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ABSTRACT

We use the boundary element method (BEM) to study transient plane

strain deformations of water induced by a rigid hull impacting at normal

incidence initially stationary water occupying a half space with the goal of

finding the hydrodynamic pressure acting on the hull. Water is assumed to

be incompressible and inviscid, and its deformations to have zero vorticity.

Thus deformations of water are governed by the Laplace equation.

Challenging issues addressed are finding the free surface of water whose

evolution is governed by a nonlinear partial differential equation,

determining the a priori unknown wetted length, and ensuring that water

maintains contact with the hull without penetrating into it. The solution of

the problem using the commercial software, LSDYNA, resulted in water

penetrating into a rigid hull. The developed BEM code has been verified by

using the method of manufactured solutions. Computed results for the

hydrostatic pressure on straight hulls and ship bow section are found to

compare well with the corresponding experimental findings. It is found that

the peak pressure acting near the terminus of the wetted length decreases

with an increase in the radius of the circular hull.

Keywords: Water slamming, curved hulls, ship bow section.

1. INTRODUCTION
Local water slamming is characterized by large hydrodynamic loads of short duration which
can cause significant structural damage, e.g., see Faltinsen [1]. The water entry of a rigid 
V-shaped wedge of small deadrise angle β was first studied by von Kármán [2].
Subsequently, Wagner [3] generalized von Kármán’s work by including effects of water
splash-up on the body. Similarity solutions for water slamming of a rigid wedge were
developed by Dobrovol’skaya [4] for β greater than 30° and by Zhao and Faltinsen [5] for 4°
≤ β ≤ 81°. Zhao et al. [6] generalized Wagner’s solution for arbitrary values of β and
numerically solved the problem using the boundary integral method. Effects of jet flow were
neglected and computed results were found to agree with the corresponding experimental
findings. Mei et al. [7] analytically and numerically solved the two-dimensional water impact
problem for wedges and circular cylinders including effects of jet flow. Yettou et al. [8]
experimentally measured hydrodynamic pressures acting on rigid wedges during their free
fall into stationary water and also analytically solved the problem.

Fluid motions of water entry problems have been simulated by several numerical
techniques such as the finite element method (FEM) [9], the FEM with Arbitrary-
Lagrangian-Eulerian (ALE) formulation [10], smoothed particle hydrodynamics (SPH)
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method [11] and the boundary element method (BEM) [5], [12], [13]. Zhao and Faltinsen [5]
analyzed the water entry of a rigid wedge using the BEM and compared computed results
with those obtained by the similarity method. Lin and Ho [12] used the BEM to study the
influence of water depth on the slamming pressure acting on a rigid wedge. They found that
the maximum impact pressure is larger for shallow water than that for deep water which
agreed with their experimental observations. Battistin and Iafrati [13] used the BEM to
simulate two-dimensional water entry problems of arbitrary shaped bodies.

In practical water slamming problems, the hull is curved and deformable. Hull’s
deformations affect the motion of the fluid and the hydroelastic pressure acting on the solid-
fluid interface. Sun [14] and Sun and Faltinsen [15, 16] numerically analyzed water
slamming problems for arbitrary geometries using the BEM for studying deformations of
water that was modeled as non-viscous and incompressible, and modal analysis for
deformations of the cylindrical shell. They considered effects of gravity and flow separation
from the solid surface. Qin and Batra [17] studied the hydroelastic problem using {3, 2}-
order plate theory for a sandwich hull of small deadrise angle and modified Wagner’s water
impact theory to consider the fluid-structure interaction during slamming. The plate theory
incorporates the transverse shear and the transverse normal deformations of the core, but not
of the face sheets which were modeled as Kirchhoff plates. Das and Batra [18] studied the
water slamming of deformable sandwich hulls using the commercial FE software LSDYNA
with the ALE formulation. They considered all geometric nonlinearities when studying
hull’s deformations, assumed the fluid to be compressible, accounted for inertia effects in the
fluid and the solid, and examined delamination between the core and the face sheets. They
pointed out that boundary conditions at the fluid/solid interface were not well satisfied since
the fluid penetrated into the rigid hull. Stenius et al. [19] used LSDYNA to study hydroelastic
effects for deformable hulls considering different boundary conditions, impact velocities,
deadrise angles, membrane effects and hull materials. Lu et al. [20] employed the coupled
BEM and the FEM for studying hydroelastic effects with the hull modeled as a Timoshenko
beam. Panciroli et al. [21] experimentally and numerically analyzed the water slamming of
linear elastic wedges. The experimental results for different values of the panel thickness,
deadrise angle and entry velocity were compared with those obtained by using the SPH
formulation in LSDYNA. Oger et al. [11] used twenty million particles to correctly predict
the pressure on the wedge. Experimental results for the failure of deformable sandwich
composite panels including core shear, delamination and damage of the face sheets due to
water slamming are reported in [22, 23]. Hu et al. [24] approximated the slamming pressure
by equivalent bending moment to study delamination of a composite hull using the FE
software ANSYS and the cohesive zone model. Water slamming problem for a composite
hull of a rather complex shape has been analyzed by Paepegem et al. [25] both numerically
using ABAQUS and experimentally. Aureli et al. [26] have exploited deformations due to
fluid structure interaction to harvest energy.

