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Abstract
Carbon nanotubes have very high potential for applications in nano-
electromechanical devices, nano-optomechanical systems and nano-
composites. However, their full exploitation depends upon knowledge of
their mechanical, electrical and thermal properties. Several analytical, ex-
perimental, molecular mechanics (MM) and molecular dynamics simulations
have been performed to study their deformations under axial loads. Here a
novel MM simulation technique has been developed to study uniform radial
expansion/contraction of a single wall carbon nanotube (SWCNT). Radial de-
formations of a SWCNT are achieved by considering a double wall carbon
nanotube (DWCNT) with the SWCNT as one of its walls and moving radially
through the same distance all atoms of the other wall of the DWCNT thereby
causing a pseudo-pressure through changes in the cumulative van der Waals
forces which deform the desired wall. These results are used to find through-
the-thickness elastic moduli (Young’s modulus in the radial direction, Er , and
Poisson’s ratio, νrθ ) of the SWCNT.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Because of potential applications of carbon nanotubes (CNTs) as nanosensors, nanoactuators
and as reinforcements in composites, there has been extensive research activity in finding
their elastic, thermal and electrical properties either experimentally or analytically or through
numerical experiments involving molecular mechanics (MM) and molecular dynamics (MD)
simulations. CNTs were discovered by Iijima [1] in 1991. Due to their large length to
diameter ratio and high specific properties, they are very attractive materials for reinforcements
in composites. Treacy et al [2] and Krishnan et al [3] experimentally determined that a
CNT has Young’s modulus in the terapascal (TPa) range. Lu [4] estimated elastic properties
of CNTs and nanoropes using an empirical force constant model. Li and Chou [5] linked
structural mechanics and MM to compute elastic properties of CNTs. Chang and Gao [6]
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used MM simulations to investigate size dependent elastic properties of single wall carbon
nanotubes (SWCNTs). Xing et al [7] employed MD simulations to compute Young’s modulus
of SWCNTs. Sears and Batra [8] have summarized (see tables 1 and 2 of their paper) different
techniques employed and values of the axial elastic modulus found by several investigators.
They noted that many researchers regarded a SWCNT as a continuum cylindrical tube of mean
diameter equal to that of the tube and wall thickness either 0.34 or 0.066 nm, and found its
cross-sectional area by using the thin-wall tube approximation. However, the mean radius
of several SWCNTs varies from 0.3 to 0.6 nm; thus the equivalent continuum cylindrical
tube should not be regarded as thin especially if its thickness is taken to be 0.34 nm. Sears
and Batra [8] used two MM potentials (MM3 and the Tersoff–Brenner) to simulate tension
and torsional deformations of a SWCNT, assumed that the continuum structure equivalent in
mechanical response to the SWCNT is a cylindrical tube of mean diameter equal to that of the
SWCNT, and its response to infinitesimal deformations is linear elastic and isotropic in the
θz-plane. When an algebraic error in their work is corrected, the thickness of the equivalent
continuum structure for the MM3 potential is found to 0.436 Å, Young’s modulus = 7.26 TPa
and Poisson’s ratio υθz = 0.21. Here z-axis points along the axis of the tube, and θ is the
angular coordinate of a point in the cylindrical coordinate system. Tserpes and Papanikos [9]
developed a three-dimensional finite element analysis to predict Young’s modulus and the shear
modulus of SWCNTs. Wang et al [10] presented a continuum based model employing a second
order Cauchy–Born rule to estimate mechanical properties of CNTs. All these works have
revealed that CNTs have exceptionally high specific Young’s modulus in the axial direction.

