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Abstract-We analyze a three-dimensional frictional contact problem between a homogeneous and 
isotropic linear elastic body and a substrate consisting of a homogeneous and isotropic linear elastic 
half-space coated with a transversely isotropic elastic layer. The problem formulation includes the 
kinematics of the body, including its rolling/sliding on the substrate. Expressions relating the 
displacements of a point on the contact surface to the surface tractions acting there have been 
derived. We have also proposed a variational problem for the determination of surface tractions at 
points of the contact surface. An example problem involving the motion of a homogeneous spherical 
rigid ball on a substrate made of a homogeneous thin layer of a linear elastic material and bonded to 
a rigid base is studied. It is shown that there can be at most one adhesion zone followed by a slipping 
zone. Numerical results illustrating the dependence of the slip velocity upon the resultant frictional 
force are also presented graphically. 

1. INTRODUCTION 

In order to reduce the frictional force between two sliding bodies one often uses solid 
lubricants such as graphite or Molybdenum disulfide. The outer surface of one of the 
contacting bodies is usually coated with one of these lubricants. The mechanical properties 
of these coatings in the thickness direction are different from those in the plane of coating. It 
seems reasonable to model the coating as a transversely isotropic layer. In many applica- 
tions, e.g. rolling bearings, gears and railway vehicles, sliding speeds are much smaller than 
the magnitude of the characteristic linear velocity of the body. However, sliding speeds are 
not negligible, thereby suggesting that the kinematics of contacting bodies corresponds to 
rolling with sliding. 

Problems involving the smooth contact of a rigid body with a layered substrate have been 
studied by Hannah [l], Aleksandrov [2], Meijers [3] and Alblas and Kuipers [4]. 
Frictionless contact of an elastic body with a layered base has been investigated by Gupta 
and Walowit [S], O’Sullivan and King [6], Komvopoulos [7] and Komvopoulos et al. [8] 
have considered frictional problems involving the pure sliding of one body over the other. 
Sliding contact of an indentor on a transversely isotropic layer has been studied by Kuo and 
Keer [9]. Kalker [lo] has examined the rolling/sliding of a body on an elastic half-space, 
and Bhargava et al. [ 1 l] have developed elastic-plastic models for rolling contact problems. 

Here we consider the rolling with sliding of a body on an elastic base coated with 
a transversely isotropic layer. Slipping takes place on an a priori unknown part of the 
contact area. Inertial properties of the body assumed as rigid and elastic deformations of the 
body points and of the base in the vicinity of the contact area are accounted for. Contact 
stresses influence the kinematics of the body through its equations of motion. If the 
adhesion and inertia effects are neglected, then our problem reduces to one of pure 
quasistatic sliding, studied in refs [6] and [9]. 

An iterative method of solution of the contact problem is proposed. In every iteration, 
one needs to solve a variational problem in which the functionals depend upon the pressure 
and frictional forces acting on the contact area. The contact area, slip and adhesion 
subareas and surface tractions are determined simultaneously from the solution of a varia- 
tional problem. The problem of the rolling of a rigid ball on an elastic transversely isotropic 
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layer bonded to a rigid half-space is studied in detail and numerical results are presented 
graphically. 

2. GOVERNING EQUATIONS 

We study the motion of an elastic body on a transversely isotropic layer 0 I Z 5 h 
bonded to a half-space occupying the domain Z < 0 (cf. Fig. 1). The coordinate axes OXjZ 
with origin at the center of mass of the body coincide with the principal axes of inertia of the 
undeformed body and are embedded in it. The coordinate axes Oxyz move with the body 
but always stay parallel to the fixed X YZ axes. We assume that the contact surface S, lies in 
the plane Z = h and its size is small as compared to a typical dimension of the body. At 
points of S, we have 

and 

p=O ifZ+-Z- >O, (2.1) 

~20 ifZ+-Z-=0 (2.2) 

