Treloar’s Biaxial Tests and Kearsley’s Bifurcation
in Rubber Sheets

R.C. BATRA
Department of Engineering Science and Mehanics, Virginia Polytechnic Institute & State
State University, Blacksburg, VA 24061-0291, USA

INGO MUELLER
Technical University Berlin, Limburger Strasse 20, D-1000 Berlin, Germany

PETER STREHLOW
Physikalisch-Technische Bundesanstalt Berlin, Germany

(Received 30 July 2003; accepted 3 January 2004)

Dedicated to Michael Hayes

Abstract: We review Treloar’s biaxial experiments and Kearsley’s calculated instability in a square rubber
sheet. Treloar’s rubber is recognized as a Mooney—Rivlin maferial. It turns out that Treloar’s test could not
have anticipated Kearsley’s stability analysis, since his loads were far below the critical load of bifurcation.
We repeat Treloar’s experiment but with much higher loads and confirm Kearsley’s prediction.
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1. RUBBER IN BIAXIAL LOADING

In the early days of non-linear elasticity, particularly for rubber, an important question
concerned the validity of the kinetic theory of rubber. While that theory had not performed
too badly in uniaxial stress—stretch experiments, it turned out to be qualitatively wrong for
biaxial loadings.

In Treloar’s time Mooney [1] had already proposed an alternative to the kinetic theory
and Rivlin was working on incorporating that improvement into the emerging systematic
theory of non-linear elasticity. Therefore Treloar tested what we now call the Mooney-Rivlin
constitutive equation for rubber and found it satisfactory for the swollen rubber with which
he experimented [2].

Years later, when Kearsley reexamined Treloar s experimental data, he detected an oddity:
a square membrane dead-loaded with equal loads on its sides exhibited unequal stretches [3].
While Treloar ignored that feature, Kearsley was sensitive to it, since he, in his calculations,
had detected a bifurcation which implied that equal stretches for equal loads are unstable
beyond a critical value of the loads. Kearsley assumed that Treloar’s data confirmed his
calculation.
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Figure 1. Treloar’s data from a biaxial test and their graphical representation in a (¢, A} — rzlp)-plot.
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Unfortunately, when we check the numbers, we find that Kearsley’s critical load is more
than twice as high as any load ever employed by Treloar. Therefore Treloar’s unequal
stretches have nothing in common with Kearsley’s bifurcation. Rather, the unequal stretches
suggest an anisotropy which has developed in Treloar’s experiments during the loading
process.

Thus we concluded that Kearsley’s bifurcation had never been observed and we decided
to establish its existence experimentally. The experiment was successful, and its result is
reported in Section 5 of this paper.

2. TRELOAR’S EXPERIMENT REVISITED

Treloar performed biaxial dead-loading tensile tests on a square sheet of swollen rubber.
Those data are reproduced in Figure 1 along with Treloar’s graphical representation of the
measured values ina (f;,A? — -z )-plot. £; (i = 1, 2) are the normal Cauchy stresses in the
1- and 2-direction, A; are the corrxesii)onding stretches. There is no stress in the 3-direction and
the stretch A3 in that direction is equal to 1/1,4 5 because of incompressibility. f; = Ao t; /4,
are the loads in the 1- and 2-directions and A4 is the undistorted area on which the loads act
and in Treloar’s experiment its value is 0.0985 cm?.

The (£;,4%— A—-}Aw) -plot was chosen by Treloar since it exhibits most clearly the deviation
of the material from a neo-Hookean constitutive relation which is the one derived from the
kinetic theory of rubber. That theory was fairly new — and quite popular — in 1947. The
stress—stretch laws predicted by the kinetic theory read as
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Table 1. Measured pairs ( /7, f- 2) for a swollen rubber.

S22\ S1 100 200 300 400 500
100 X X X
200 X X X X
300 X X
400 X X
500 X X X X
1
L = </l2 - —'—) Sy,
1 A%A% +
1
ty, = (12—_>S y (21)
2 A%l% +

so that a graph of the (#,,42 — rglrg)-relation should be a straight line through the origin,
irrespective of the load f5. s is a material constant.

What Treloar observed instead were the “sloping steps” exhibited in Figure 1 — one step
for each value of f;. It is worth mentioning that Treloar a priori assumed isotropy of his
square sheet. This is why he was able to plot 25 open circles from only 15 measurements.
The measurements which he did make are those for the pairs (f7, f») marked in Table |
by crosses. The unmarked pairs were filled by Treloar, via the isotropy assumption, by
interchanging (1, f2) and (4,,42).

