
Pergnmon ant. I Non-Lineor Mechanics. Vol. 30, No. 5, pp. 719-725, 1995 
Copyright 0 1995 Ekvier Science Ltd 

Printed in Great Britain. All rights rc~mcd 
002~7462/95 $9.50 + 0.00 

OOZO-7462(95)00027-S 

MIXED VARIATIONAL PRINCIPLES IN NON-LINEAR 
ELECTROELASTICITY 

J. S. Yang 

Department of Mechanical Engineering, Aeronautical Engineering and Mechanics, Rensselaer 
Polytechnic Institute, Troy, NY 12180, U.S.A. 

and 

R. C. Batra 
Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State 

University, Blacksburg, VA 24061-0219, U.S.A. 

(Received 4 January 1994; in revised form 24 November 1994; accepted infinalform 22 February 1995) 

Abstract-We discuss several mixed variational principles which generalize existing variational 
principles in the non-linear theory of electroelasticity. 

1. INTRODUCTION 

Piezoelectric ceramics used in smart structures are often subjected to large electric fields. 
Tiersten Cl] has derived the fully non-linear theory of electroelasticity, has specialized it to 
the case of large electric fields but infinitesimal mechanical deformations [2], and has 
derived the corresponding non-linear two-dimensional plate equations [3]. This paper is 
concerned with various mixed variational principles for the non-linear theory of electroelas- 
ticity. Mixed variational principles are important in theory and many applications in 
elasticity [4], for example, in the solution of problems by the finite element method, the 
mixed variational principles help determine accurately the stresses, displacements and the 
electric field. A few mixed variational principles for the linear electromagnetics have 
recently been proposed by Felippa and Schular [S]. Variational principles for the linear 
theory of electroelasticity, or the theory of piezoelectricity, are of interest because of the 
study of smart structures [6], and have been proposed [7,8]. In this paper, for the fully 
non-linear theory, existing variational principles involving elastic stress tensor and electric 
field or polarization vector are generalized to obtain mixed variational principles for all 
field variables and constraints have been accounted for by the method of Lagrange 
multipliers. Variational principles in terms of the total stress tensor and electric displace- 
ment vector are also derived; these are more consistent in form with the mixed variational 
principles of the linear theory. 

2. GENERALIZATION OF TOUPIN’S VARIATIONAL FORMULATION 

In the reference configuration, let the coordinates of a material particle with respect to 
a rectangular Cartesian coordinate system be X,, the spatial region occupied by the elastic 
dielectric be ‘v, the boundary surface of I/ be S, and the unit exterior normal to S be iVK. In 
the current configuration, let the Cartesian coordinates of the material particle be &, and 
the spatial region occupied by the elastic dielectric be v. The deformation of the material is 

described by the function x(X) which also depends on time t for dynamic problems. 
Throughout this paper, a repeated index implies summation over the range of the index, 
and a comma followed by an index k or K stands for partial differentiation with respect to 

Contributed by K. R. Rajagopal. 

719 



720 J. S. Yang and R. C. Batra 

xk or X,. Toupin’s non-linear elastic dielectric material [9] is characterized by the following 
functional [lo] : 

r(x, p? 4) = c--&bk,L, k = ) - $.kpk + ho&k&k + PfkXkldu (1) 

where 4 is the electric pOtentiii1 related to the electric field & by Ek = -I$,~, p is the mass 
density in the current configuration, e. is the permittivity of free space, Pk is the electric 
polarization vector, xk = Pk/p is the polarization per unit mass,fk is the prescribed body 
force per unit mass, and x iS an energy density function. The term &o +,k f$,k/2 represents the 
part of the energy contained exclusively in the electric field which is independent of material 
behavior, and the remaining terms represent the part of the energy due to the polarization 
and deformation of the dielectric body. With [ 11 J 

y = det(x& do = Y-dV, PO=Py 

8~ = &J&L = -4,~ 

nK = ~~K,,PI = POXKJ~I 

EKL = hk.KXk,L - fiKL)> (2) 

equation (1) can be written in the referential configuration as 

I(x, IL 4) = 
I 

[-POWKL, HK) - ~J.K~K •I- f&o~xL,kX~,k~,Ld’,, •t PofkXkldvr (3) 
V 

where we have made use of the fact that c(&,L, ?rk) must have the form Z(EKL, II,) for it to 
be an objective function of its arguments [12]. In (2), 8s and I& are the electric field and the 
polarization vector in the material form, EKL the Lagrange-Green strain tensor, p. the mass 
density in the reference configuration, and 6 xL the Kronecker delta. In (3), X&k is under- 
stood to be determined by 

x1.X X K,k = hk. (4) 