171 I c(p if IsI = 0, (2.3) 

r=ppi if IsI >O. (2.4) 

Here p is the contact pressure, T the tangential traction, p the coefficient of friction, s the 
local slip velocity and Z+ and Z- are, respectively, the Z-coordinates of points of the body 
and the substrate that have the same values of X- and Y-coordinates. Z’-coordinates 
depend upon the position of the body and on the elastic deformations of the half-space, 
coating and points of the body in the vicinity of the contact area. In (2.3) and (2.4) we have 
assumed Coulomb’s law of friction. Condition (2.1) holds at points of S, where the two 
bodies are not in contact with each other and on the remainder of S, the normal traction is 
compressive and the tangential tractions are given by (2.4) and (2.3) according as to whether 
there is or is not slipping between the two bodies. 

The slip velocity s defined at points of S, can be written as 

(2.5) 

where v equals the slip velocity when the body and the base are regarded as absolutely rigid 
and uf and u- are the tangential displacements, with respect to the fixed coordinate axes, of 
the body and the base due to their elastic deformations. In linear elasticity, one does not 
distinguish between the material time derivative and the partial time derivative because of 
the infinitesimal deformations involved. However, for the present problem, the speed of 
a material point of the body can be quite large as compared to the rate of change of its 

Z 
A 

h 

\ 

/ Y 
////f//f//f”/‘/// 

Fig. 1. Schematic sketch of the problem studied 
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elastic deformations. Thus, 

s = v + v,&u+ - u-) + ,q,+ - u-), ay (2.6) 

where V, and I$ are the x- and y-components of the velocity of a point on the contact 
surface. The term involving V, is omitted since 1 V,I 4 1 V,l and ( 51. For rolling/sliding 
contact, V, N - fi,, Vy N - f?,, where R, and R, are the x- and y-components of the 
position vector of the center of mass of the body. Equations that determine R are 

M#=F+ db dA, (2.7) 

Ih+S2xIS2=T+ 
s 

r x csb dA. (2.8) 
SC 

Here M is the mass of the body, F and T are resultant forces and moments due to external 
forces (except those on S,) applied to the body, gsb is the surface traction acting on the body 
at its points on the contact surface S,, a is its angular velocity and I is the inertia tensor 
with respect to the principal axes OXjl of inertia embedded in the body. Equation (2.7) 
describes the motion of the center of mass of the body and equation (2.8) is the evolution 
equation for the angular velocity Q of the body assumed as rigid. 

3. FORMULATION OF BOUNDARY CONDITIONS 
IN TERMS OF CONTACT STRESSES 

Since S, is very small as compared to the size of the body, we can determine elastic 
displacements of body points in the vicinity of S, by approximating it locally as a half-space 
(e.g. see [lo]) and using the Boussinesq-Cerruti’s formulae [lo]. Thus, 

W+ = G(P) + K2(7)t 

Uf = B,: (P) + Bz’2 (7), 

where 

B:,(p) = $$ ;dx’dy’, 
c 

(1 - v+ sin’ 19)r,,, + v+ sin Bcos f3ry,Z 

v+sin0cosBz,,,+(l - v+)coszOz,~, 
dx’ dy ‘, 

1-2v+ 
@=q,G+’ i = [(x - .‘)2 + (y - y’)*]“z, 

x - x’ 
case = - 

i ’ 
sine = Y-, 

i 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

G+ and vf equal, respectively, the shear modulus and Poisson’s ratio for the material of the 
body. 