We focus here on delineating the effect of hull curvature on pressure acting on the hull.
Even though hulls deform due to water slamming loads and the maximum hydrodynamic
pressures acting on rigid and deformable hulls may be different, estimates of the maximum
pressure on rigid hulls will provide useful guidelines for designers.

2. PROBLEM FORMULATION
A schematic sketch of the problem studied is shown in Fig. 1. At time t = 0, the ship hull keel
impacts at normal incidence with vertically downward velocity V stationary water occupying
the semi-infinite domain Z ≤ 0 when rectangular Cartesian coordinates (X, Y, Z) fixed to the
earth are used to describe deformations of the fluid. We simplify the problem by assuming



that the hull dimensions in the Y-direction are very large so that a plane strain state of
deformation in the XZ-plane can be assumed and the problem can be solved as 
2-dimensional (2-D). Furthermore, we assume that the hull geometry is symmetric about the
plane X = 0 and it initially impacts water along the line X = Z = 0. Thus deformations of water
in the region X ≥ 0 and Z ≤ 0 and motion of the right-half of the hull are analyzed.

We note that the hydrodynamic load acting on the hull is highly localized; thus the
slamming problem is idealized as that of either straight or curved wedge entering water with
a vertically downward speed (see Fig. 1) that may change due to the force exerted by water
on the hull and the consideration of gravity forces. Even though gravity and surface tension
effects are not considered in studying deformations of water, the analysis could be modified
to account for gravitational forces. We derive equations governing deformations of water
using balance laws of mass, linear momentum and moment of momentum, and the continuity
of velocity and surface tractions at the hull/water interface. Sources of nonlinearities include
(i) the a priori unknown length of the wetted surface, (ii) dependence of pressure at a point
on the square of the velocity potential gradient, and (iii) the a priori unknown deformed
shape of the free surface of water. Both the wetted length and the shape of the free surface
of water are to be determined as a part of the solution of the problem.

2.1. EQUATIONS GOVERNING DEFORMATIONS OF THE FLUID
For hull speeds of the order of 10 m/s, viscous effects in water are often neglected. Also, the
time duration during which the compressibility of water likely plays a noticeable role is
considerably smaller than that of interest in the water slamming problem. We thus assume
the water to be incompressible, homogeneous and inviscid and its deformations to be
irrotational. The assumption of null vorticity implies that there exists a velocity potential ϕ
such that velocity n = −∇ϕ, where ∇ is the spatial gradient operator in the XZ-plane. The
assumption of incompressibility requires that ϕ satisfy the Laplace equation:

, in the water domain. (1)
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Figure 1 Schematic sketch of the water slamming problem studied.



Eq. (1) expresses the balance of mass. In the absence of gravity force, the balance of linear
momentum for an inviscid fluid gives

p, (2)

where ρ is the mass density of water, is the total time derivative, and the hydrostatic
pressure p is determined by solving Eq. (2) under the following boundary conditions.

p = pa,  on the free surface of water, (3.a)

|ν | → 0 as (X2 + Z2)1/2 → ∞ for X > 0 and Z ≤ 0, (3.b)

on X = 0. (3.c)

Here pa is the atmospheric pressure. In writing boundary condition (3.a) we have tacitly
neglected the surface tension effect. These equations imply that the velocity of a point on
the free surface equals that of the fluid particle instantaneously occupying it. Eq. (3.a)4
following from Eq. (3.a)1 and the Bernoulli Eq. (5) is used to update the function ϕ on the
free surface after every time step. Ideally one should specify in Eq. (3.b) the rate of decay
of the speed of water at infinity. However, we do not do so since the domain occupied by
the fluid will be truncated to a finite one when numerically solving the problem. The
boundary condition (3.c) follows from the assumption that deformations are symmetric
about the plane X = 0. At the fluid/hull interface the non-penetration of the fluid into the
solid is satisfied if

(4)

where V is velocity of the hull particle and n is a unit vector normal to the fluid/hull interface
(pointing into hull).

We note that Eqs. (1) – (4) for finding p and ν are coupled, Eq. (3.a)4 is nonlinear in ϕ,
and the free surface of water and the wetted surface of hull are to be determined as parts of
the solution of the problem.

Recalling that ν = −∇ϕ, Eq. (2) can be integrated to give the following Bernoulli equation:

. (5)

2.2. NUMERICAL SOLUTION OF THE PROBLEM
2.2.1. Analysis of fluid’s deformations by the BEM
We use the BEM to solve Laplace Eq. (1) and truncate the domain occupied by the fluid to
lengths L1 and L2 in the X- and Z- directions, respectively (cf. Fig. 1). Values of L1 and L2
will be determined iteratively to compute a converged solution near the hull/water interface.
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Using Green’s second identity, the velocity potential at point j in the fluid (either in the
interior or on the boundary) can be written as [27] :

, (6)

where G(x, j), = ln r(x, j), r(x, j) is the distance between source point ξ on the fluid boundary
and point j, c( j) is a constant, n is a unit normal pointing out of the fluid domain, and Ω
equals the region occupied by the fluid. We note that c, ϕ, Ω and n vary with time t; this
dependence is not exhibited to simplify the notation. Since Eq. (6) holds even when the
velocity potential is a constant, we get

(7)

The integral Eq. (6) is converted into a system of simultaneous linear algebraic equations by
using piecewise linear basis functions, i.e., the boundary of the fluid domain is discretized by
using 2-node 1-D elements. Since G(x, j) = ln r(x, j) the integrals in Eq. (6) are numerically
evaluated by using 6 Gauss points in each element. Thus Eq. (6) can be written as

,

where elements of matrices [H] and [G] depend upon coordinates of nodes, and superscripts
F, B, T and S on a quantity represent, respectively, its value at a node on the free surface, the
hull/water interface, the truncation boundaries and the axis of symmetry.