With 

equation (3) becomes 

u(x, 4) = :EO~~L.k&.k~,Lbf (5) 

r(X, n, #) = s L-PoVEKL, ITK) - +,K~K •t- g@,(b) -I- Pofk%l dv. (6) 
V 

Using (4) and the relations given in [13], 6I = 0 gives 

cTKLxk,L + ~~K,~EO(~,~x~,k~,~~~,l - f~,Mx,,,~,,x,,,sk,)l.K + pOfk = 0 in v 

[nK + ~xK,k&O(-~.LXL,k)l.K = 0 in I/ 

&K-POE =O inV 
K 

where 

is the elastic stress tensor, and we have used (2)2. Equations (7)1,2 assume the following 
more familiar form when written in the spatial description 

[~-‘~l,M&.fL~k,L + Eo(Ekh - :&t&,~k~)l,~ + P_h = 0 

(pk + EoEk),k = 0. (9) 

The boundary terms are discussed below. 
Let the boundary surface S in the reference configuration be partitioned as 

S,UST = &US, = s 

S,n& = SdnSD = 0 (10) 
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where S, is the part of the boundary on which the final position of a material particle is 
prescribed, and on ST the traction vector, on S, the electric potential, on SD the surface free 
charge density are prescribed as 

NK[n~ + ~&.kd-h.&.,k)I = D on SD (11) 

where Fk and d are measured with respect to the surface area in the reference configuration. 
The surface free charge density D is usually zero. 

To obtain mixed variational formulations, we write the functional (6) in the following 
constrained form: 

rltxk, EKL, 4, bd = 
s 

C-POWKL, l&c) - 6,KnK + =%h d’) + POhXkl dV 
V 

with constraints 

EKL = &k.K xk, L - SKL) in v 

xk = iik on S, 

(12) 

C#I = 6 on S, (13) 

where we have added boundary terms involving surface tractions and charge density for 
a complete treatment of the problem. Then, by using the method of Lagrange multipliers, 
we obtain the following functional: 

rZ(xk, &CL> TKL, (6, nKt 

= 
I 

v (-Po~(EKL, HK) - $,K~K •I- TKL[EKL - 4tXk.KXk.L - 6~~11 

+ 9(X, ‘$) + PohJk)d~ 

+ 
s 

txk - gkJNKcTKLxk,L + ~xK,,EO(~,,x,,k~,NxN,~ s 
I 

- 
h$,MxM,m~,NxN,m~kd dS 

•f 
s 

s1 (b - ~)NK[~I, •I- ~xK,kh(-~.LXL,k)ldS 

+ TkXkdS + h$ dS (14) 

in which variables are not subjected to any constraints. The stationary conditions of I’, are 
equations (7), (8) and 

EKL - fbk,KXk,L - 8KL) = 0 in v 

xk = .fk on S, 

NK[TKLxk,L + ~xK,,EO(~,MX~,k~,NXN.I - ~~,hfxM,rn~,NxN,rn~kdl = Tk on ST 

c# = 4 on S, 

NK[nK + ~xK.kEO(-~,LXL.k)l = D on SD. (15) 

Equations (7), (8) and (15) are the complete set of equations and boundary conditions for 
non-linear electroelasticity. 



122 J. S. Yang and R. C. Batra 

The functional I’, can be used to generate other functionals through Legendre trans- 
forms. For example, with the introduction of 

PO WuhL, s;,) = POWKL, HK) - &KHK (16) 
l-‘, is changed to a functional of xk, E KL, TKL, C#J, & and l&, with the constraint 8 = -4,K. 
We account for this constraint by using Lagrange multipliers and obtain equations (7),,,, 
(15) and 

l&+po~=O in V 
K 

&-PO;= 0 inV 
KL 

S;,+4,,=0 in V (17) 

as the stationary conditions which are equivalent to (7) (8) and (15). This formulation is very 
general. It can be used to derive other variational principles. For example, if we use (17), 
and (15)r to express E KL and 8’ in terms of xk and 4, and require xk and 4 to satisfy ( 15)2, 4, 
we obtain the following functional: 

r&k, 4) = [-PO W(EKL, &K) + 2(X, 4) + Po_hk] dV 

+ &Xk dS + &J dS (18) 

which is the functional used in [ 14, 153 when boundary and body force terms are dropped. 