The displacements at a point of a transversely isotropic layer with elasticities 

cll~c12~~13~ c33 and cd4 can be expressed in terms of three potential functions as [12] 

u; = (41 + 421.xz + ti,y, (3.9) 

6 = ($1 + 42),YZ + ti,x, (3.10) 
_ _ 

u,=w = - [cll((h + 42),x.x + ($1 + 42).,,) + ‘k(61 + ~2),zzl/(c13 + cd (311) 

Here a comma followed by x implies partial differentiation with respect to x, and functions 
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$9, $2, and $ satisfy the following equations: 

where 

4l,xx + 4kyy + +hJZ = 0, 

Vl 

(3.12) 

(3.13) 

(3.14) 

+ 
[ 

~(dl3+Cl3)(d13-C1)-2C44) > 
33 44 1 

112 
(3.15) 

[ 
g-p13 - C13)@13 + Cl3 + 2c44) 1 

l/2 
Vl = 

33 44 

“2 = 
[ 

&b&3 - C13)@13 + C13 + 2C44) 

l/2 
33 44 1 l/2 

-[&Wl3+c,3Wl,-cl3-2c44~ 1 (3.16) 
33 44 1 

v3 = (c331c44)“2, di3 = (cii~i~)~‘~. (3.17) 

Taking the Fourier transform of each term in equations (3.12)-(3.14) with respect to 
arguments x and y, we obtain 

$i = AieY,‘* + Bie- “I~~, j = 1, 2, 6 - dm, (3.18) 

6 = A3 eV,Za + B3 e - @, (3.19) 

where $ signifies the Fourier transform of $ with parameters I& g, and parameters 
A E (Al, A2, A,, B1, B2, B3) are constants. 

It is convenient to introduce vectors fi and fi by the formulae 

(3.20) 

(3.21) 

Taking the Fourier transform of each term in equations (3.9)-(3.11), and using (3.18) and 
(3.19), we obtain 

. (3.22) 

Equation (3.22) enables one to express displacements and stresses at the bottom surface 

Z = 0 of the coating in terms of those at its top surface Z = h, i.e. 

= CC(t> rl, WI CC- ‘(5> vl, h)l (3.23) 

where elements of matrix [D] = [C(t, 4, 0)] [C- ’ (5, q, h] are defined in the appendix. Due 
to adhesion conditions at the interface between the coating and the supporting half-space, 
we have 

@(O) = W(O), P(0) = P(O), (3.24) 

where the superscript s signifies a quantity for the half-space. According to the BOUS- 

sinesq-Cerruti’s [lo] formulae, 

W(0) = @(& #“(O), (3.25) 

where the elements of the matrix 6 are combinations of Fourier transforms of Bij defined by 
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equations (3.3)-(3.6). We rewrite (3.23) as 

m(O) = Dii(5, rl)*(h) + Diz(5, rl)&), (3.26) 

p(O) = &I(& rl)fi(h) + Dd5, rl)&h), (3.27) 

where matrices Dll, Dlz, Dzl and Dz2 are determined by matrices C and C-i. We can 
combine (3.25)-(3.27) to arrive at 

W(h) = (Do, - BD,,)-@D,, - ~&h). (3.28) 

Hence, surface displacements of the coating/layer can be expressed in terms of surface 
tractions r.9’ = - crSb at the contact surface in the form 

W- = B,(P) +  K2(4, (3.29) 

U- = %I (~1 + B22(4, (3.30) 

where the operators B,, B, , B;, and B& are determined by D 1 1, II2 1, etc. 

4. VARIATIONAL FORMULATION OF THE CONTACT PROBLEM 

We consider the system of equations (2.1)-(2.4) at any instant of time and therefore 
assume that the position vector R of the center of mass of the body and the relative 
orientation of principal axes OzjF of inertia are known. We consider the following iterative 
procedure for the solution of the problem defined by (2.1)-(2.4): 

and 

pk = 0 if Z+ - Z- E [Z(pk, rk_i)] > 0, (4.1) 

pk>O if[Z(pkt7k--1)1=0 (4.2) 

/7ki 5 wk if b(Pk? 7k)i = OT (4.3) 

s(Pk, 7k) 

7k = PPk ,s(pk, 7k), if Is(pk, 7k)i > 0. 