Recall that the performance of a reinforced structure subjected to a variety of loads
depends on all of its elastic moduli whose number equals 2, 5 and 9, respectively, for isotropic,
transversely isotropic and orthotropic materials. Material properties of an isotropic material
are the same in all directions, and that of a transversely isotropic material, such as an arterial
wall or a bamboo stem, are the same in the plane perpendicular to the axis of transverse isotropy
but different from those along the axis of transverse isotropy. The axis of transverse isotropy of
an arterial wall or a bamboo stem is along its longitudinal axis. We note that material symmetry
is not necessarily synonymous with geometric symmetry. For example, a cube made of an
isotropic material has the same elastic moduli in all directions, but its shape is not invariant with
respect to all rotations. On the other hand, a sphere made of a transversely isotropic material
has material properties invariant with respect to rotations about the axis of transverse isotropy
that may or may not pass through its center but its geometric shape is invariant with respect to
all rotations about any axis passing through its center. What is the material symmetry group
of a SWCNT?

Like most other researchers, we presume that a SWCNT is obtained by rolling a flat
graphene sheet into a circular tube, as shown schematically in the left part of figure 1. The
regular hexagonal structure of carbon atoms in the plane graphene sheet suggests that it can
be modeled as isotropic within the plane of the sheet (a plane parallel to the θz-plane in
figure 1(left)) , and its modulus in the transverse (thickness or radial) direction is likely to be
different from that in an in-plane direction. That is, the graphene sheet is transversely isotropic
about an axis perpendicular to the plane of the sheet. When it is rolled into a cylindrical tube
(about the z-axis), its material symmetry group does not change as is the case of an isotropic
material when it is molded into either a cube or a cylinder or a sphere. In other words, the
material symmetry group is an intrinsic property of the material and does not depend upon the
geometric shape of the part. Thus the axis of transverse isotropy of a SWCNT points along
the radius of the cylindrical tube and not along its longitudinal axis.

Radial deformations of a SWCNT have been investigated experimentally by Shen et al [11]
with a scanning probe microscope that indented a 10 nm diameter multi-walled carbon nanotube
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Figure 1. (a) Plane graphene sheet in the rz-plane, (b) SWCNT and (c) cylindrical hollow tube
equivalent to the SWCNT.

(MWCNT). They employed Hertz’s contact theory between two elastic solids to deduce that
the radial compressive modulus increased from 9.7 to 80 GPa when the tube’s diameter was
decreased from 26% to 46%. We note that the maximum strain induced will very likely
exceed the limit of applicability of Hertz’s contact theory for such large local changes in tube’s
diameter. Also, the modulus in the radial direction is nearly one-hundredth of that in the axial
direction. Yu et al [12] used a tapping-mode atomic force microscope and transmission electron
microscope images on MWCNTs to show that their radial deformations are highly reversible
or said differently elastic. They hypothesized that a continuum structure equivalent to an
MWCNT is a uniform isotropic rubberlike solid cylinder of Poisson’s ratio 0.5, studied radial
deformations of an 8 nm diameter MWCNT with a tapping-mode atomic force microscope and
found radial modulus to be 0.3 to 4 GPa at different cross-sections. Because of the assumption
of isotropy, the elastic modulus in the radial direction should have equaled that in the axial
direction. There is no simple way to account for van der Waals forces in a solid cylinder.

