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ABSTRACT

We use a multiscale approach to analyze adiabatic shear bands in a tungsten heavy
alloy particulate composite deformed in plane strain tension at a nominal strain
rate of 5000/s. Fifty IJ.m diameter circular tungsten particulates are assumed to
be randomly distributed and perfectly bonded to the nickel-iron matrix. The vol-
ume fraction of particulates equals 50%. We first analyze transient coupled thermo-
mechanical deformations of a homogenized body with values of thermophysical ma-
terial parameters equivalent to those of the particulate composite. Time histories of
deformation variables on the bounding surfaces of the centrally located 2 mm x 2
mm subregion of the 10 mm x 10 mm region are recorded. Boundary conditions of
surface tractions and temperature rather than of velocities and temperature are then
used to analyze plane strain coupled thermomechanical deformations of the 2 mm
x 2 mmcomposite in which tungsten particulates are randomly distributed in the
central 1 mm x 1 mm subregion of the 2 mm x 2 mm region with the remaining
part comprised of the equivalent homogeneous materiat of the 10 mm x 10 mm body.
It is found that the multiscale analysis of the problem gives an adiabatic shear band
initiation time of'"'"' 22 I.1S as compared to '"'"' 58 I.1S in the equivalent homogenized
body and'"'"' 50 I.1S in the macroanalysis of deformations of the 1 mm x 1 mm region
containing a randomly distributed 500;0 volume fraction of 50 IJ.m diameter tungsten

particulates.
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1. INTRODUCTION the ASB were severely distorted. Batra and Wil-

son [17] and Stevens and Batra [18] have an-
An adiabatic shear band (ASB) is a narrow re- alyzed, by the finite element method (FEM),
gion, usually a few micrometers wide, of in- transient thermomechanical deformations of a
tense plastic deformation that forms in most rapidly moving cylindrical WHA rod striking
materials deformed at high strain rates. Even a stationary smooth rigid flat surface. Stevens
though heat conduction plays a significant role and Batra [18] found that enhanced thermal
during the development of an ASB, it is termed softening of the material resulted in the forma-
adiabatic since there is not enough time for tion of ASBs at approximately the same location
the heat to be conducted away from the shear as that observed by Dick et al. [16]. Whereas Ba-
banded region. The analysis of ASBs is im- tra and Wilson [17] randomly sprinkled nickel-
portant because they precede ductile fracture iron (NiFe) particles in the tungsten (W) matrix,
and play an important role in penetration prob- Stevens and Batra [18] modeled the rod mate-
lems. Even though the initiation, development, rial as homogeneous and isotropic.
and propagation of ASBs have been extensively Zhou [19] has used the FEM to study ASBs
studied in homogeneous materials (e.g., see the in transient coupled thermomechanical simple
two books by Bai and Dodd [1] and Wright [2]; shearing deformations of a WHA containing
the two volumes edited by Perzyna [3], and Ba- circular W particulates perfectly bonded to the
tra and Zbib [4]; the review paper of Tomita [5]; NiFe matrix. An ASB initiated from a notch
and special issues of three journals edited by tip introduced to simulate the collective effect
Armstrong et al. [6], Batra et al. [7], and Zbib of numerous microvoids and other defects that
et al. [8]), there are very few studies on ASBs may be present in a WHA. Here, we use a
in particulate composites. For a particulate multiscale analysis to analyze transient plane
composite replaced by an equivalent inhomo- strain coupled thermomechanical deformations
geneous thermoviscoplastic body, Batra and of a microporous WHA. We presume that W
Love [9] and Charalambakis and Baxevanis [10] particulates are randomly distributed in the
have studied the localization of deformation NiFe matrix, and they are in perfect mechanical
into ASBs. and thermal contact with the matrix. Numer-

Pressure/shear plate impact experiments on ous inhomogeneities introduced by the tung-
a tungsten heavy alloy (WHA) have shown that sten/matrix interfaces interact with each other
the two-phase composite is more susceptible to to determine when and where ASBs initiate.
adiabatic shear banding than either one of its Three random distributions and one ordered
constituents [11,12]; a similar conclusion was distribution of particulates are studied.
drawn in [9]. Bose et al. [13], Kim et al. [14] The multiscale approach adopted here and
and Wei et al. [15] have scrutinized the influ- described above in the Abstract attempts to in-
ence of microstructural details, such as the par- corporate the effect of the microstructure on
ticulate shape and size and the volume fraction the macroscopic deformations of the WHA, and
of particulates, on ASB formation in WHAs. bridge the length scale from the mesolevel to
Dick et al. [16] have performed reverse ballistic the continuum level. Ghoneim et al. [20],
tests on cylindrical rods of WHAs. They found among others, have reviewed techniques to
that an ASB originated from a point on the bridge length scales from the atomistic to the
rod's mantle where the mushroomed head tran- continuum level. Belak [21] has outlined a tech-
sitioned into the cylindrical portion, and prop- nique to bridge the length scale from the molec-
agated inward. Tungsten grains in the path of ular to the continuum level for high strain-rate
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fracture mechanic problems. Kadowaki and stress tensor, e the specific internal energy, Q
Liu [22] have developed a multiscale FE tech- the present heat flux measured per unit refer-
nique that starts with a concurrent discretiza- ence area, v the velocity of a material particle,
tion of the entire domain into coarse and fine a superimposed dot indicates the material time
FE meshes. A bridging term is constructed to derivative, and a repeated index implies sum-
account for the information common to the two mation over the range of the index. Greek in-
meshes. They applied the technique to analyze dices refer to coordinates in the reference con-
the localization of deformation in mechanical figuration, and Latin indices to coordinates in
deformations of a micropolar continuum. The the present configuration. The porosity f is as-
multiscale approach used here derives time his- sumed to be uniformly distributed in each con-
tories of boundary conditions for the fine scale stituent, and can be regarded as a measure of
analysis from the coarse scale analysis; the for- the damage.
mer includes microstructure of the WHA and We assume that the strain-rate tensor D, de-
the latter smears it into an equivalent homoge- fined by Dij = (Vi,j +vj,i)/2, Vi,j = 8vil8xj, has