Surface tractions for k = 0 are presumed to be known. The major idea of this process is to 
have the problem of the determination of the pressure and contact area uncoupled from 
each other. This is reasonable for contact problems in which the coefficient of friction is not 
very large, since pressure and contact area depend rather weakly upon friction forces. 
Iterative processes of this type have been used in static [13, 141 and stationary [lo] 
problems. 

We prove below that each one of the problems defined by equations (4.1) and (4.2), and 
(4.3) and (4.4) is equivalent to a variational problem. We first consider the problem defined 
by equations (4.1) and (4.2) and write the function [Z] in the form 

CZ(Pkr 7k-l)l = z +  & - &l(Pk) +  B12(7k-1), (4.5) 
where 

Bl,(pk) = B:l(pk) - B,(Pk), &2(7k-l) = %+2(Tk-l) - &(7k-l) (4.6) 

and z = z(x, y, t) defines the surface S,. We assert that the variational problem of minimiz- 
ing F(p), where 

F(P) = 
5 

C~&I(P)P +fpldA 
SC 

f= -Z-R,-B12(7k-1), p>o, 

(4.7) 

(4.8) 

is equivalent to solving equations (4.1) and (4.2) for pk. We first prove that (4.7) and (4.8) 
imply (4.1) and (4.2). The quadratic part of the functional F(p) equals one-half the elastic 
energy of the body and the base (the half-space and coating) corresponding to surface 
tractions cr,, = - p, 5xr = zyz = 0 on S,. Thus, 

s B,l(p)pdA 2 0 (4.9) 
SC 

and the functional F(p) is convex. Hence, the problem of minimizing (4.7) is equivalent to 
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s (B,,(po) +.MP - po)dA 2 0 VP > 0. (4.10) 
s, 

It implies that the linear part of the increment of the functional F(p) should be non-negative 
if F(p) attains its minimum value for p = po, Let p. be the solution of the aforestated 
variational problem. We can write it as 

where 

4~~) = inf I(P), 
PZO 

(4.11) 

l(P) = 
s 

V%,~PO~ +S)pdA. {4.12) 
s, 

Since 1(O) = 0, we have l(po) IS 0. Assume that l(po) -K 0. Then for p = hp,, ,I > 1, 
l(p) < Qp,), which contradicts (4.12). Hence, 

and 
4Pof = 0 

[Z+-Z-](po)pdA>O Vp20, 

(4.13) 

(4.14) 

which is an integral form of boundary conditions (4.1) and (4.2). If functions p. and 
[Z’ - Z- ](po) are continuous, conditions (4.1) and (4.2) can be obtained in the local form. 

In order to prove the converse, let p. be a solution of the problem defined by equations 
(4.1) and (4.2). Thus, 

B,i(PO) +fr 0 (4.15) 
and 

Eh,(Po) +flPo = 0. (4.16) 

Therefore, inequality (4.10) is satisfied. The regions where conditions (2.1) or (2.2) hold are 
determined by function p. after the solution of the variationaf problem has been found. 

We now consider the problem given by (4.3) and (4.4) for the determination of friction 
forces. Substitution from (3.2) and (3.30) into (2.5) gives 

where 
s = Y* - B*(r), (4.17) 

v* = v + v,$G(P) - &l(P)) + gp:,(P) - &l(P)), 

B*(7)= - K#2(7) - &t7)) - I:&&(r)- BAT)). 