Recalling that at time t we know at every point on the fluid boundary either ϕ or we

can solve for the other variable at that point. Transforming unknowns in Eq. (8) to the left
hand side, we rewrite Eq. (8) as

.

In writing Eq. (9) we have used boundary conditions listed in Eq. (4) and taken the
velocity of hull particles to be known.
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After having solved Eq. (9) we know ϕ and at every point on the fluid boundary at

time t. Thus the tangential derivative of ϕ at points on the boundary ∂Ω can be computed; 

here s is the arc length along ∂Ω. Combining with the computed on ∂Ω, the 

gradient vector ∇ϕ at points on the hull/water interface and on the free surface of water is
determined, and the free surface profile, and values of ϕ at points on the free surface are
updated using Eq. (3.a). Eq. (6) is used to determine the velocity potential ϕ at any point in
the fluid domain.

We need to determine to obtain the pressure field in the fluid domain from Eq. (5).

It is found by introducing a new variable Ψ defined by

. (10)

It has been proved by Greco [28] that Ψ also satisfies the 2-D Laplace equation

. (11)

Following Sun [14] and deferring details to the Appendix, boundary conditions for Ψ are

on the free surface, (12.a)

on the solid body/fluid interface, (12.b)

on the axis of symmetry and on truncation boundaries. (12.c)

Here V
·

is the acceleration of the rigid body motion of particles on the hull surface.
At every time t, the boundary value problem defined by Eqs. (11) and (12) is numerically

solved by the BEM. The algebraic equation for the determination of Ψ and at boundary
points is
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where matrices [A] and [B] are the same as those in Eq. (9). Knowing Ψ and ϕ, from Eq. (10)

can be evaluated at all points on the fluid boundary including those on the fluid/solid

interface. This approach avoids finding by the backward difference method at the 

computational cost of solving twice the boundary value problem for the fluid. Recall that the
value of ϕ at any point in the fluid domain is found from Eqs. (6) and (7).

2.2.2. Analysis of the motion of free surface of water
The free surface of stationary water changes rapidly when a solid body enters it at time t = 0.
For small values of time t Sun [14] proposed that the free surface profile for the water entry
of a straight solid body can be approximated by

(14)

where ξ(t) is the submergence of the solid body apex relative to the undisturbed free surface,

, (15)

is the absolute value of X-coordinate of jet tip, and β is the deadrise angle; ξ(t) and cf (t) are
shown in Fig. 1. Eq. (15) is Wagner’s [3] approximation and is generally valid for small
values of β.

For water slamming of a circular hull with the deadrise angle at X = 0 not equal to zero,
we assume that the hull region close to the apex can be regarded as straight and approximate
the free surface of water near the apex using Eq. (14). For an arbitrary shaped hull with
deadrise angle at X = 0 equal to zero, we assume that the free surface of water is undisturbed
for the first time step. The velocity potential on the free surface is assumed to be zero at the
initial time. Assuming that the downward velocity at the apex of the hull will not change
during a short period of time, the first time step size, δt, is obtained from Eq. (14) with cf (δt)
= 0.005 L where L is the hull arc length, and ξ(δt) = Vδt.

A very thin jet in the water surface is generally formed where water separates from the
solid hull surface. Capturing this jet is computationally expensive. One way to alleviate this
problem is to truncate the jet. For example, Zhao and Faltinsen [5] as well as Battistin and
Iafrati [13] accomplish this by putting an element perpendicular to the wedge when the angle
between the water surface and the wedge is smaller than a threshold value. This usually
results in oscillatory pressure distribution on the wedge. As shown in Fig. 2a, Sun [14]
introduced a new segment on the free surface when the jet became too thin, i.e., when
distance from point B to the solid body becomes smaller than a threshold value d0, the point
is projected on the wedge and a new segment CD replaces the free water surface CA. Point
B is found by starting from a point away from the jet tip, and evaluating the distance of this
point from the hull. Point B is the first node on the free surface of water whose distance from
the hull is less than the threshold value d0. We note that Sun [16] did not elaborate upon the
method to find point B. This method reduces oscillations in the pressure distribution on the
hull; we name this approach of truncating the jet as “distance cut method”. We adopt a
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similar method and call it “angle cut method”. Referring to Fig. 2b, we find the tangent at
every point of the free surface of water and the tangent at the corresponding point to the solid
body surface. The angle θ between the two tangents at the abutting points of the fluid and the
solid is calculated. Starting from the jet tip A, we find the first point E on the jet surface for
which θ is larger than the threshold value θ0. When the length between points E and A
becomes more than the jet cut threshold length λ0, point B is projected on the wedge to point
D. λ0 is equal to 0.1L in present study and L is the arc length of the hull. The length between
points E and B is called the jet keep length λ1 and it is taken to equal 0.8λ0. Point C on the
jet is selected such that length CB, called the jet smoothing length λ2 equals 0.1λ0. A new
section CD replaces CA and values of the velocity potential at points on CD are derived by
interpolating and extrapolating from those on the section CB. Battistin and Iafrati [13]
suggested that the threshold angle, θ0, should be between 4° and 10° depending upon the hull
shape; here we take θ0 = 4°. Thus we first find the jet starting point E as described above,
and then locate points B and C according to the values of the jet keep length and the jet
smoothing length, respectively, point D is the projection of point B onto the solid body.

