(0.5 4 0.5/vy)">. (3.37)

It follows from Equation (3.36) that the pressure is a monotonically increasing function of the
radius 7. Hence deformations of the spherical balloon stay stable until the maximum radius
Fmax = R(0.5 4+ 0.5/v()*/? is reached. The maximum attainable radius is limited by the
Poisson ratio for infinitesimal deformations.
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4. CONCLUDING REMARKS

For in-plane homogeneous deformations of a homogeneous membrane made of an
incompressible material, the stretch in the transverse direction is determined by the
requirement that deformations be isochoric. Thus, the transverse stretch does not become
zero for finite values of in-plane stretches. However, for a compressible material, the
requirement that the transverse stretch be positive may limit values of in-plane principal
stretches. Material moduli limit in-plane principal stretches for the harmonic and the St
Venant—Kirchhoff materials but not for the generalized Blatz—Ko material.

Of the three compressible hyperelastic materials studied herein, only the generalized
Blatz—Ko material for some suitable values of material parameters exhibits Treloar’s
instability associated with the occurrence of unequal principal stretches in biaxial loading
of a uniform homogeneous square membrane with equal nominal tensile tractions (dead
loads) at the edges. During the uniform inflation of a spherical balloon, the pressure—radius
relation for each of the three materials does not have two branches on which the pressure
increases monotonically with the radius. We note that a Mooney—Rivlin material but not a
neo-Hookean material, both of which are incompressible, admits Treloar’s instability and a
non-monotonic pressure—radius relationship for a spherical balloon. Kearsley [1] has shown
that an isotropic incompressible hyperelastic material with (0W /dl;)/(dW /9l5) > 0 admits
Treloar’s instability.

It should be noted that only a limited class of homogeneous deformations has been
considered while analyzing the stability of a deformed configuration of either a rectangular
membrane or a spherical balloon. It is possible that the analysis of the stability of the
deformed configuration under all admissible deformations will yield different results.
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