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Capacitance estimate for electrostatically actuated
narrow microbeams

R.C. Batra, M. Porfiri and D. Spinello

Abstract: A novel estimate for the line-to-ground capacitance that accurately predicts the pull-in
instability parameters for narrow electrostatically actuated microbeams is proposed. Parameters in
the proposed formula are obtained by least square fitting data from a fully converged numerical
solution with the method of moments. For a narrow microbeam, it is shown that the new
formula significantly improves upon classical formulas that neglect fringing field effects due to
the finite thickness of the microbeam cross-section.
1 Introduction

Electrostatically actuated microbeams are extensively used
as microelectromechanical systems (MEMS) [1]. An
electrostatically actuated microbeam is an elastic beam
suspended above a ground plate, both made of conductive
materials, and a dielectric medium filling the gap, g,
between them.

The distributed electrostatic force, Fe, acting on the
microbeam is given by

Fe ¼ �
1

2
V 2 @C

@g
ð1Þ

where V is the applied voltage and C the capacitance of the
two-conductor system composed of the beam cross-section
and the ground plate. For a rectangular cross-section, the
capacitance C is a function of the beam height h, the
beam width b, the gap g and the dielectric constant 1 of
the medium between the beam and the plate. The gap g
varies with the point x of the microbeam span. Fig. 1
depicts a typical cantilever MEMS.

The applied voltage V has an upper limit beyond which
the electrostatic force overwhelms the elastic restoring
force in the deformable beam, the beam spontaneously
deflects towards the ground plate, and the device collapses.
This upper limit is called the pull-in voltage and its accurate
characterisation represents a focal point of research in the
MEMS community [1]. A comprehensive review of
models and applications of MEMS is given in Marques
et al. [2].

It is pointed out in Pamidighantam et al. [3] that for rela-
tively narrow microbeams undergoing large deflections, the
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effects of fringing fields on the electrostatic force are not
negligible because of the nonzero thickness and finite
width of beams. The problem of accurately estimating the
capacitance of a rectangular conductor facing a ground
plane has also been a main research focus in the VLSI com-
munity for the last two decades [4]. For very narrow
microbeams, classical results from VLSI are not applicable.
Here, we deduce an accurate estimate of the capacitance and
show its effectiveness in accurately predicting the pull-in
behaviour of a narrow microbeam.

2 Proposed capacitance approximation

We use the method of moments (MoM) [5] to determine the
capacitance C for different values of parameters b, h and g
in the range 0.2 � h/b � 2 and 0.4 � h/g � 5. The data
from fully converged numerical solutions are then
least-squares fitted by the following function

C ¼ 1
b

g
þ c0 þ c1

b

g
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where c0, c1, c2, c3, c4, c5, c6, c7 and c8 are constants.
The first term on the right hand side of (2) describes the
parallel-plate approximation and the remaining terms, and
the effects of fringing fields due to finite width and
nonzero thickness. Numerical values of these constants
are given in Table 1.

Within the above given range of variations for h/g and
h/b, the maximum deviation in the capacitance computed
from (2) and the fully converged MoM numerical solution
is ,0.2%, e.g. confer Table 2.

Fig. 2 is a schematic sketch of different fringing field
approximations, namely, Mejis–Fokkema formula [6],
Palmer’s formula [7] and the classical parallel plate approxi-
mation, considered in the MEMS literature to estimate
the electrostatic force acting on a microbeam [8–10].
Palmer’s formula

C ¼ 1
b

g
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neglects fringing fields from the lateral surfaces of the
rectangular conductor. Mejis–Fokkema formula

C ¼ 1
b

g
þ 0:77þ 1:06

b

g

� �0:25

þ1:06
h

g

� �0:5
 !

ð4Þ

considers all fringing fields and has a maximum deviation of
2% for b/g � 1, 0.1 � h/g � 4 and of 6% for b/g � 0.3 and
h/g , 10 [6]. In Table 2, we also include results from these
classical formulas. We note that the Mejis–Fokkema
formula yields errors .1% when the two conductors are
relatively close (h/g ¼ 5) to each other and much larger
errors for very narrow conductors (h/b ¼ 2). Results
included in Table 2 imply that Palmer’s formula and the par-
allel plate approximation are not suitable for narrow
conductors.