Even with the truncating of a thin jet the numerical solution becomes unstable due to the
free surface profile becoming non-smooth after the solution has been computed for several
time steps. Many smoothing methods have been proposed to remove the saw-tooth instability
in the free surface. We smooth the X – and Z –  coordinates and the velocity potential ϕ using
the smooth function defined in Longuet and Cokelet [29]. A function F(s) defined at points
sj ( j = 1, 2,…, N) can be locally approximated by the function
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Figure 2 Two techniques for truncating a thin jet.



. (16)

Here s is the arc length along the water surface, and a0, a1…, b0, b1… are coefficients
which can be chosen uniquely by setting f(s) = F(s) at nodes sj−2, sj−1, sj, sj+1, and sj+2 when
j = 3, 4,…, N–2. These coefficients for end nodes j = 1, 2 and j = N, N–1 can be evaluated
uniquely by setting f(s) = F(s) at the first and the last 5 nodes, respectively. Terms in the first
parentheses in Eq. (16) give the smoothed mean curve, and those in the second parentheses
represent oscillations in the data. Omitting terms in the second parentheses we get the
smooth function

(17)

as the approximation of F(s).
Assuming the nodes are uniformly distributed when j = 1, 2, N–1, N, and non-uniformly

distributed for other values of j, the five-point smoothing function can be written as

, (18.a)

, (18.b)

, (18.c)

, (18.d)

, (18.e)

where

and hj is the distance between nodes j and j + 1, i.e.,

c
h h

h h h h h h
cj

j j

j j j j j j
j−

−

− − − − +
−= −

+ + + +2
1

1 2 1 2 12( ) ( )
, 11

1

1 2 1 2

2

2

=
+

=
+ + −

−

− − + −

h

h h

c
h h h h h h

j

j j

j
j j j j j j

( )
,

( ) ( )

22 21 2 1
1

1

1

2

( ) ( )
,

( )
,

h h h h
c

h

h h

c

j j j j
j

j

j j

j

− − +
+

−

−

+

+ +
=

+

== −
+ + + +

−

+ − − +

h h

h h h h h h
j j

j j j j j j

1

1 1 2 12( ) ( )
,

f
f f f f f

N
N N N N N=

+ − − +− − − −11 12 6 4 3

16
1 2 3 4

f
f f f f

N
N N N N

−
− − −=

+ + −
1

1 2 43 8 6

16

f c f c f c f c f c fj j j j j j j j j j j= + + + +− − − − + + + +2 2 1 1 1 1 2 2

f
f f f f

2
1 2 3 53 8 6

16
=

+ + −

f
f f f f f

1
1 2 3 4 511 12 6 4 3

16
=

+ − − +

f s a a s a s( ) = + +0 1 2
2

f s a a s a s b b sj( ) ( ) ( ) ( )= + + + − +0 1 2
2

0 11

Int. Jnl. of Multiphysics Volume 6 · Number 3 · 2012 313



. (19)

Here, N is the total number of nodes on the free surface to be smoothed.
By approximating the arc length between nodes i and i + 1 by hi we find the arc length of

any point on the free surface of water. The corresponding X- and Z- coordinates and the
potential ϕ near the jet are found by using Eq. (18).

Matrices A and B in Eqs. (9) and (13) whose elements depend upon current coordinates
of node points are evaluated after every time step. Thus we refine the mesh after every time
step, and evaluate values of variables at the nodes of the new mesh from their values at the
nodes of the previous mesh by using three-point spline functions, e.g., see Pozrikidis [30].

2.2.3. Numerical integration of governing equations
The fourth-order Runge-Kutta method is used to numerically integrate the system of first

order ordinary differential equations included in Eq. (3.a) for X, Z and ϕ with on the

boundaries regarded as known and kept fixed. Using the notation Ξ = {X, Z, ϕ}, we write
these three equations as

. (20)

The fourth-order Runge-Kutta integration method [14] gives

, (21)

where

and Ξi is the value of Ξ at time step i. Battistin and Iafrati [13] used one node per element
and suggested that the time step size should be such that the maximum displacement of a
point during a time step is less than one fourth of the corresponding element length. Here we
approximate the jet tip velocity by the time derivative of cf (t) defined in Eq. (15) and select
the time step size by requiring that it takes γt time steps for the jet tip to travel the length of
one element. Thus
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where hmin is minimum element length near the jet tip, γt is assigned values between 2 and
20; here we use γt = 5. For the water slamming of a curved hull shown in Fig. 19, we choose
β as the minimum of the local deadrise angles at nodes on the water/fluid interface, slope of
the free water surface at nodes on it, and the local angle at the jet tip.