There is an oddity though in Treloar’s experiments, because in his tables all equal pairs
(f1, f2) do occur. Inspection of the table in Figure 1 shows that as a rule the measured values
of A, and 4, are unequal when the loads [, /' are equal — a glaring sign of anisotropy which
Treloar does not comment upon. What he does is draw two circles for the pairs of equal
forces: one circle for the measured values of (4,,45) and the other one for those stretches
interchanged. In this manner Treloar comes to 30 circles. Sometimes the circles for equal
forces overlap but often they do not. In Figure 1 we have identified the double occurrences
by the chevrons in Treloar’s plot, wherever they are clearly visible.

In addition Treloar introduces black dots into Figure 1 for the result of uniaxial loading
tests in the 1-direction. He does not give values for those.

3. CONFIRMATION OF THE MOONEY-RIVLIN RELATION

Having convincingly established that the neo-Hookean constitutive relation is invalid for his
rubber Treloar proceeds to test an alternative. That alternative is due to Mooney and is now
known as the Mooney—Rivlin constitutive relation. For biaxial loading of the Treloar type
the relation consists of two equations, namely

\ 1
T h = (A.% - 1—%—1—2—) (S+ -—S‘_/lg)

2
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1
= (ag - Tgﬁ) (51 —5.27), G3.1)

1

where s are constants, dependent on material.

Table 2. s, according to Treloar’s measurements for swollen rubber.
100 300 300 100 200 300 400 500 500 500
200 200 100 400 400 400 500 300 200 100
s_g/ sz] -200 -397 -337  -250 -292 251 -271 -221 -245 -168
s+(g/ cm2] 2186 1884 1946 2028 1981 1669 2059 1996 1993 2061

Treloar’s data may be used to obtain 51 by solving the two equations (3.1) for s... We
have

. L1 Sids  [ake
T T AR B\B- B-s)
1 A
s. = 4s_ 24— A (3.2)

We take the data from Figure 1 and obtain values for s; which are listed in Table 2, where
the first double line indicates the loads f; > — in grams (!); we stick to Treloar’s somewhat
archaic units while discussing his experiment.

The scatter is wild indeed, particularly in s_. If we take average values, we obtain

g

_=-251—=
s 5 o

and s, = 2010-=. (3.3)
cm

With these average values inserted into (3.1) we may recalculate, largely numerically, the
position of Treloar’s circles in Figure 1,4 according to the Mooney-Rivlin constitutive
equation. Figure 2, , shows the result of that calculation. Tht line in the dotted straighe
figure — marked by asterisks — corresponds to uniaxial tension in the Kinetic theory. It follows
that the kinetic theory is not too bad for uniaxial stress—stretch experiments. Comparison of
Figure 2,;; with the experimental plot in Figure 1 shows good agreement. Thus Treloar was
able to say: “Detailed comparison shows a very close quantitative correspondence between
the theoretical and the experimental points”. In this manner Treloar firmly established the
validity and usefulness of the Mooney-Rivlin stress—stretch relation.

For good measure we also plot #; Vvs. (lf - @) (s4 —s_ A3) from Treloar’s

experimental data with s4 as in (3.3). Thus we obtain an essentially straight graph equal
to the bisector, cf. Figure 2, , as it must be according to the Mooney-Rivlin law.!

Treloar also presents experimental data for dry rubber and he is less happy with those as
regards to the Mooney-Rivlin theory. Indeed, Treloar’s dry rubber departs significantly from
that theory.
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Figure 2. Left: Treloar plot for Mooney-Rivlin theory with coefficients from (3.3). Right: t; vs.

<)\? - ﬁ) (54 — 5-A3) from Treloar's data (dots) and from Mooney—Rivlin theory (straight line).
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All this is old history revisited. The motivation for bringing this up comes from a
suggestion made by Kearsley [3] in a more recent paper on the stability of a biaxially loaded
square sheet of Mooney-Rivlin rubber. Kearsley sees some of this theoretical findings
confirm Treloar’s old experimental results. We proceed to explain.

4. KEARSLEY’S INSTABILITY

Kearsley made a mathematical study of a square Mooney—Rivlin membrane subject to equal
dead loads in the direction of the edges. From (3.1) with f; = Ayt /A; he concluded that
under those circumstances 4, and 4, must satisfy the condition

(A1 —Ag) {(A'{'ﬂ% +1) I—z*—l + (A3 +Aide + 43 -—x‘;xg)} =0. (4.1)
One solution is obviously 1; = 44, i.e. symmetric stretch under symmetric loading and that is
the solution which is intuitively expected. But (4.1) can also be satisfied by the curly bracket
term being equal to zero. This solution is non-symmetric and depends on the coefficient |—:ﬁ
which in Treloar’s case, by (3.3), has the value 8. Figure 3 shows the two solutions in a
(A1,42)-plot. The point of intersection of bifurcation occurs at A; = 15 = A, with
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Figure 3. Bifurcation in the (A1, A2)-diagram. Numbers indicate the values of f; = f2ing.