3. FORMULATIONS USING THE TOTAL ENERGY DENSITY 

We observe that the energy density _Y defined by (5) due to the electric field alone can be 
written as a function of EKL and G& as follows: 

z(EKL> &K) = :EO~xL,kxM.k~,Ldb 

= :&o(9pC&fL~M (19) 
where 

and also 

CXL. = Xk.KXk.L = 2EKr. + SK, 

Fc = det (C,,) (20) 

a.9 - = 
aEKL 

-~&,k&.,,~o(E&, - b%&,i&,) 

a_9 
j-& = yxK,kEoEk. (21) 

Hence if we introduce a total energy density W’(EKL, 8”) as 

POW ‘(EKL, JK) =PO W(EKL,E;,) - ~(EKL,&K) (22) 

we have 

awl 
--PO a& 

- = l& + ~xK,k&,,Ek = r&,(P, + &g&) = Fxx,kDk = 9K 

aw* 
PO a& 

- = TKL i- ~xK,kXL,~Eo(EkE~ - $E,E,&) = T1 (23) 

where Dk is the electric displacement vector, $@K its material form, and TkL is the total stress 
teAMOr. In terms of TkL and gK, (7),, 2 can be written as 

(T:LXk.K),K + POfk = 0 

9 - 0. K,K - (24) 
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While having clear physical interpretations, the separation of the energy into the part 
_Y due to the electric field only and the part due to the dielectric body makes the 
mathematical manipulations complicated. Inlinear theory, the electric displacement vector 
Dk is used more often than the polarization vector Pk. Various variational principles can 
also be formulated in terms of the total energy density, total stress tensor and the electric 
displacement vector. With the total energy density, we write (18) as 

rstxk, EKL, A&) = C-POWYEKL, &d + poXxhdJ” 

+ 6, T,‘x,‘dS + j/4dS (25) 

with constraints (13) and & = -4,K in V. 
Using Lagrange multipliers and the standard procedures for constrained minimization 

problems, we obtain as stationary conditions equations (23), (24), (15) and 

& + 4,K = 0 in I/ (26) 

which become (7)1,2, (15) and (17) once we specify that W ’ is given by (22). If a C’ is 
introduced through Legendre transform 

PoWGL,%) =PoW'(EKL,&) + J&S - T:LJ%L (27) 

we obtain a four-field functional in terms of xk, TkL, 4, and QK whose stationary conditions 
are (24) and 

4,K + p. g = 0 in V 
K 

act 

Xk.KXk,L - &CL) + PO- 
aGL 

=0 inV 

xk = %k on S, 

NKT;Lxk,L = Tk On ST 

q5 = 6 on S, 

NK$BK=li onSn (28) 

which are equivalent to (23), (24), (15) and (26). Different functionals introduced above may 
be considered as generalizations of those studied in linear piezoelectricity [S], or as 
generalizations of the ones for non-linear elasticity studied in [4]. 

Finally, we note that variational formulations for dynamic problems can be obtained by 
adding a kinetic energy term and integrating over a time interval, for example: 

r8(Xk,EK~, T:L> A%&) 

fl 

= 

s s 
dt $P : Oikik - PoW’VL &c;o - %&%c + 4.~) 

fo 

+ T~LCEKL -:(Xk,~xk.L - &,)I + PO_hk)d~ 

f, 

+ 

5 s fo 
dt $k - fk)NrcT:LXk,LdS 

+ (4 - +)N&&dS 

(2% 
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where a dot superimposed on a quantity indicates its material time derivative. The 
stationary conditions for r, are 

(%J~,L),K + ~0fk = ~0% in I/, trJ < t < Cl 

Ci3K,K=0 in V, to < t < tl 

awt 
L&+pOdB=O in I/, to<t<t1 

K 

TLL - p. $ = 0 in V, to < t < tl 
KL 

gK + 4.K = 0 in I/, to < t < t1 

EKL - kK&. L - 8KL) = 0 in VT to < t < tl 

when 

xk = %k on Sk? to < t < t1 

&T&,Xk,L = Tk On &-, to < t < t1 

C#I = $5 on S,, to < t c tl 

NK9K = D on SD, to < t < tl 

d&It = t,, = hk]t = t1 = 0. 131) 

4. CONCLUSIONS 

We have considered various functionals and shown that the vanishing of the first 
variations gives the pertinent governing equations and boundary conditions. Thus the 
solution of a boundary-value problem or an initial-boundary value problem entails Ending 
the stationary value of a functional. These variational principles are mixed in the sense that 
stresses, electric field, displacements and electric potential, etc., are considered as field 
variables. These mixed variational principles are often employed in the finite element 
solutions of problems involving cracks or other points of discontinuities. 
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