2.2.4. Analysis of hull’s rigid body motion
Let V(t) be the projection of the rigid body velocity V along the Z-direction and V· (t) be the
corresponding acceleration. The rigid body acceleration of the hull in the Z-direction is
calculated from

, (23.a)

. (23.b)

Here M* is the total mass of the hull, g the acceleration due to gravity, and FZ the total
upward force due to water slamming. We note that FZ is an implicit function of the
acceleration of fluid particles contacting the hull, and we decompose it into two parts; the
upward force F ′Z without considering acceleration of fluid particles and M*

a V
· that depends

upon the acceleration of fluid particles abutting the hull. The quantity M*
a is called the added

mass since the term M*
a V

· is usually transferred to the left hand side and lumped with the
inertia force of the structure. Thus the net effect is equal to considering a larger mass of the
structure than its true mass.

Young [31] studied the hydroelastic problem for propulsors by coupled BE and FE
methods and the added mass matrix for the FE analysis of the solid body was obtained from
the solution of the fluid problem by the BEM. We separate the pressure term due to fluid
particles’ acceleration and calculate the added mass effect for rigid body motion. It can
successfully simulate the free drop test of light weight rigid wedge and rigid ship bow
section.

Substituting for from Eqs. (12.b) and (12.c) into Eq. (13) we get

. (24)

With the notation
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we write

, (26.a)

, (26.b)

. (26.c)

It is clear from Eq. (25) that the coefficient matrix [�] is derived from matrices A and B
appearing in the BE formulation of the fluid problem.

By substituting in Eq. (5) for from Eqs. (10) and (26), we get the following equations 

for the pressure acting on the solid/fluid interface:

, (27.a)

, (27.b)

. (27.c)

Here {nZ} is the Z-component of the unit normal to the fluid/solid interface with the unit
normal pointing out of the fluid, p2 is the pressure due to rigid body acceleration, and p1 is
the pressure without considering acceleration of the rigid body motion. The coefficient
matrix �

–
22 for point p between nodes i and i+1 is evaluated by using the following equation:

N.      (27.d)

Here s, si and si+1 are, respectively, the arc length of point p, node i and node i+1, and N
equals the number of nodes on the fluid structure interface. 
We find values of a quantity at the desired location on the solid/fluid interface by either

interpolating or extrapolating values at points where they are known.
Integrating component of the pressure in the Z-direction over the solid/fluid interface

gives the total Z-force acting on the hull. Thus using Eq. (23.b) we get

(28)
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(29)

Here � is the total arc length of the fluid/structure interface, and s is the arc length from the
keel to a point of the hull.

Substitution from Eq. (28) into Eq. (23.a) gives

. (30)

Eq. (30) is numerically integrated by using the following central-difference algorithm:

, (31.a)

, (31.b)

, (31.c)

where

. (32)

Here ξ is the submergence of the solid body with respect to the undisturbed water surface
shown in Fig. 1. The velocity and acceleration of the hull keel is assumed to be equal to the
rigid body velocity and acceleration since the edge at the keel is assumed not to deform. The
time step δt in Eq. (31) equals that used to integrate equations for fluid’s deformations.

The flow chart for iteratively solving the fluid structure interaction (FSI) problem is given in Fig.
6. Using the known solution at time tn, ξ

n + 1, V· n + 1 and Vn + 1 can be evaluated by using Eq. (31).
These are used to update ϕ and Ψ for the next iteration. The iterative process is terminated when the
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normalized difference, , of the computed total pressure 

between two successive iterations I + 1 and I is less than the prescribed tolerance of 1E-4; here
p4 = p1 + p2. The FSI procedure discussed above is called the added mass method.

2.2.5. Verification of the code
The developed BEM software has been verified by using the method of manufactured
solutions (e.g., see the material just preceding and following Eq. (20) of [32] ). In cylindrical
coordinates, we assume that

(33)

where a and b are constants. The function ϕ given by Eq. (33) identically satisfies the
Laplace equation. For a = 2 and b = 1, we use the software to numerically solve the Laplace
equation on domain Ω0 depicted in Fig. 3 under the following boundary conditions:

, (34.a)

, (34.b)

. (34.c)

The BEM software is used to find values of ϕ on boundaries DA and AB, and of on

boundary BD. We discretized each edge AB, BD and DA with 50 and 100 uniform elements
for meshes 1 and 2, respectively, and found the difference, η–, in the computed and the

analytical values of and ϕ by using the following equation:

. (35)

Here subscripts ana and num on f represent its values from the analytical and the numerical
solutions, and L is the total arc length of the boundary.

In Figs. 4 and 5 we have compared, respectively, the analytical and the numerically

computed values of the flux on BD and of ϕ on the boundary ABDA. In each case the

two curves essentially overlap each other. Values of the error norm, η–, defined by Eq. (35)
and listed in Table 1 for the two meshes, are less than 0.13 %. Thus the developed BEM
software gives very good solution of the Laplace equation.
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Table 1 For the two meshes used, values of –η for and ϕ on the boundary.

ϕ

Mesh 1 0.00122 0.000430
Mesh 2 0.000322 0.000110

∂∂
∂∂
ϕϕ
n

∂
∂
ϕ
n

3. EXAMPLE PROBLEMS
3.1. STRAIGHT WEDGE IMPACTING WATER AT UNIFORM VELOCITY
The first problem studied is that of water slamming of a straight rigid wedge moving
downwards along the Z-axis with constant velocity in which we have neglected effects of the



gravity force. The problem has been investigated, amongst others, by Zhao and Faltinsen [5]
who presented a similarity solution, Sun [14] who used the BEM, Mei et al. [7] who
considered the jet flow, and Das and Batra [18] who employed the commercial FE software
LSDYNA. We have followed the procedure detailed in Sun’s [9] dissertation; however,
techniques of smoothing the free surface and truncating the jet are different from her
approach.