The elements of matrix operators S& are symmetric with respect to pairs (x, y) and (x’, y’). 
The differentiation of B& with respect to x and y yields skew-symmetric and singular 
kernels. Hence, 

r”eB*(r’)dA = - 
s 

r’*B*(r’)dA, (4.20) 
s, 

z-B*($dA = 0. (4.21) 

Consider the following variational problem. Find 7 such that 

P(7) = 
s 

[~PklS(7,Pk)l- 7*s(73Pk)ldff, (4.22) 
Ek 

where s is determined by v* and p = pk takes on a minimum value for every IT) < PPk. We 
assume that the contact area Ek is determined by taking p = pk and 7 = 7k _ 1. Due to (4.21), 
we can rewrite (4.22) as 

z?(f) = I bk bk pkfl - r*v*] dA. (4.23) 
Ex 



Rolling/sliding of a linear elastic body 341 

Let r0 be a solution of the problem defined by equations (4.3) and (4.4). Then 

%*s(%) = PPpk Is( (4.24) 

and 9(7,-,) = 0. Since Y(7) 2 0, _Y takes on its minimum value at a solution of the problem 
given by (4.3) and (4.4). In order to prove the converse, we regard functions 7 and s as 
independent variables constrained by 

s - v* + B*(7) = 0, (4.25) 

and introduce the Lagrangian 

P(r,s,l)= 
s 

[/q_+lsI - 7-v* - l.(s - v* + B*(r))]dA, (4.26) 
Ek 

where Iz is a Lagrange multiplier. By varying the argument 7 in 8(7, s, A), we get the 
following necessary condition for the minimum of 2’(7, s, A) at the point 7 = 70, s = so: 

- 

s 
b.(r- ro)dA 2 0 VI71 <c(pk, 

& 
where 

b = so + B*(ro - A). 

We can rewrite (4.27) in the form 

(4.27) 

(4.28) 

sup s bardA = s, b-rod/l. 
111 s PP~ EA 

(4.29) 

Using results from convex analysis, we get 

(4.30) 

which when combined with (4.29) gives 

/.ipklbl - ro.b 3 0. (4.3 1) 

If we vary the argument s in S(7, s, it), we obtain the condition for the minimum of 2 in the 
form 

P 

or 
J bk(bl - ISol) - n-6 - so)] dA 2 0 

Ek 

s 
Ed bkb’l - A.sldA - [~~kl%l - I.so]dA 2 0. 

(4.32) 

(4.33) 

Assume now that, for some s = s*, the first term on the left-hand side of the inequality (4.33) 
is negative, and consider inequality (4.33) for s = OS*, where w > 0. We have 

W E,[&$Is*I-~‘s*]dA- 
s 5 

[ppk[sOl - I.so]dA 2 0. (4.34) 
E* 

For sufficiently large o the sign of the left-hand side in (4.34) is determined by the first 
negative term that contradicts the inequality. Therefore, 

J CPP~ISI - A.s]dA L 0 vs. 
4 

(4.35) 

Setting s = 1 in (4.35) gives 

5 
tll(ppk - MOdA 2 0, (4.36) 

& 
and hence 

111 5 pPk* (4.37) 

For sufficiently small o the sign of the left-hand side in (4.35) is governed by the second 
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s C~~/clsol - A.s,ldA I 0, 
& 

which holds only if 

s [ppklsol - I.s,,]dA = 0. 
El, 

Equation (4.39) is equivalent to 

so + B*(ro - A) = x70, (Y 2 0, 

cc(1701 - pp) = 0 in Ek. 

Consider the quadratic form 

W(A - 7O,I, - 70)= - 

s 

(12 - ro).B*(l - 70)dA. 
E, 

Due to (4.21) we have 
w(n - 70,3, - 70) = 0, 

and substitution from (4.40) into (4.42) yields 

W(I,-7,,IZ-to)= 
s 

c~(l.7~ - ro.ro)dA + (70. so - 2. so) dA = 0. 
& s Ek 

Recalling that CI 2 0 and A is arbitrary, we conclude that 

(4.38) 

(4.39) 

(4.40) 

(4.4 1) 

(4.42) 

(4.43) 

(4.44) 

s bptclsol - so.roldA = 0, 
El, 

which when combined with the inequality 

I701 I PPk 

represents boundary conditions (4.3) and (4.4) in an integral form. For continuous 7. and so, 
the integral form implies the local form of conditions (4.3) and (4.4). 