neous body. the additive decomposition into an elastic part
De, a plastic part DP, and a thermal part &.el,

2 FORMULATION OF THE PROBLEM viz., D = De + DP + &.el. Here, &. is the coef-
. ficient of thermal expansion, e the temperature

2.1 Governing Equations rise, and 1 the identity tensor. Equations (1)-(4)
are supplemented with the following constitu-

We assume that the particulate and the matrix tive relations.
materials can be modeled as isotropic, microp-
orous, and thermo-elasto-viscoplastic. We use
rectangular Cartesian coordinates and the ref- (Jij + O"ikWkj + O"jkWki
erential description of motion to describe their - ~llDe E(1 - f)v De 6" (5)
finiteplanestraintransientcoupledthermome- - 1+v ij+(1+V)(1-2'V) kk tJ

chanical deformations. Deformations of each
constituent and of the composite body are gov- ... 1
erned by Eqs. (1)-(4) expressing, respectively, e = C't'e + ce + p(~O"ijDij

the balance of mass, the balance of linear mo- ~,- JO"', F-1 , 6mentum, the balance of moment of momentum, tOC - tJ ( )ocJ ( )

and the balance of internal energy.

p(1- f)J = Po(1- fo) (1) qi = -K (1- ~f) e,i, Qoc = Jqi(F-1)OCi (7)

po(1 - fO)Vi = Tioc,oc, i, j = 1,2, (X = 1,2 (2)
TiocFjoc = TjocFioc (3) 0"2 (3 i?> 2P)(1-

.fi ) . - - Q + I'TI, v, (4) <P == '(;:I-1+2f*i?>1 cosh -2 -i?>i(f*)2=OPo 0 e - oc,oc .Ltoc.C'tOC y O"y

Here, pis the present mass density, f theporos- ~ = ~~j~j, i,j = 1,2,3 (8) i

ity (ie., the volume fraction of voids), J = det F, ;:
Fioc = Xi,oc = 8xil 8Xoc the deformation gradi- ~ * -
ent, x the present position at time t of a mate- Dr, =,\~ =,\ [~ _l~ sinh(~ )6i .

Jrial particle located at the place X in the refer- tJ 80"ij O"~ O"y 20"y J

ence configuration, T the first fiola-Kirchhoff ~j = O"ij + p6ij (9)
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p = -(0"11 + 0"22 + 0"33)/3, P = pH( -p - 0) (10) a porous material, p is the hydrostatic pressure,

and 1* the modified value of porosity given by
(13). Gurson's yield surface is based on quasi-

(1 - I) .p . static analysis with the matrix material mod-a~~' if <I> = 0 and <I> ~ 0 eled as rigid perfectly plastic and obeying von
. O"ija Mises yield criterion. Constants {31 and {32, in-
i\ = O"ij (11) troduced by Tvergaard [25], provide a better fit

0 when either <I> < 0 of results computed from a FE analysis of the
or <I> = 0 and <i> < 0 formation of ASBs in a plate having an array of

large cylindrical voids with test observations,
and ;\ is the factor of proportionality defined by

j = (1- I)~ (11); ;\ > 0 only when the material point is de-
( £P - £ ) 2 forming plastically, O"y is the current yield stress

12t~ -! _!.-;-.!!:. of the material whose dependence on the effec-+ ~~ e 2 H( -p - 0) (12) tive plastic strain £~, the effective plastic strain
2 rate t~, and the temperature e is described by

the Johnson-Cook [26] relation (14) in which
{ I, I::; Ic A, B, 0, tg, and m are material parameters,

1* = - (13) er the room temperature, and em the melting
Ic + b~U - Ic), I> Ic temperature of the material. Parameters B andIf - 1 c n characterize the strain hardening of the mate-

rial, 0 and tg the strain-rate hardening, and the
[ - (t~)~ last factor on the right-hand side of (14) its ther-