We discretize the fluid domain boundary into two-node elements with node numbers
starting from the point C in Fig. 7 and going counter-clockwise (CDEABC), and denote the
length of element j with nodes j and j + 1 by hj . Non-uniform meshes are used to discretize
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Figure 6 Flow chart of the fluid structure interaction analysis.



the free surface of water near the jet tip A, fluid boundary AB on the hull and also fluid
boundary BC on the symmetry axis. In Fig. 7 the free surface of water near the wedge edge
is exhibited in which points A and B are, respectively, points of intersection between the free
surface and the hull, and the hull and the symmetry axis. The length, hj, of element j for mesh
1 is chosen according to the following empirical criteria.

The length of an element on the free surface boundary EA is given by

(36)

Here br is the mesh refinement parameter whose value depends upon the deadrise angle, ζAj
is the arc length between points A and j, and

−
NA is the node number of point A.

A non-uniform mesh with element size hj given by Eq. (37) is used to discretize the water
surface AB contacting the hull with finer meshes near points A and B.
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It is clear that this scheme generates finer meshes near points A and B. The length hj of
element j on the axis of symmetry boundary BC is taken to be given by

(38)

Here,
−
NB is the node number of point B.

The element length on each one of the two truncation boundaries CD and DE equals d31.

Lengths of elements for mesh 2 are the same as those for mesh 1 except that 

and ; thus the element length for mesh 2 is one-half of that for mesh 1 in most of

the region on the boundary. Unless otherwise specified, results presented below have been
computed with mesh 2 and br = 2.

The percentage difference, –e, between quantities f1 and f2 computed with two different
meshes or between the present work and that of other investigators for the same problem is
defined as

. (39)

Here , which is the maximum value at time t of
–
Z for the 

wetted wedge.
We have delineated the influence of different jet cut parameters, time step size, BE mesh

size and the size of the fluid domain considered on results for the water slamming of a 1 m
long rigid straight wedge of different deadrise angles β impacting stationary water at uniform
vertically downward velocity V = 10 m/s. While computing results, the time step δt is found
from Eq. (22) with γ t = 5. In an incompressible material only shear waves that do not change
volume can propagate. However, here the fluid has been assumed to be inviscid implying that
there are no shear waves. Thus traditional criteria for finding the time step size in the central-
difference algorithm cannot be used. Problems are designated as B1, B2, and B3,
respectively, for L1 = L2 = 5, 10 and 15 m, and computations are ceased when the jet tip
reaches the other edge of the wedge, i.e., the entire wedge has been wetted. The variation of
pressure normalized by the kinetic energy density of water moving at speed V

on the non-dimensional length of the wedge computed by different time 

steps and truncation boundaries is shown in Fig. 8. The percentage difference, –e, between
pressures on the wedge computed with time steps (used as reference for computing 
–e in Eq. (39)) and δt is 0.2%. Results of problems B1 and B2 differ from those of problem
B3 (used as reference for computing –e) by 1.81% and 0.286%, respectively. Unless otherwise
specified, we use L1 = L2 =15 m to analyze problems discussed below.

For rigid wedges of deadrise angles β = 45°, 30°, 10°, 4° results have been computed by
taking the refinement number br = 2, 2, 10, 60, respectively, and the jet cut threshold length
λ0 = 0.1L for all four cases. In Fig. 9 we have compared the computed pressure distributions
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on the wedge and the water surface profiles with those reported by Sun [14] and Zhao and
Faltinsen [5], and have listed values of the difference –e in Table 2. The maximum difference,
–e, between our computed pressure and that reported in [5] is 6%. Thus the pressure
distributions obtained using the present technique are close to those found by Zhao and
Faltinsen [5] who employed the similarity solution.

Results plotted in Fig. 9 illustrate that the deadrise angle β significantly influences the
pressure distribution on the wetted hull surface. An increase in β results in more uniform
distribution of pressure. The peak value of the normalized pressure (recall that the
normalization pressure depends upon β) is essentially independent of β.

3.2. FREELY FALLING STRAIGHT WEDGE
We now analyze the problem studied in subsection 3.1 but consider the effect of gravitational
forces acting on the wedge. The problem has been studied both analytically and numerically
by Yettou et al. [8] for straight 1.2 m long wedges of different masses, entry speeds and
deadrise angles; however, we study only two cases, namely that of the 94 kg wedge of
deadrise angle 25°, and of 153 kg wedge of deadrise angle 30°. Each wedge enters water at 5.047
m/s. While simulating deformations, we used mesh 2 with refinement number br = 5, jet cut
parameter = the default value, and the time step sizes are found from Eq. (22), using γ t = 10
for each case with its corresponding deadrise angle. For cf (t) ≤ 0.005 m,Wagner’s [3] solution

(40)

is used to find the initial slamming pressure pw and hence the resultant force on the wedge,
and the water surface profile is computed using Eq. (14). For cf (t) ≥ 0.005 m, deformations
of the water are analyzed by the BEM described above.