Tang et al [13] deformed an SWCNT bundle under hydrostatic pressure with a diamond
anvil cell and in situ x-ray diffraction. The volume compressibility (−1/V )(∂V/∂P ) of the
SWCNT bundle with the lattice constant of 1.716 nm and tube diameter of 1.408 nm was
found to be 0.024 GPa−1. Reich et al [14] performed ab initio calculations to determine
the effective moduli of a 0.8 nm diameter SWCNT deformed under a hydrostatic pressure,
and found elastic moduli in the radial and the circumferential directions to be 0.65 TPa and
1.075 TPa, respectively, when thickness of the equivalent continuum tube was taken to be
0.34 nm. Li and Chou [15] presumed that the equivalent continuum structure of an SWCNT is
a solid cylinder, and employed the coupled molecular structural mechanics relations to deduce
that the radial modulus of an SWCNT strongly depended upon its diameter. Xiao et al [16]
used an analytical molecular structural mechanics model to analyze radial deformations of
SWCNTs and MWCNTs. They did not assign a value to the wall thickness and computed
quantities equaling moduli multiplied by the thickness. For SWCNTs of diameter greater than
1.8 nm, the quantity in the radial direction was found to be less than 10−4 times that in the
circumferential and the axial directions. They also found the radial stiffness of MWCNTs as
a function of the number of walls using the Lennard-Jones potential for van der Waals forces.
It is evident that there is a wide variation in the reported values of the elastic modulus in the
radial direction.
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Shen and Li [17] derived closed form expressions for five elastic constants of a transversely
isotropic SWCNT using a MM potential, an energy equivalence principle and simulating
deformations induced by an axial load, a torque applied at the end faces, uniform in-plane
axial stresses and in-plane simple shear. They approximated the cross-sectional area of the
equivalent continuum structure by regarding it as a thin wall tube, and found that the values of
these elastic constants varied with the diameter of the SWCNT. As far as one can determine,
Shen and Li [17] took the axis of transverse isotropy to coincide with the geometric axis
of the tube. Popov et al [18] modeled crystals of an SWCNT as transversely isotropic and
determined their elastic constants by using a lattice dynamics model. There is no experimental
data available on the radial modulus of an SWCNT.

We analyze here uniform radial expansion or contraction of several SWCNTs by
considering DWCNTs of which the SWCNT is one of the walls and moving radially through
the same distance all atoms of the other DWCNT. This loading method is similar to the one
used in simple compression or indentation tests where a hard diamond anvil is used to apply the
pressure. That is, moving atoms of one of the tubes radially inwards or outwards is equivalent
to having a rigid indentor that applies van der Waals force on atoms of the other wall. Changes
in the van der Walls forces between the two walls of a DWCNT induce uniform radial pressure
on all atoms of the SWCNT and cause it to deform radially. By assuming that the continuum
structure equivalent to an SWCNT is a linear elastic thick cylindrical tube as shown in figure 1,
we find Young’s modulus in the radial direction and the corresponding Poisson’s ratio of the
SWCNT.

2. Analysis of radial deformations

2.1. MM potential

As in our previous studies [8] we use here the MM3 class II pair-wise potential with both higher-
order expansions and cross-terms for type 2 (alkene) carbon atoms [19]; an expression for the
potential is also given in [8]. This potential is appropriate for CNTs due to the similarity
between graphitic bonds in the nanotube and the aromatic protein structures for which the
potential was constructed, and yields results that agree well with experimental observations.

2.2. Analysis technique

The mechanical response of a CNT is analyzed by adopting the same procedure as that
employed to study deformations of an SWCNT [8] with the computer code TINKER [20]. It
involves finding the minimum energy configuration of an unloaded CNT, henceforth, referred
to as the relaxed configuration. Displacement boundary conditions corresponding to estimated
deformations are applied to atoms near the boundaries, and other atoms are allowed to move
freely until the minimum energy configuration is attained. The difference between potentials
of the two configurations gives the energy required to deform the tube.

Radial contraction/expansion of an (a,b) SWCNT is studied using a DWCNT with the
(a,b) SWCNT as one of its walls; see figure 2. First, the relaxed configuration corresponding
to the minimum potential energy of the DWCNT is found. Batra and Sears [21] have shown
that the relaxed configuration of a DWCNT cannot be obtained by simply putting together the
relaxed configurations of two SWCNTs constituting the DWCNT. Rather, when two relaxed
SWCNTs are put together, the distance between their walls generally changes before a relaxed
configuration of the DWCNT is attained. Radial contraction of a (16,0) SWCNT can be
simulated by considering the ((16,0), (25,0)) DWCNT, moving radially inwards through the
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Figure 2. Schematic sketch of a double wall carbon nanotube (DWCNT).