O"y = (A+B(£~)n) 1+Cln F ~ mal softening. Equation (12) gives the evolu-

e - e motion of porosity; the first term on its right-hand
x [1- ( r ) ] (14) side is derived by assuming that the matrix is

em - er incompressible and the elastic dilatation is neg-

ligible as compared to the plastic dilatation, and
The left-hand side of Eq. (5) equals the Jau- the second term is the strain-based nucleation

mann derivative of the Cauchy stress tensor 0", of voids introduced by Chu and Needleman
Wij = (Vi,j -vj,i)/2 is the spin tensor, E Young's [27]. 12, 82, and £n are material parameters;

modulus, 'V Poisson's ratio, c the specific heat, 'T the rate of nucleation of voids is highest when
the thermal relaxation time, K the thermal con- £~ equals £n and decays exponentially with the
ductivity of the solid material, and e the present difference between £~ and £n' H is the Heavi-
temperature of a material particle. Constitu- side step function. We have thus assumed that
tive relation (5) implies that each constituent is new voids nucleate only when the hydrostatic
being modeled as an isotropic hypoelastic ma- stress is tensile. To account for the coalescence
terial. Replacing the Jaumann derivative of 0" of neighboring voids, Tvergaard and Needle-
by another objective stress rate will change the man [28] enhanced the porosity, as given by
constitutive description of the material. How- Eq. (13), after it reaches its critical value 1 c. In
ever, Batra and Jaber [23] found that it does not Eq. (13), If is the porosity at ductile fracture,
alter the ASB initiation time in a homogeneous and lu = 1/{31 is the porosity when the yield
thermoviscoplastic material. <I> = 0 describes surface has shrunk to a point. Equations (8)
the yield surface proposed by Gurson [24] for and imply that the radius of the von Mises yield
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surface increases due to strain- and strain-rate in a typical steel, and the spacing between adja- "
hardening of the material but decreases due to cent shear bands only when 't' ? 10-68. Batra j
the softening induced by the temperature rise [35] considered higher-order spatial and tem- J
and the increase in porosity. The degradation poral gradients of temperature and derived a .']

of material properties due to the damage, taken heat equation that admits finite speeds of ther- i
here as synonymous with the porosity, is indi- mal waves. However, in such a material either ~

cated by Eqs. (5)-(8). The affine variation with a thermal wave propagates with a finite speed '1

the porosity of Young's modulus, the bulk mod- or the linearized problem has a unique solution. ,I

ulus, the stress-temperature coefficient, and the Ideally, one would like to have both. ;

,

heat capacity implies that the rule of mixtures We note that Batra and Kim [36], Batra
has been employed to find their effective val- and Jaber [23], and Batra and Chen [34,37]
ues; the expression for the thermal conductivity have analyzed different aspects of shear band-
in Eq. (7) is due to Budiansky [29]. The interac- ing with four different thermoviscoplastic re-
tion, if any, among neighboring voids has been lations, namely, the Johnson-Cook [26], the
tacitly ignored. Jiang and Batra [30], among Litonski-Batra (e.g., see Batra [38]), the Bodner-
others, have considered this interaction. The Partom [39], and a power law. These relations
shrinkage of the yield surface due to an increase were calibrated to give nearly the same effec-
in porosity described by Eq. (8) can be seen by tive stress versus the effective strain curve dur-
plotting the yield surface for two different val- ing homogeneous deformations of the body.
ues of f while keeping other variables fixed. However, during inhomogeneous deforma-

Substitution for e and qi from Eqs. (6) and (7) tions, each one of the relations gave qualita-
into Eq. (4) gives the following hyperbolic heat tively similar but quantitatively different re-
equation: suIts. The decision to use the Johnson-Cook re-

lation here is based on the availability of values "of thermomechanical parameters for tungsten '

Po(l- fo)c('t'9 + 6) = [K (1- ~f) e,~] ~ and nickel-iron.
,

+ JC1ijDfj (15)
2.2 Initial and Boundary Conditions

The term JC1ijDfj equals the heating due to . . .. .
plastic working per unit volume in the refer- The body IS ffiltially at rest, stress free, at a um-
ence configuration; thus, the Taylor-Quinney form temperature, has zero rate of change of
parameter has been taken as 1. Except for a de- temperature, and a prescribed initial porosity.

t lay in the time of initiation of an ASB, other re- Thus,
r suits remain unaffected by a lower value of the
t Taylor-Quinney factor. The form (15) of the hy- x(X 0) = X v(X 0) = 0 e(X 0) = e
( perbolic heat equation is due to Cattaneo [31] .' , , , , 0

r and Vemotte [32]. The thermal relaxation time e(X,O) = 0, p(X,O) = Po (X) , C1(X,O) = 0 (16)
~ 't'in it represents the time req~re~ to establish t:~(X, 0) = 0, f(X,O) = fo(X), X E n
i a steady state of heat conduction m an element
~ suddenly exposed to heat flux. For a typical Here, n is the re~ion o~cupied by the body in
l. steel, 't' = 1 X 10-128, and 't' ~ 25 X 10-128 the reference configuration... for copper. Batra and Lear [33] and Batra and We assume that the body is prismatic, hav-

Chen [34] found that the finiteness of the ther- ing a uniform cross section, and the volume
mal wave speed affects the ASB initiation time fractions of constituents, initial conditions, and
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boundary conditions are independent of the ax- early with time to its steady-state value Vo in
ial coordinate. We thus assume that a plane 1 ~ and is then held fixed.
strain state of deformation prevails in the body.
Furthermore, for the body deformed in sim- T2l = Tll = 0, Ql = 0 on Xl = H
PIe tension, the cross section is Square of side 'T' 0 0 Q 0 X 0-'21 = , VI = , 1 = on 1 =
2H, and thermomechanical deformations are
assumed to be symmetric about the two cen- T12 = 0, V2 = 0, Q2 = 0 on X2 = 0 (17)

troidal axes. Thus, the compositional profile T12 = 0, Q2 = 0,
has been tacitly assumed to be symmetric about - { vol, 0 ::.; t ::.; 1 ~ -the two centroidal axes. V2 - VO, t ~ 11.18 on X2 - H