As the influence of thin jet on the total slamming pressure is negligible, we consider a
wedge of length greater than 1.2 m to compute results until the 1.2 m length of the wedge
completely enters the water. The presently computed time history of the Z-velocity of the
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94 kg wedge is compared in Fig. 10 with that found experimentally by Yettou et al. [8],
analytically by Zhao and Faltinsen [5] and numerically by Das and Batra [18] who used the
commercial FE software LSDYNA. For t ≤ 40 ms, the maximum percentage differences 

and equal 3.32% and 6.89%, respectively; here

Vpre, Vexp and Vana denote, respectively, values of the axial velocity computed from the
present work, the experimental work of [8] and the analytical solution of [5]. Thus the
present approach gives good results for t ≤ 40 ms. For t > 40 ms, the difference between
the present and the experimental values of the axial velocity increases because of possible
flow separation from the wedge. The time history of the presently computed upward force
acting on the wedge is compared with that of Ref. [18] in Fig. 11; the corresponding

100 V V Vpre − exp exp/100 V V Vpre ana ana− /
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Figure 9 Distribution of the normalized slamming pressure on the wedge and free
surface of water for deadrise angles β = 45°, 30°, 10°, 4°.

Table 2 For the pressure computed on rigid straight wedge of different deadrise
angles, the percentage difference e– between the similarity solution of [5] and
present results and those reported in [14].

Deadrise angle 45° 30° 10° 4°
BEM_Sun [14] 1.21% 3.15% 6.36% 11.6%
Present_mesh1 0.706% 1.17% 2.55% 5.94%
Present_mesh2 0.799% 1.63% 2.14% 3.09%

Table 3 Normailized peak pressure when the wetted length equals 1 m.

Straight hull R = 50 m R = 20 m R = 8 m R = 5 m

320 263 156 72.3 44.4p

V

max

.0 5 2ρ



experimental results are not included in [8]. It is clear that forces acting on the rigid wedge
from the two approaches are nearly the same, and the present results are smoother than
those given in [18] in the sense that the amplitude of oscillations in the pressure are nearly
non-existent. We note that Das and Batra [21] reported water penetrating into the rigid
wedge because of the difficulty in finding values of parameters in the contact algorithm
that will eliminate this interpenetration. They tried several values of these parameters and
found the values that reduced oscillations in the hydrodynamic pressure acting on the
wedge.

For the 153 kg wedge, the presently computed time histories of the upward total force
acting on the wedge are compared with those of Yettou et al. [8] and Das and Batra [18] in
Fig. 12. These evince that the present approach gives results close to those of Das and Batra
[18]. Das [33] found that the total force computed by integrating the pressure reported by
Yettou et al. [8] was significantly different from the value of the total upward force reported
in [8]. The spatial variation of the hydrodynamic pressure on the wedge at three different
times is exhibited in Fig. 13. Whereas our results agree well with those of Das and Batra,
they noticeably differ from those of Yettou et al. [8]. One way to find the total upward force
acting on the hull is to integrate with respect to X the pressure distribution shown in Fig. 13a
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and multiply it with the wetted length and cos(30°). The axial force so found from Yettou 
et al.’s [8] pressure distribution differs from their values exhibited in Fig. 10 by 19.0%,
18.8% and 15.3% for time t = 14.7, 23.7 and 35.5 ms, respectively. However, the difference, 

, between the present total upward force FPre and the total upward force

FDas computed using LSDYNA by Das and Batra [18] equals 3.80%, 1.35% and 1.49% for
time t = 14.7, 23.7 and 35.5 ms, respectively. Time histories of the added mass for the
two hulls of masse 94 kg (wedge of deadrise angle 25°), and of 153 kg (wedge of deadrise
angle 30°) are exhibited in Fig. 13b. It is clear that the added mass does not depend upon the
wedge mass but on the mass of the water displaced and the average acceleration of this body
of displaced water.

3.3. FREELY FALLING BOW SECTION
The drop test into stationary water of ship bow section conducted by Aarsnes [34] has
been simulated in this section and computed results have been compared with
experimental findings of Aarsnes [34] and numerical results reported in Sun [14]. The
shape of the ship bow section of total length 1 m and weight 261 kg is shown in Fig 14.
The roll angle equals 0, and the initial entry velocity is 2.43 m/s. The initial time is
assumed to be 0 ms. As the total upward force is small for t < 0.1 ms, the slamming
pressure is assumed to be zero for t < 0.1 ms. While simulating deformations, we used
mesh 2 with refinement number br = 4, jet cut parameter = the default value, and the time
step size is found from Eq. (22) with β = 30°, γ t = 10 and V = 2.43 m/s. We note that the
local deadrise angle varies along the length of the bow section and is greater than 30°
except for points near the hull apex P1. Because the ship bow profile between two
adjacent nodes is approximated by a straight line, the pressure distribution on it may
exhibit oscillations as pointed out by Sun [9].