same distance all atoms of the (25,0) wall, holding them fixed, and thereby applying a pseudo-
pressure on the (16,0) wall. The atoms of the (16,0) wall are allowed to move freely until the
potential energy of the system has been minimized. Long open-ended tubes are used, thus the
effect of end-caps is neglected. Similarly radial expansion of the (25,0) wall is accomplished by
moving radially outwards through the same distance all atoms of the (16,0) wall and producing
an internal pseudo-pressure on the (25,0) wall. These virtual experiments have been performed
on a number of ((a,b),(c,d)) DWCNTs to cover a wide range of tube diameters and chiralities.
By performing these numerical experiments for various incremental radial displacements of
atoms, response histories can be obtained for the wall strain energy as a function of increments
in the radial strain and the hoop (or the circumferential) strain.

2.3. Strain energy derived from MM simulations

The strain energy per atom of the unrestrained wall of the DWCNT versus the hoop
strain (defined as the radial displacement/undeformed radius) is plotted in figure 3 for the
((11,7),(25,0)), ((12,6),(16,13)), ((16,13),(26,13)) ((11,7),(20,8)), ((21,7),(26,13)) DWCNTs.
The deformed tube radii range from ∼5.8 to 12.8 Å (or ∼0.58 to 1.28 nm). A least squares fit
to the data is

E = (−589e3
θθ + 395e2

θθ + 0.32eθθ )10−20 J atom−1 − 0.06 < eθθ < 0.04, (1)

where E is the energy per atom of the unrestrained wall and |eθθ | the hoop strain. For |eθθ | � 1
the second order term in |eθθ | makes the most contribution to E. Since the data from numerous
DWCNT simulations with different chiralities and radii lie on the same curve, the response
of an SWCNT to radial expansion/contraction is independent of its chirality and diameter at
least in the range of their values used in these simulations. Also, the 3rd order polynomial fit
(1) implies that the stress–strain response is nonlinear with the linear term dominating when
|eθθ | � 1. Henceforth, we consider deformations with |eθθ | � 1 and regard the response of
the tube as linear elastic.

2.4. Deduction of transverse elastic moduli

We assume that the continuum structure equivalent to an SWCNT is a cylindrical tube of
mean diameter equal to that of the SWCNT, and its material transversely isotropic with the
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Figure 3. Strain energy/atom versus the hoop strain for radial expansion/contraction of different
SWCNTs.

axis of transverse isotropy in the radial direction. As stated in the introduction, this reflects
the usual assumption that an SWCNT can be formed by rolling a plane graphene sheet into a
circular tube.

In cylindrical coordinates with z-axis along the axis of the SWCNT or the equivalent
continuum linear elastic tube, the transversely isotropic material of the equivalent continuum
structure has five constants, namely, Er, Eθ = Ez, νrz = νrθ , Grz = Grθ , and Gθz =
Eθ/2(1 + νθz). Here Er , Eθ and Ez are Young’s moduli in the radial, the circumferential and
the axial directions respectively, νzr , = −err/ezz is Poisson’s ratio, err and ezz are infinitesimal
axial strains in the radial and the axial directions, respectively, and Grz is the shear modulus
in the rz-plane.

Using MM simulation results of SWCNTs under axial and torsional deformations and
the relation Ez = 2Gzθ(1 + νzθ ), Sears and Batra [8] found that the mechanical response of
a cylindrical hollow tube with mean radius equal to the radius of the SWCNT matched with
that of the SWCNT when h = 0.436 Å, Eθ = Ez = 7.26 TPa, Gθz = 3.0, and νθz = 0.21
where h equals the thickness of the equivalent continuum tube; here an algebraic error in
their work has been corrected. Note that Sears and Batra did not assume the thickness of the
equivalent continuum tube rather determined its value. For a (16,0) SWCNT, the mean radius
rm = 5.94 Å, we get rm/h ∼ 13.62. However, for SWCNTs of smaller diameter, rm/h may
be less than 10 which is usually regarded as the limiting value for a thin wall cylindrical tube.
Here we regard the equivalent continuum structure to be a thick wall cylindrical tube.