(1+z;f)l—§i:—|+;f (3—45) =0, hence 4, = 2.84. (4.2)

The forces corresponding to the bifurcation point are accordingly

fr1=fa=4ols| </1_/‘ - %) (it- +/1,2~> =1125g. (4.3)
f

Is-|

Moreover, Kearsley proved that the symmetric solution A, = 4 is unstable beyond the
bifurcation point. Therefore for loads f; = f bigger than 1125 g we expect to see different
stretches A, and A ,, one bigger than A = 2.84 and the other one smaller.

This fact gave Kearsley an idea: had not Treloar observed different stretches for equal
loads? Indeed he had, and he had put them down in his table and diagram, cf. Figure 1.
Therefore Kearsley, apparently without looking at the numbers, announced that there was “an
experimental example of this sort of asymmetric solution to a dead-loading problem. . .”.

This interpretation of Treloar’s results is wrong. Indeed, according to Figure 3 we do not
expect unequal data for A, and 4, except for loads beyond f; = f, = 1125 g. and then
one of the stretches must be bigger than 2.84. But Treloar’s highest equal loads were 500 g
according to Figure | and the biggest stretch in his table was 2.48.

Therefore Treloar’s data do not offer experimental evidence of Kearsley’s instability. To
our knowledge this instability has not been demonstrated to this day.

We must conclude, rather prosaically, that Treloar’s observation of two different stretches’
for equal loads is nothing else but another example of a notorious quality of rubber, namely the
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difficulty of quantitative reproducibility of rubber data and the unreliability of exact numbers
obtained from rubber experiments.

5. AN EXPERIMENT

And yet, it would clearly be desirable to prove Kearsley’s bifurcation experimentally.
Therefore we chose a square membrane of rubber of area 5cmx5cm, and undistorted
thickness of 0.4 mm, cf. Figure 4, top. We stretched this membrane by the application of
equal dead loads.

The square membrane was cut from the flat part of a commercially available balloon
made from weakly vulcanized natural rubber. Its disk-like shape of diameter 12 cm in the
undistorted state is changed into a perfectly spherical form by inflating the balloon . Before
the square piece was cut out, the balloon was inflated in order to record its pressure-radius
curve by means of a pressure gauge. Fitting this curve to the pressure-radius relation of a
Mooney-Rivlin balloon provided a pair of values for the elastic constants s... More values for
s+ were obtained during the biaxial loading of the membrane from six stretch measurement,
at six different loads. The loads were applied quasistatically and the resulting stretches
were read off some minutes after the application of loads. Thus it was determined that the
coefficients for the rubber membrane had the values

sy = 1.858 x 10° Pa, s_ = —0.1935 x 10° Pa,

with a relative standard uncertainty of 7x 1072

Therefore the bifurcation stretches should be equal to A, = A, = 3.106 and the critical
loads should have the values 1 = f5 = 23.12N.

At this level of the loads the membrane turned out to be quite “soft”, i.e. a slight touch
of one set of weights or the other could deform the membrane into either one of the two
possible rectangles. This is typical for a bifurcation. After a slight increase of the load to
23.3 N in both directions we observed that the original square of 1 cmx 1 cm in the center of
the membrane was deformed to the rectangular area of size 3.05 cmx4.06 cm, cf. Figure 4,
bottom.

Thus we concluded that our specimen exhibits the Kearsley bifurcation, and that the load
23.3 N was supercritical as expected.

We have calculated the available free energy function of the membrane under equal
loads and plotted its contour lines for two sets of loads, one subcritical and the other one
supercritical. Figure 5 shows these plots which are taken from the book on Rubber and
Rubber Balloons [4]. The left figure shows the energetic minimum in a symmetric position,
while in the right figure that symmetric position is occupied by a saddle. The symmetry has
been broken and there are now two minima. Actually the landscape around these minima and
the saddle is quite “flat” which accounts for the softness of the membrane at and around the
bifurcation point.

After unloading the membrane exhibited slight residual stretches not unlike those of a
deflated rubber balloon. Those stretches disappeared during gentle heating and the membrane
could be used, and has been used repeatedly, in further experiments of the same type.
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Figure 4. Instability of a square rubber membrane under equal loads (photographs). Top: Undistorted
state Bottom: Supercritical loads.
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Figure 5. Contour lines of available free energy for a sub-critical load (left) and a supercritical one (right).

No inhomogeneity could be detected in our sample even after loading and no loss of
isotropy could be noticed after unloading and gentle heating.

NOTE

1. Treloar draws a similar graph for j%fl- = (.1 and also confirms the Mooney-Rivlin law. Since our

L:;—l equals 0.125, it seems that the exact value of s_ is not overly important in this experiment.
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