Time histories of the total upward force and the Z-velocity plotted in Figs. 15 and 16
evince that our computed results are close to those of Sun [14] and also to the experimental
findings of Aarsnes. Reasons for the difference between the computed and the experimental
results include errors in approximating the ship bow section profile, 3-D effects not
considered in the 2-D simulations, neglecting effects of the fluid viscosity, surface tension
and gravity, and assuming fluid deformations to be irrotational.
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Time histories of the pressure at points P1 (0, 0), P2 (0.041, 0.111) and P3 (0.072, 0.149)
are exhibited in Fig. 17a, b, c, those of the added mass in Fig. 17d, and the spatial variations
of the pressure on the ship bow section at time t = 20.6 ms, 29.6 ms, 37.2 ms, 44.8 ms and
50.8 ms are plotted in Fig. 18. It is clear that the pressure distributions on the ship bow
section are quite different from those on the straight wedge section. For the straight wedge,
the high pressure region is narrow and distributed near the jet flow while that for the ship
bow section the high pressure region is quite broad as also reported by Arai and Matsunaga
[35]. The maximum added mass of 15 kg is much less than 261 kg weight of the ship bow
section.

3.4. CIRCULAR HULL
In an attempt to delineate effects of local hull curvature on the hydrodynamic pressure acting
on the hull, we consider hulls of different radii and off-set their centers so as to have an initial
deadrise angle of 5°; e.g., see Fig. 19. We assume uniform entry velocity of 10 m/s and arc
length of the hull is equal to 1 m. We use mesh 2 with refinement number br = 30, jet cut
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(a) Time histories of the slamming pressure at point P1.
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(b) Time histories of the slamming pressure at point P2.

(c) Time histories of the slamming pressure at point P3.
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Figure 17 (Continued)
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(d) Time history of the added mass
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Figure 17 Time histories of the slamming pressure at points P1, P2 and P3, and
time history of the added mass.
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Figure 18 Variations of the pressure on the ship bow section at times t = 20.6 ms,
29.6 ms, 37.2 ms, 44.8 ms, and 50.8 ms.
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Figure 19 Sketch of circular hull and the definition of deadrise angle at X = Z = 0.
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(b) R = 50 m
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Figure 20 (Continued)



parameter = the default value, and the time step size is found from Eq. (22) with β = 5°,
γ t = 10. For R = 5, 8, 20 and 50 m, we have exhibited in Fig. 20 the variation of the
hydrodynamic pressure on curved and straight hulls at t = 2.7, 4.8 and 5.4 ms after the hull
contacts stationary water. Hull’s velocity is assumed to be constant and equal 10 m/s. For
comparison purposes, we have also plotted the pressure distribution on a straight hull of
deadrise angle = 5°. It is clear that the curvature of the hull noticeably affects the magnitude
of the peak pressure and the pressure distribution on the hull. Whereas for a straight hull the
peak pressure stays constant as the wetted length increases, for the curved hull the peak
pressure decreases with an increase in the wetted length. In each case the peak pressure
occurs near the terminus of the wetted length.

The time history of the wetted arc length is exhibited in Fig. 21. If we interpret the slope
of these curves as the speed of the wetted arc length terminus, then this speed slowly
decreases with an increase in the arc length.
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Figure 20 Variation of pressure on the rigid circular hulls of different radii.



For circular hull of radius 20 m, we have exhibited in Fig. 22 the velocity potential and
stream lines in the region near the water jet, and the tangential velocity of water on the hull
surface.   It is clear that the tangential velocity of water near the end of the wetted length
sharply increases.  
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Figure 21 Time history of wetted length for rigid circular hulls of different radii.

Figure 22. contunued over



4. CONCLUSIONS
We have used the boundary element method to analyze transient 2-dimensional deformations
of homogeneous, incompressible and inviscid water assumed to undergo irrotational
deformations. The velocity potential is a solution of the Laplace equation defined on the fluid
domain. Strategies to determine the evolution of free surface of water and the wetted length
of a hull that impacts initially stationary water have been developed. The developed code has
been verified by the method of manufactured solutions. Four initial-boundary-value
problems involving water slamming of straight wedge with and without considering
gravitational effects on the wedge, a ship bow section, and circular hulls have been studied.
For the first three problems, the pressure distribution on the wetted length and shapes of
water jets near the edge of the wetted length have been found to compare well with either the
experimental or the analytical or the numerical results of other investigators. For circular and
straight hulls the pressure distribution on the hull can be viewed as a pressure wave traveling
along the hull; the peak pressure in the wave occurs at its leading edge which is close to the
terminus of the wetted length and the pressure distribution is uniform in its wake.
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APPENDIX: BOUNDARY CONDITIONS ON Ψ

The auxiliary function Ψ and operator can be defined as

, (A.1.a)

. (A.1.b)

As the fluid is assumed to be incompressible and its deformations irrotational, and V
equals the translational velocity of a rigid body (no rotation), we have the following
equations.

, (A.2.a)∇ =2 0ϕ

D

Dt t
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, (A.2.b)

, (A.2.c)

. (C.2.d)

Applying the Laplace operator to Bernoulli’s Eq. (5), we get

. (A.3.a)

We note that

, (A.3.b)

. (A.3.c)

Applying the Laplace operator to Eq. (A.1.a) and using Eq. (A.3), we obtain

. (A.4)

In order to prove the relation

, (A.5)

we assume that is small, and note that

(A.6)

Substituting from Eq. (2) into Eq. (A.5), the boundary condition on the solid body is given
by

. (A.7)
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The boundary condition of zero normal velocity of the fluid on the symmetry axis and the
truncation boundaries requires that

. (A.8)

Substituting from Eq. (A.1.a) into Eq. (5), the boundary condition on the free surface can
be written as
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