Radial deformations of an SWCNT without end-caps and of the equivalent continuum
structure will primarily induce strains in the circumferential and radial directions. For a linear
elastic cylinder loaded by an internal and/or an external pressure σrr is usually smaller than σθθ .
However, relative values of the corresponding radial and circumferential strains will depend
on values of Er , Eθ and νrθ .

For a thick wall pressure vessel made of a transversely isotropic linear elastic material
with the axis of transverse isotropy in the radial direction the relation between the hoop
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stress, σθθ , the radial stress, σrr and the corresponding infinitesimal strains eθθ and err can be
written as [22]

err = 1

Er

σrr − νθr

Eθ

σθθ ,

eθθ = 1

Eθ

σθθ − νrθ

Er

σrr .

(2)

Poisson’s ratios νθr and νrθ satisfy
νrθ

Er

= νθr

Eθ

. (3)

With n ≡ √
Eθ/Er , and the continuum cylinder subjected to internal pressure pi and external

pressure po, the radial displacement u of a point situated at the radial distance r from the tube
axis is given by

u = αrn + βr−n, (4)

where α and β are solutions of the following two equations:

−pi = α(cn + b)rn−1
i + β(−cn + b)r−n−1

i ,

−p0 = α(cn + b)rn−1
0 + β(−cn + b)r−n−1

0 ,

c = Er

1 − νrθνθr

, b = Eθνrθ

1 − νrθνθr

= Erνθr

1 − νrθνθr

, a = Eθ

1 − νθrνrθ

.

(5)

The strain energy of the thick-wall cylindrical tube is given by

W = πL

∫ r0

ri

(ce2
rr + 2berreθθ + ae2

θθ ) r dr, (6)

where L is the length of the tube, and

err = du

dr
= αnrn−1 − βnr−n−1, eθθ = u

r
= αrn−1 + βr−n−1. (7)

Recalling that for a given value of the hoop strain, the strain energy of an SWCNT during its
radial deformations is the same whether it is expanded or contracted, we require that the strain
energy (6) of the equivalent continuum structure when expressed as a function of the hoop
strain of a point on its mid-surface be the same whether it is loaded internally or externally.
For a cylindrical tube loaded internally, we set po = 0 in equation (5)2, solve equations (5)1

and (5)2 for α and β, and substitute for α and β in equation (4) to get

u = pi

[
rn+1
i

(b + cn)(r2n
0 − r2n

i )
rn +

rn+1
i r2n

0

(b − cn)(r2n
0 − r2n

i )
r−n

]
. (8)

Thus the hoop strain, em
θθ at a point on the mid-surface of the cylindrical tube is given by

em
θθ = piA, (9)

where

A = rn+1
i rn−1

m

(b + cn)(r2n
0 − r2n

i )
+

rn+1
i r2n

0 r−n−1
m

(b − cn)(r2n
0 − r2n

i )
. (10)

Substitution from (9) into (8) gives

u = em
θθ

A

[
rn+1
i

(b + cn)(r2n
0 − r2n

i )
rn +

rn+1
i r2n

0

(b − cn)(r2n
0 − r2n

i )
r−n

]
. (11)
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Substitution for u from (11) into (7), for err and eθθ into (6), and evaluating the integral,
we get

W = πL(em
θθ )

2F, (12)

where F depends on b, c and n.
We follow the same procedure for the cylindrical tube loaded externally by the pressure

po to obtain

W = πL(em
θθ )

2H, (13)

where H depends on b, c and n.
Using the MM simulation result that W as a function of eθθ is independent of whether the

SWCNT is expanded due to internal pressure or contracted due to external pressure, we get