The slip and adhesion subareas where (2.4) and (2.3) hold, respectively, are determined by 
the function 7O after the variational problem has been solved. 

5. AN EXAMPLE 

We study the motion of a rigid spherical ball of radius R on a transversely isotropic layer 
bonded to a rigid half-space and assume that 

E= h/a< 1, (5.1) 

where a is the radius of the contact area. We further assume that 

du au 
ax@‘= 

u(x, Y, h) w(x, Y, h) 
h 3 

h 

By using (5.2) and Hooke’s law, we obtain 

pb, y) = - y w(x, y, h) = &z2 - x2 - Y2)> (5.3) 

7&y) = yu(x, Y, h), 

(5.2) 

(5.4) 

(5.5) 

where P is the total vertical load acting on the contact area. Johnson [15] compared the 
solution of the form given by (5.3)-(5.5) for the indentation of a rigid cylinder in an isotropic 
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layer with the numerical results of Meijers [3] and concluded that approximation (5.2) 
yields satisfactory results if E < 0.5 and v < 0.45. 

We first assume that a steady state has been reached and 

u,” = (V - CM)/V, v,” = 0 (5.61 

do not vary with time. Subsequently, we will study the evolution problem. There are two 
possibilities; either vz is known and the frictional forces are to be determined, or the 
resultant frictional force is known and v,” should be found. For solutions of the form (5.4), 
T, and z,,, are uncoupled. Here we seek a solution of the problem for which ryz ~3 0, sy = 0, 
and set t = r,, and s = s,. From (2.6) and (5.4) we obtain 

vh az s=v,O+---. 
c44 ax 

(5.7) 

Thus, we can solve the problem on a line y = constant. We now determine the slip and 
adhesion zones on this line. 

Due to (5.7) z should be a linear function of x within the adhesion zones and according to 
(5.3) it should be a parabolic function of x within the slip area. Since &/6+x = constant in all 
possible adhesion zones [see Fig. 2(a)J and a parabolic function cannot be conjugated 
continuously with different affine functions having the same slope [Fig. 2(b)], we conclude 
that there can be at most one adhesion zone. In order to determine its location on the line 
y = y,,, we first assume that it is situated between the front and back slip zones. Since 

(5.8) 

the slip condition at the edge xO(yO) of the front slip zone can be written as 

0 
CC 

VW33 
------x0 >o. 

~44R 
(5.9) 

Inequality (5.9) asserts that the slope 

v,” c44 k, = - 
Vh 

of the affine distribution of 7 inside the adhesion zone [Fig. 2(c)] exceeds the limiting value 
ke . Therefore, only one front adhesion zone and one back slip zone arc possible inside every 
segment of the contact line y = y. [Fig. 2(d)]. The distribution of the frictional force on this 
line is given by 

tic33 2 -(a - x3 - y’) 
2Rh 

if - (a2 - y2)“2 5 x I I,, (5.11) 

r(x, Y) = 
0,” c44 

- i;-i;-(X - (a2 - y2)‘j2) if Z, 5 x < (a2 - y2)lf2, (5.12) 

c d 

Fig. 2. Different possible locations of the adhesion and slip zones. 

NLM 29:3-F 
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where 
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(5.13) 

The dimensionless parameter B being proportional to c44/c33 is a measure of the anisotropy 
of the material of the layer. For an isotropic material 

c44 1 - 2v 

c33=2(2- 
(5.14) 

The value of c44/c33 for different solid lubricants can be determined from the data given in 

Cl0 
The magnitude of the maximum frictional force within the contact area can be found 

from 

(5.15) 

(5.16) 

and the total frictional force T is given by 

T = G [0.25n + py*(13 + 0.5f12)/12 - 0.5(1 + fl’)arcsiny*], (5.17) 

where 

p+ y* = (1 - 0.25/?2)“2. (5.18) 

If the magnitude of the total frictional force T is fixed, the kinematic parameter u,“/ V can 
be determined from equation (5.17). In Figs 3-5, boundaries of the adhesion zones and the 
variations of T and rrnax with v!j’/V are depicted for different values of the non-dimensional 
parameters fl and B. In Fig. 6 we have plotted, for different values of T’ = T/(pc33a4/Rk), 
the variation of kinematic parameter o,“/V with B. 