Fig. 1 Geometry of a cantilever microbeam
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3 Application to pull-in extraction

The governing equations for the gap g(x) [9] are

� EI
d4gðxÞ

dx4
¼ FeðgðxÞÞ

gð0Þ ¼ g0;
dgðxÞ

dx

����
x¼0

¼ 0
d2

gðxÞ

dx2

����
x¼L

¼ 0;
d3

gðxÞ

dx3

����
x¼L

¼ 0

ð5Þ

where the electrostatic distributed force Fe is given by (1), E
is Young’s modulus of the material of the microbeam, I is

Fig. 2 Sketch of fringing fields considered in different models

a Present work and Mejis–Fokkema
b Palmer
c Parallel plate
Table 1: Numerical values of constants in (2)

c0 c1 c2 c3 c4 c5 c6 c7 c8

25.40 4.60 0.325 0.126 20.554 20.00388 0.891 3.47 0.118

Table 2: Comparison between the capacitance per unit length, C, computed using approximation (2) or other available
formulas and that from the MoM

Geometry MoM % Deviation

h/b h/g C/1 Eq. (2) Mejis–Fokkema Palmer Parallel plate

0.2 0.5 5.37 20.12 0.41 17 53

0.2 1 8.42 0.0091 0.11 12 41

0.2 2.5 16.8 0.012 20.76 8.0 26

0.2 5 30.1 20.0098 21.4 5.6 17

0.4 0.5 3.92 20.024 0.65 30 68

0.4 1 5.69 20.010 0.46 22 56

0.4 2.5 10.3 0.015 20.72 15 39

0.4 5 17.3 20.013 21.9 11 28

1 0.5 2.96 0.1 1.7 52 83

1 1 3.96 0.0092 1.8 40 75

1 2.5 6.29 20.0044 0.16 29 60

1 5 9.53 20.0020 22.1 22 48

1.4 0.5 2.76 0.078 2.2 61 87

1.4 1 3.61 0.0019 2.6 48 80

1.4 2.5 5.50 20.0088 0.83 36 68

1.4 5 8.02 20.0089 21.9 28 55

2 0.5 2.60 0.041 2.9 72 90

2 1 3.34 20.028 3.5 57 85

2 2.5 4.90 0.0014 1.8 44 75

2 5 6.88 20.0018 21.4 35 64

Deviations are measured as (CMoM 2 C )/CMoM, where CMoM is the fully converged MoM solution
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the moment of inertia of the cross-section (I ¼ 1/12 bh3)
and L is the beam length. The approximation of the
line-to-ground capacitance C determines the electrostatic
force in (5) and influences the numerical value of the
pull-in voltage. The determination of the pull-in parameters
is performed using the displacement pull-in extraction
method presented in Degani-Bochobza et al. [11].

We consider the problem analysed in Pamidighantam et al.
[3]. The sample geometry is: L ¼ 300 mm, b ¼ 0.5 mm,
h ¼ 1 mm and g0 ¼ 2.5 mm. The material parameters are:
E ¼ 77 GPa and the Poisson ratio, n ¼ 0.33. The commercial
MEMS software COVENTORWARE is used in
Pamidighantam et al. [3] for determining the pull-in voltage.

In Table 3, we compare the results obtained by solving (5)
with formulas (2)–(4) and the parallel plate approximation,
with those of Pamidighantam et al. [3]. The rather large
difference between results from the parallel plate approxi-
mation and the COVENTORWARE suggests that fringing
field effects are not negligible in finding the pull-in voltage.
The consideration of fringing field corrections (3) and (4) sig-
nificantly improves the pull-in voltage prediction, but the 4%
error in the pull-in voltage is not acceptable in many appli-
cations. The present estimate of capacitance reduces the
error in the pull-in voltage to ,1%.

4 Conclusions

We propose a new estimate of the line-to-ground capaci-
tance of a rectangular conductor facing a ground plane,

Table 3: Comparison of the pull-in voltages of the
cantilever microbeam obtained from different models

Pull-in voltage, V

COVENTORWARE 1.20

Parallel plate 2.17

Palmer 1.25

Mejis–Fokkema 1.25

Present work 1.21
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which takes into account fringing fields emanating from
all surfaces of the conductor. Values obtained from the pro-
posed estimate match those from the MoM to within 0.2%
in the range 0.2 � h/b � 2 and 0.4 � h/g � 5. The pro-
posed formula is suitable for studying narrow microbeams,
where the effect of fringing fields is not negligible. It is
shown that the electrostatic distributed force acting on the
microbeam computed from the present estimate of the
capacitance gives values of the pull-in voltage that have
considerably less error than those obtained with the electro-
static force derived from classical formulas.
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