Tensile deformations of one-quarter of the 2.3 Interface Conditions
cross section, shown in Fig. l(a), are analyzed.
Boundary conditions (17), listed below, aris- It is assumed that during the entire deforma-
ing from the symmetry of deformations are im- tion process, the tungsten particulates are both
posed at points on the centroidal axes Xl = 0 mechanically and thermally perfectly bonded
and X2 = o. The vertical surface Xl = H to the NiFe matrix. Thus,
is taken to be traction free and thermally insu-
late~; see E~. (17). Normal velocity, null tan- [u] = 0, [9] = 0, [TiocNoc] = 0,
gential tractions, and zero heat flux are pre-
scribed on the top horizontal surface X2 = H; [QocNoc] = 0 on r (18)

these are given by Eq. (17). The prescribed nor- where N is an outward unit normal, in the ref-
mal velocity, given by Eq. (17), increases lin- erence configuration, to the interface r between
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FIGURE 1. Schematic sketch of the plane strain tension problem
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~i

a particulate and the matrix, and the square shapes and sizes, and their distribution in the
bracket indicates the jump of a quantity across matrix.
the ~terface r between a particulate and the Suquet [42] has given a closed-form expres-
matrIX. sion for the quasi-static yield stress A of an

isotropic homogenized body made of isotropic
2.4 Material Properties for the Equivalent e!astic perfectly. plastic co~stituents. The es-

Homogenized Body ~ate of the YIeld stress mvolves the effec-
tive shear modulus of the composite. For the

There are no micromechanics-based relations W /NiFe composite studied here, the difference
available to compute values of all material pa- in the effective yield stress computed from Su-
rameters of a composite comprised of thermo- quet's expression with the shear modulus de-
elasto-viscoplastic constituents. Values of E, rived from the Mori-Tanaka technique and that
'V, K, (X, p, and c for the equivalent homog- obtained by the rule of mixtures is less than
enized medium can be computed by using a 10%.
micromechanics-based model such as that pro- Here, the rule of mixtures, Eq. (19), has been
posed by Hill [40] ~d Mori and Tanaka [41], used to ascertain values of material parameters
but those of A, B, C, m, n, and em cannot be of the W /NiFe composite.

so found. We note that the melting temperature
em for the composite will equal the lowest tem- 2.5 Semidiscrete Formulation of the j
perature at which one of its constituents melts. Problem ]
The value of em for the equivalent homoge-.. ~i

nized medium equals a ficticious number ob- Equations (5), (6), and (3) Imply that the balance 'I

tained by fitting the Johnson-Cook relation (14) ?f .moment of momentum (3) i~ identically sat- \.1

to the data from either physical or numerical Isfied. The present mass densIty can be com- ;];
experiments. Numerical plane strain tension puted from Eq. (1) if the deformation gradi- 1

tests on representative volume elements (RVEs) ent and the current value of the porosity are j
of different sizes containing varying volume known. Thus, the dependent va~iables to be "1

fractions of random and/or ordered arrange- sol~ed for are x, f, and e, and. the mdependent
ments of particulates of circular cross section varIables are X and t. Equations (2) and (15)
were performed. Values of E, K, (X, B, 6, n, are ~eco~d-orde~ couple~ nonlinear hyperbolic
and 8m obtained from these were found to dif- partial differential equations for X and e. These
fer by at most 10% from their values computed c.ann°t ~e ",:ritten explicitly ~ terms of x and 8
by the rule of mixtures. According to this rule, smce T IS gIven by (6) and 0" by (5), which in-
the value P of a material parameter for a mix- :olves DP and 8. We solve the problem numer-
ture comprised of two constituents with vol- Ically by the FEM.
ume fractions V;f and V;f and values P and F . We first introduce an auxiliary variable E, =
of the material ~aramet~r is given by 1 2 8. Let 1VI,1V2,. .., 1Vn be the FE basis functions

defined on n. We write

P=VfPI+vfp2 = (1-Vf)PI+vfp2 (19) n~ - n~
Vi = L..t'l>A(X)VAi(t), Wi = L..t'l>A(X)CAi

It gives exact values of the mass density and the A=I A=I
h t . d " I nodes nodes

ea CapaCIty, an IS sImp e to use. It ignores e = ~ X e - ~ -'-interactions among adjacent particulates, their L..t'l>A( ) A, E,- L..t1\JA (X) E,A, 1--1,2 (20)
A=I A=I
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Here, v is the vector of velocities of nodes, e and d(t). The six unknowns at a node are
the vector of nodal temperatures, i. the vector {X1,X2,V1,V2, 9, E.}, and the dimension of vec-

of rate of change of temperature at the nodes, tor d equals six times the number of nodes.

and CAi are constants. Following the usual pro- Furthermore, unknowns at a quadrature point

cedure, e.g., see [43], we get are {0"11, 0"22, 0"12, 0"33, f, c:~}. Thus, the total

number of coupled ordinary differential equa-

.:. int' -.:. - tions to be integrated equal 6 (number of nodes)

Mv = -F , e = E" 9HE, = pe + Q (21) +6 x 4x (number of elements) for a 2 x 2 inte-

where gration rule. Batra and Jaber [23] employed a

similar technique to numerically solve the cou-

pled thermoviscoplastic problem. They used a

M =
1 P ( 1 - F ) ,10 ,1. dO FE mesh comprised of triangular elements and

AB 0 JO 't' A 't' B , th .. . In e one-pomt mtegration ru e to compute the
Pint _ 1 '10 IT'. dn domain integrals.