We now study the evolution of motion of the homogeneous spherical ball under the 
action of a normal force P and a moment MO (e.g. see Fig. 7) and set R = R,, I = I,, V = V, 

-1.0 -0.8 -0.5 -0.2 0.0 0.3 0.5 0.8 1 .o 1.3 1.5 

x/a 

Fig. 3. Boundaries of adhesion/slip zones for different values of the non-dimensional parameter 
fJ = Bv,ofV. 
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Fig. 4. Variation of the resultant frictional force with the kinematic variable u.j/P’for different values 
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Fig. 5. Variation of the maximum value of the tangential tractions at the contact surface with the 
kinematic variable v,"/V for different values of 8. 

to shorten the notation. Equations (2.7) and (2.8) take the form 

Mv=-T, 

liz= TR+Mo. 

(5.19) 

(5.20) 

From (5.19), (5.20) and the definition of rigid slip velocity, we obtain 

2.5Mo 
Mzi,O= -3.5lT)+--, (5.21) 

where the function T of u:/V is given by (5.17), and we have used 

MR2 
- = 2.5 

I 
(5.22) 
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Fig. 6. Variation of the rigid slip velocity with B for different values of the resultant frictional force. 

Fig. 7. Schematic sketch of the evolution problem studied. 

for a homogeneous spherical ball. From (5.19) and (5.21) we conclude that 

5 Mot 
V(t) = V(0) + ; [t&t) - u,o(O)l + 7 MR, (5.23) 

which relates the speed of the center of mass of the ball to its slip velocity. This is an example 
of the interaction between the contact forces and the motion of ball through v,” and V. The 
evolution of the kinematics depends upon contact stresses through the resultant frictional 
force. 

The non-stationary problem involving the frictional contact between a moving elastic 
body and a stationary one has been studied by Spector and Batra [17]. They showed that 
the evolution of the motion of the body can be split into two phases. During the first phase, 
which is of relatively short duration, surface tractions at the contact surfaces evolve rapidly, 
and the center of mass velocity and the angular velocity of the body can be taken to be 
constants. The frictional forces and the slip velocity approach limiting values which serve as 
initial conditions for the outer phase of the solution of the problem. The evolution of 0,” in 
the first phase obeys 

+ 2.5% = 0, (5.24) 

where F is the resultant frictional force at the contact surface and is computed from the 
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Fig. 8. Evolution of the rigid slip velocity for different values of the applied resultant tractions. 

solution of the non-stationary problem. For limiting values of vz, we can replace Fin (5.24) 

by T given by (5.17). 
The processes studied here correspond to the outer phase, which means that the initial 

condition for (5.21) should be determined from (5.24) and hence it depends on the magni- 
tude of the applied moment. 

The evolution of the rigid slip velocity obtained by integration of (5.21) and plotted in 
Fig. 8 indicates that it increases almost linearly with time and its magnitude increases with 
the magnitude of the applied moment. 
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APPENDIX 

[d(h, r)] = diag(e - v,rh ,e ,e- v,rh v,rh v,rh ~ v,rh 
,e ,e ,e wh), 

h(vz) o dvz 1 
-~ 

dl 4 
f(v2) o 

4 

Cc,-’ =’ 
2 

0 1 0 0 1 

0 1 0 0 -1 

Cl1 - c44vz 
f(v) = > 

Cl3 + c44 
h(v)=+-zf(v)]. g(~)=~::;;;:‘, 

d, = vlh(Vz) - vzh(v1h 4 =f(v,)g(vZ)-f(vZ)g(v,). 