F = H, (14)

which relates b, c and n.
We now impose the requirement that for every value of em

θθ the strain energy of the
equivalent continuum tube equal that of the SWCNT. Thus

πLF = 395Na, (15)

where Na equals the number of atoms in the SWCNT of length L (and radius rm). As noted
earlier, for |eθθ | � 1 the term e2

θθ in equation (1) is dominant.
For a transversely isotropic tube with the axis of transverse isotropy in the radial direction

and a wall thickness of 0.436 Å, Eθ = Ez = 7.26 TPa, νθz = 0.21 [8], the following two
sets of solutions were found for equation (14) and (15): Er = 0.85 TPa, νrθ = 0.34 and
Er = 5.29 TPa, νrθ = 0.0007. While the first solution may seem more plausible, it implies
that νθr = 2.9, and it barely satisfies constraints on Poisson’s ratio as 1 − νrθνθr = 0.014 and
νrθ = (Er/Eθ)

1/2 which are both at the lower limits of permissible ranges imposed by the
requirement that the strain energy needed to deform the tube be non-negative. We propose that
the values of the second solution set be used for the equivalent continuum structure. Note that
our continuum structure is energetically equivalent to the SWCNT in the sense that if both are
subjected to the same circumferential strain, their strain energies will be equal.

2.5. Effect of wall thickness on computed transverse elastic moduli

We note that other investigators have employed different thicknesses of the equivalent
continuum tube to find the axial Young’s modulus from either test observations or MM/MD
simulations. Using different thicknesses of the equivalent continuum structure, we recalculated
values of material parameters from the results of our present and previous simulations; these
are plotted in figure 4. We recommend that the values represented by the second set be used.
It is evident that computed elastic moduli approach nearly steady values as the wall thickness
is increased from 0.01 to 0.34 nm.

3. Remarks

We note that Batra and Gupta [23] have recently studied axial, torsional, bending and radial
breathing mode vibrations of an SWCNT with both ends traction free and length/diameter of
about 15. By requiring that frequencies of the equivalent continuum structure computed with
the finite element method and the three-dimensional elasticity theory equal those obtained from
the MD simulations of the corresponding SWCNT, they found that for SWCNTs of different
chiralities the wall thickness of the continuum cylindrical tube equals ∼1 Å, and Young’s
modulus in the axial direction equals 3.3 TPa. However, the shear modulus Gθz and Poisson’s
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Figure 4. Anisotropy parameter, n, and Poisson’s ratio νrθ versus wall thickness of an SWCNT.

ratio νθz depend upon the chirality of the SWCNT. With an increase in the diameter of the
SWCNT, Poisson’s ratio νθz converges to 0.20 for armchair tubes, to 0.23 for zigzag tubes and
to 0.21 for chiral tubes.

We [21, 24] have developed equivalent continuum structures for MWCNTs, and shown
that the axial strain at the onset of buckling of an MWCNT obtained from the MM simulations
is close to that obtained from the linear elasticity theory applied to the equivalent continuum
structure.

4. Conclusions

In summary, by using the results of MM simulations of radially deformed SWCNTs and
assuming that the continuum structure mechanically equivalent to an SWCNT is a cylindrical
tube made of a transversely isotropic material with the axis of transverse isotropy along the
radius of the tube, we have determined Young’s modulus and Poisson’s ratio of the continuum
structure in the radial direction. For wall thickness of 0.436 Å, values of material moduli are
Ez = Eθ = 7.26 TPa, νθz = νzθ = 0.21, Er = 5.29 TPa, and νrθ = 0.0007. Our value of
Young’s modulus in the radial direction is nearly 73 per cent of that in the axial direction as
opposed to Reich et al ’s one-half. The values of material moduli depend upon the presumed
thickness of the wall of SWCNT, and the MM potentials used. To our knowledge, there is no
experimental data available for Young’s modulus of a CNT in the radial direction to compare
the computed values.
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