Ai - 't'A,cx.Ltcx~'

n

HAB = l poc(1- fO)1\JA1\JBdO, (22) 3. COMPUTATION OF RESULTS

P~ = {K (1- .:'}. f) 9 cx1\JA cxdO ~ comput~r cod~ employing four-node
in 2" 1soparametr1c quadrilateral elements has been

Q = {1\J J ( DP)dO developed. Integrals in Eq. (22) over each
A in A tr 0". element are evaluated by using the 2 x 2

Gauss quadrature rule. Should a FE span two

Note that the natural boundary conditions of materials, values of the material parameters at

zero heat flux on all bounding surfaces and null the Gauss quadrature point are used. Batra [44]

surface tractions on Xl = H, zero tangential used this procedure for analyzing finite static
tractions on X2 = 0, H, and Xl = 0, have deformations of an inhomogeneous cylinder
been embedded in Eqs. (21). For nonzero sur- made of a Mooney-Rivlin material and showed

face tractions and nonvanishing heat flux pre- that computed results matched well with the

scribed on a part of the boundary, Eqs. (21) and analytical solution. The coupled nonlinear or-

(22) are suitably modified. dinary differential equations (23) are integrated
We solve Eq. (14) for f.~ in terms of O"y, c:~, and with respect to time t by using the subroutine

9, and integrate the resulting equation along LSODE (Livermore solver for ordinary differ-

with Eqs. (5) and (12) at the integration (or ential equations) that can be downloaded free

Gauss quadrature) points. Recall that f.~ > 0 from the internet. It adaptively adjusts the time

only when a material point is deforming plasti- step and the order of the integration scheme

cally as signified by the satisfaction of Eq. (8); so as to compute a stable solution within the

otherwise f.~ = o. A weak form of equation prescribed absolute and relative tolerances.
x = v(X, t) is also derived. We thus get coupled Because of the large number of nodes in the FE

nonlinear ordinary differential equations mesh, the Adams-Moulton integration method
obtained by setting MP = 10 in LSODE is

d = F (23) employed. Variables RTOL and ATOL that

specify the relative and the absolute tolerances
where d is the vector of unknowns and F in the computed solution are assigned values
is the force vector that depends on time t 10-6 and 10-6, respectively.
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Both the mechanical and the thermal prob- with time t, the fraction of the axial load sup-
lems are hyperbolic. Since the speed of the ther- ported by W and NiFe at a horizontal surface
mal wave is considerably smaller than that of X2 = constant varies with t. Once either one or
the mechanical waves, the latter control the size both of these constituents begin to deform plas-
of the time step. Once deformations begin to tically, the speeds of incremental elastic waves
localize, the time step drops significantly. This in them will depend on values of the tangent
drop in the time step occurs at a lower value moduli. There are four nonzero components of
of the nominal strain for a particulate compos- the Cauchy stress tensor and the elastic strain
ite than that for the homogenized body. This tensor giving several elastic moduli for each
is because inhomogeneities in deformations in- material that need not vanish simultaneously.
troduced by numerous particulate/matrix in-
terfaces induce localization, not necessarily si-
multaneously, of deformation at several dis- 3.2 Verification of Code
crete points in the body. Eventually the defor-
mation localizes into a connected region. For The method of ficticious body forces (also
a 100 x 100 uniform FE mesh, the CPU time is called the method of manufactured solutions)
, , 300 hr on a SGI single processor Altix ma- is used to verify that the code correctly solves
chine. The code could not be parallelized be- the initial-boundary-vaue problem expressed
cause of a lack of a parallel version of LSODE. by Eqs. (1)-(18). In this method, analytical ex-

pressions for the displacement and the temper-
ature fields are presumed, and body forces and

3.1 Values of Material Parameters sources of internal energy [note that these had
been set equal to zero in Eqs. (2) and (4)] are

Values of thermophysical parameters for W and computed so as to satisfy the balance of linear
the NiFe are listed in Table 1. Values assigned momentum and the balance of internal energy.
to other parameters given below in (24) are the Also, initial and boundary conditions are de-
same for the two constituents and for the ho- rived from the assumed displacement and tem-
mogenized body; we note that these are not perature fields. These are input into the code
readily available in the literature for different and the numerical solutions are found. A good
materials. agreement between the computed and the ana-

lytical solutions verifies the code. This method
was also used by Batra and Liang [45], e.g., see

1)1 = 1.5, 1)2 = 1.0, 12 = 0.04, 82 = 0.1 remarks following Eq. (30) of their paper.

en = 0.5, 't' = 10-8s, 9r = 273 K For a shear band problem, computed results
Ic = 0.15, lu = 2/3, If = 0.25 (24) were also found to agree very well with those

obtained by Batra and Lear [33], who employed
a similar problem formulation but with three-

Thus, the accoustic impedances of W and NiFe node triangular elements.
equal 87.86 x 106 and 48.44 x 106 kg/(m2s), re- The code was used to study wave propaga-
spectively, and differ by a factor of 1.8. The bar tion in an inhomogeneous elastic bar [46]. The
wave speeds in Wand. NiFe are 4,552 and 5,265 time histories of the computed wave speed and
m/ s and differ by a factor of 0.86. of the axial stress at a point were found to agree

Because of the random distribution of W par- well with the analytical solution of Chiu and Er-
, ticulates, and the variation of the axial load dogan [47].
I
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TABLE 1. Values of material parameters

Material p(kg/m;5) E (GPa) 'V K (W / (InK» c (J / (kg K» (X(10-0 /K)
Tungsten 19,300 400 0.29 160 138 5.3

NiFe 9,200 255 0.29 100 382 15

A(MPa) B(MPa) n C to(l/s) 8m(K) m
730 562 0.075 0.290 10-ti 1723 1.0
150 546 0.208 0.0838 10-ti 1225 1.0

4. MULTISCALE MODELING surface tractions (normal and tangential com-
ponents of the first Piola-Kirchhoff stress ten-

W fir t I th . .t. t. d d I t sor extrapolated from their values at the neigh-e s ana yze e 1lli la Ion an eve opmen. . . . 1
f ASB' , t ' b d f 10 10 bormg Gauss mtegration pomts) and of tem- I

0 an mapnsma lC 0 yo mmx mm .:
t . d f d . I tr . perature as computed from the prevIous analy-square cross sec Ion e orme m pane s am. " . ,

t . . fF . 1( ) Th b d . d f h SlS are applied with the remammg two surfacesenSlon, c. 19. a. e 0 y is ma e 0 a 0- h . th b d d' . .
h., .. avmg e same oun ary con ltiOns as mt e

mogeruzed matenal whose response IS equlva- .. al al ' f th 5 5 .I t t th t f 50°1 I f ti. f 50 ongm an YSlS 0 e mm x mm region.
en 0 a 0 a 10 vo ume rac on 0 ~

diameter W particulates in the NiFe matrix. As Numerical experiments with the velocity
stated earlier, symmetries about the two cen- components and the temperature prescribed on
troidal axes are exploited, and coupled ther- the surfaces Xl = 1 mm and X2 = 1 mmfailed
momechahical deformations of the material in to compute the deformation field subsequent
the first quadrant are analyzed, The 5 mm x to the initiation of the localization of deforma-
5 mm region is divided into a uniform 100 x 100 tion. It seems that the use of a Gurson-type
FE mesh of four-node quadrilateral elements. yield surface requires that deformations in the
The uniform initial porosity distribution equals macro- and the micro models be quite close to
0.025, and it is deformed at a nominal strain one another; otherwise deformations cease to
rate of 5000/ s until plastic deformations have be nearly isochoric and porosity evolution lim-
localized into a narrow region. The time his- its the time up to which the numerical solu-
tories of unknowns at nodes on the surfaces tion can be satisfactorily computed. Here, the
Xl = 1 mm and X2 = 1 mm in the undeformed . FE mesh employed for the macroanalysis is too
configuration are recorded for later use. Sub- coarse to resolve an ASB. Even for a homoge-
sequently, detailed deformations of the mate- neous material, the deformation fields in the
rial in the 1 mm x 1 mm region with two edges macro- and the microanalyses are a little bit dif-
along the centroidal axes of the original cross ferent, However, these differences are notice-
section are analyzed. As shown in Fig. 1(b), able when the macroanalysis is performed on
the 0.5 mm x 0.5 mm region has 50 J.1ffi diam- the homogeneous body and the micro-analysis
eter W particulates randomly distributed in the on the particulate composite, Thus, one should
NiFe matrix, and the remaining region is the not expect that the velocity field obtained from
homogenized material equivalent to the partic- an analysis of the homogenized body and ap-
ulate composite and used in the analysis of the plied to the boundaries of the region for the
5 mm x 5 mm region. On the surfaces Xl = microanalysis will yield an accurate solution
1 mm and X2 = 1 mm, the time histories of of the problem. However, with tractions as-
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signed on the surfaces Xl = 1 mm and X2 = region are scrutinized. The first approach is
1 mm, deformations of these and other particles termed the macroanalysis, and the second the
adapt readily to the constraints imposed by the macro-micro analysis. Figure 3 depicts con-
stiffer W particulates, and the numerical solu- tours of the effective plastic strain at an aver-
tion progressed smoothly. It should be added age axial strain of 0.29 for the two analyses.
that nodes on the top and the right surfaces of It is clear that the rate of increase of tempera-
the 1 mm x 1 mm mesh coincide with those on ture is much higher in the macro-micro analy-
the surfaces Xl = 1 mm and X2 = 1 mm in the sis than in the pure macroanalysis. The com-
5 mm x 5 mm mesh, respectively. bined analysis can be viewed as refining the

FE mesh and, as shown by Batra and Ko [48]
4.1 Verification of the Methodology and Batra and Hwang [49], the effective plastic

strain rate at the ASB center increases when the
The aforementioned approach was used to ana- FE mesh is refined. The ASB initiates, as sig-
lyze deformations of a homogeneous body. Fig- nified by the jump in the rate of temperature
Ute 2 compares time histories of the tempera- increase, slightly earlier for the macro-micro
ture and the rate of increase of temperature of analysis as compared to that for the macro-
a material particle located at the specimen cen- analysis; the difference between the two times
troid obtained by the two procedures; i.e., (i) is,..., 7% thereby verifying the approach. The

: deformations of the 5 mm x 5 mm region are intensely deformed region is significantly nar-
( analyzed, and (ii) deformations of the 5 mm x rower for the macro-micro analysis than that
~ 5 mm followed by that of the 1 mm x 1 mm for the macroanalysis solely due to the finer FE
(
~

600 2
I
I

500 macro .. 17 macro I
. :1. . I- - - -, macro-micro ~ - - - - macro-micro

'"-'1 I

r;: i I

~400 e I
m () 12 I
'C C.- I! 30 ~ 10 Ie ... I
GI ~
Co 8.7 I
E 2 e I
S !A I

'0 5 I

10 !A
~ 2

0 10 20 30 40 50
time t (115) time t (115)

(a) (b)

FIGURE 2. (a) Temperature and (b) rate of increase of temperature versus time at the centroid of a
homogeneous (50% W, 50% NiFe) body for the macro and the macro-micro analyses
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FIGURE 3. Contours of the effective plastic strain for a homogeneous 50/50 W /NiFe sample at t = 60 ~
for Xl ::;: 1 rnm and X2 ::;: 1 mm for the (a) macro-scale analysis and (b) macro-micro analysis

mesh. In Figs, 3(a) and 3(b), the right edge is contours of the effective plastic strain and Fig, 5
not straight because it is an inner surface in the depicts contours of the rate of increase of tem-
5 mm x 5 mm cross section, For the same rea- perature for the four distributions, It is evident
son, at any time t, the average axial strain in this that deformations localize in different regions
1 mm x 1 mm region need not equal the average and an ASB initiates from a different point in
axial strain in the 5 mm x 5 mm region since each case. Furthermore, only one of these re-
the 5 mm x 5 mm region is not deformed homo- gions of intense plastic deformation agrees with
geneously. This macro-micro analysis could be the general shape of the intensely deformed
repeated several times to fully resolve an ASB. region in the equivalent homogeneous body,

The ASB center can be located from a visual
inspection of the contour plots of Figs, 4 and

4.2 Results for the Particulate Composite 5 ' t I ti' d t ' .d ' th th ' ; I S oca on oes no comCI e WI e on-

gin or the specimen centroid. The inhomo-
The above described procedure was applied to geneities induced by the presence of W partic-
four different (three random and one ordered) ulates strongly influence where and when an
distributions of 50 f.1lll diameter W particulates ASB initiates, For the four distributions of W
in the 0,5 mm x 0.5 mm region, Figure 4 depicts particulates, we have plotted in Fig, 6 time his-
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FIGURE 4. Contours of the effective plastic strain at t = 25.0 J.IS for (a) an ordered particulate arrangement
and (b)-(d) three random particulate arrangements
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FIGURE 5. Contours of the rate of increase in temperature at t = 25.0 ~ for (a) an ordered particulate
arrangement and (b )-( d) three random particulate arrangements
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tories of the rate of temperature rise and of the ume fraction of randomly distributed 50 ~
effective plastic strain at the ASB center. The diameter W particulates with the right edge
ordered and the three random distributions of Xl = 0.5 mm traction free and the top surface
particulates give ASB initiation times between X2 = 0.5 mm pulled at 2.5 m/s. Figures 7(a)
22 and 24 J.1S, which is considerably less than the and 7(b) exhibit fringe plots of the axial veloc-
nearly 58 J.1S (cf. Fig. 2) deduced from the anal- ity and of the rate of change of temperature at
ysis of deformations of the equivalent homog- t = 60 1.lS. It is evident that during the defor-
enized body. The large difference between the mation process the right edge does not remain
two values cannot be attributed to the consid- straight because of the distinctly different de-
erably finer mesh employed in the microanal- formations of the W particulates and the NiFe
ysis; the reasons are a subject for future inves- matrix. The time history of the rate of temper-
tigations. An alternative technique found sub- ature increase at the ASB center, not exhibited
sequently that considers the microstructure and here, reveals that the ASB initiates at rv 50 1.lS.

still gives good values of the ASB initiation time However, the time when the ASB has devel-
but not necessarily of its origination point is de- oped strongly depends on the arrangement of
scribed in Ref. [56]. The deformed configura- the W particulates; for example, the ASB devel- .!

!tions at t = 25 I.lS plotted in Fig. 5 suggest that oped at rv 60, 70, and 90 I.lS for three different
I: the nominal axial strains for the three random random distributions of the W particulates. We '

distributions are essentially the same, but are note that these times are much larger than the :
slightly less than that for the ordered distribu- rv 25 I.lS obtained from the multiscale analysis ~

tion of particulates. of the problem. !'
For comparison, we also analyzed plane A reason for the large difference in the ASB

strain thermomechanical deformations of the initiation times for the homogenized and the
0.5 mm x 0.5 mm region containing 50% vol- particulate composites is that waves of large

0, 4
-Ordered..0 - Random1 ~. - - - . Random 2 . ~

.. - - - . Random 3 , GI - Ortlered
e o. " = 3 -,»~ Random1

~ ! - - - . Random2
u O. g 3 - - ~ " Random 3'i -
! o. ~ 2
GI et O. 8. 2
:; O. j 1

'0
0, ! 1

e
O.

,
00

time t (l1s) time t (l1s)

(a) (b)

FIGURE 6. (a) Effective plastic strain and (b) rate of temperature increase at a point inside the ASB as
functions of time for four particulate arrangements
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FIGURE 7. At t = 60 ~, fringe plots of (a) the axial velocity, and (b) the rate of change of temperature

wavelengths propagate through the homoge- to be anisotropic. It is reasonable to expect that
nized body but waves of small wavelengths particulate shape will influence the ASB initi-
probably predominate in the particulate com- ation time. Also, all particulates need not be
posite. The wavelengths in the particulate com- identical; such problems will be analyzed in the
posite are influenced by the mismatch in the future.
acoustic properties of the particulates and the
matrix materials, and also by the distance be- 4.4 Effect of the FE Mesh
tween any two adjacent particulates.

Because of the nearly 300 hours of CPU time
4.3 Effects of Particulate Size and Shape needed for analyzing one problem, numerical

experiments with different FE meshes could
Since values of material parameters for the not be performed. However, in an inhomo-
equivalent homogenized body derived from geneous thermoviscoplastic body with a con-
the rule of mixtures are independent of the size tinuous spatial variation of material properties
and shape of particulates, the ASB initiation varying continuously, results [9] for the ASB
time computed from the analysis of deforma- initiation time for three uniform FE meshes are
tions of the homogenized body will not depend described in Table 2. It is evident that the ASB
on the size and shape of particulates. However, initiation time decreased by 2.1 % in going from
for other than circular particulates, the response a 40 x 40 to a 120 x 120 uniform mesh, and the
of the equivalent homogeneous body is likely CPU time increased by a factor of 21.
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TABLE 2. Effect of FE mesh on the ASB initiation time in an inhomogeneous thermoviscoplastic body

Uniform ASB initiation CPU time % change in ASB
FE mesh time (~) (secs) initiation time
40 x 40 65.9 1,133 -
80 x 80 64.8 6,908 1.67

120 x 120 64.5 29,242 2.12

One way to reduce the effect of the element fective stress at a point has dropped to 80% of
size on computed results is to use a strain-rate its peak value at that point. This criterion when
gradient-dependent viscoplasticity theory such applied to particulate composites failed [54] be-
as that employed by Batra [50]. It introduces cause it indicated, not necessarily simultane-
additional material parameters whose values ously, the initiation of an ASB at numerous dis-
are not readily available in the literature. crete points whose spatial locations varied with

the random distribution of W particulates in the
4.5 Effect of Strain Gradients NiFe matrix. Because of the heat and the load

exchange between the particulates and the ma-
Dai et aI. [51] used the split-Hopkinson bar to trix, the effective plastic strain need not increase
analyze torsional deformations of a SiC/AI (sil- monotonically at a point including that where
icon carbide/aluminum) particulate compos- an ASB has initiated. Numerical experiments
ite. They found that an ASB formed in the com- have indicated that once the total load required
posite with 2 I-lm diameter SiC particulates, but to deform the body has dropped to 80% of its
not with 6 J.1Ill diameter SiC particulates. They peak value, a coherent ASB develops. The rate
conjectured that strain gradients were higher of temperature increase within this contiguous
for the smaller size particulates and these pro- shear banded region is at least an order of mag-
moted the initiation of ASBs. Furthermore, nitude higher than that in the surrounding re-
they explained this by assuming that the flow gions. Also, the axial velocity has very sharp
stress in shear depends on the strain gradients. gradients across the shear banded region. We
However, they did not consider higher-order note that the ASB initiation criterion in terms
stresses conjugate to the strain gradients as had of the drop in the total load provides no infor-
been done by Batra [49] and Batra and Kim [52]. mation about the point where the ASB initiates,
These two investigations show that considera- and cannot be used to analyze the propagation,
tion of strain gradients and the corresponding and hence to compute the speed of the ASB.
higher-order stresses delay the initiation of an
ASB. Certainly, its resolution needs additional We note that Batra and Peng [55] analyzed
experimental, analytical, and numerical work. plane strain transient thermomechanical de-

formations of a WHA and depleted uranium
4 6 Ad ' b t. Sh Band Initiation Criterion by modeling each material as homogeneous. la alc ear d . . Th . d dan IsOtrOpIC. ey mtro uce numerous ran-
In several previous studies on the initiation and domly distributed weak elements in the uni-
propagation of ASBs in homogeneous materi- form FE mesh. It was found that differences in
als, some of which are summarized by Batra the values of the shear moduli of the two mate-
[53], it was assumed that an ASB initiates when rials accounted for the different orientations of
the maximum shear stress or the maximum ef- ASBs in them. '!

!
'
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