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Abstract

We use four linear constitutive relations to study "nite deformations of a biaxially loaded elastic membrane, triaxially
loaded cube, and simple extensional and simple shearing deformations of an elastic body. In each case, the body is
assumed to be isotropic and homogeneous. It is shown that only the neoHookean relation (a linear relation between the
Cauchy stress tensor and the left Cauchy}Green tensor) and the Signorini's relation (a linear relationship between
the Cauchy stress tensor and the Almansi}Hamel strain tensor) predict load}deformation curves that qualitatively agree
with most of the test observations. A similar conclusion holds when the body is assumed to be incompressible. ( 2000
Elsevier Science Ltd. All rights reserved.

Keywords: Biaxially loaded membrane; Load}deformation relations; Material instability; Simple extensional deformations; Simple
shear

1. Introduction

In a previous note [1] we considered the follow-
ing two linear constitutive relations to study the
simple extension and simple shear deformations of
a homogeneous isotropic elastic body:

S"j(trE)1#2kE, (1)

r"
j
2
(tr(B!1))1#k(B!1). (2)

Here S is the second Piola}Kirchho! stress tensor,
E the Green}St. Venant strain tensor, B the left
Cauchy}Green tensor, r the Cauchy stress, 1 the
identity tensor, tr the trace operator, and j and

k are LameH constants which satisfy j#2
3
k'0 and

k'0. It was shown that the axial nominal stress
vs. axial stretch curve in simple extension and
the shear stress vs. the shear strain curve in
simple shearing deformations predicted from con-
stitutive relation (1) do not qualitatively agree with
those observed experimentally. However, the cor-
responding curves obtained from constitutive rela-
tion (2) are in qualitative agreement with the test
observations. Here, in addition to (1) and (2) we use
the following two constitutive relations to study the
aforestated deformations of an elastic body as well
as deformations of a biaxially loaded isotropic elas-
tic membrane, and a triaxially loaded cube:

r"j(trA)1#2kA, (3)

TM "j(trAl)1#2kAl , TM "JRTrR, Al"lnU. (4)
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Fig. 1. The normalized shear stress, ¹
12

/k, vs. the shear strain,
k, for simple shearing deformations.

In Eqs. (3) and (4), A"(1!B~1)/2 is the Alma-
nsi}Hamel strain tensor, U is the right
stretch tensor in the polar decomposition F"RU
of the deformation gradient F, R is the rotation
tensor, and J"detF. Note that B"FFT,
and E"(FTF!1)/2. The eigenvalues of the
logarithmic strain tensor Al equal the natural log-
arithm of the eigenvalues of U, and the two tensors
have the same eigenvectors. The "rst Piola}Kir-
chho! stress tensor, T, is related to r and S as
follows:

r"TFT/J, T"FS. (5)

For in"nitesimal deformations, each one of the
constitutive relations (1)}(4) reduces to Hooke's
law. Also, each one of these four relations is objec-
tive and is also invertible in the sense that a strain
tensor can be expressed in terms of the correspond-
ing stress tensor. The principal axes of stress and
strain coincide, and a triaxial state of stress at
a point will produce a triaxial state of strain. Con-
stitutive relations (1) and (4) can also be expressed
in terms of r and B but such relations will be
non-linear.

Constitutive relation (1) was proposed by St.
Venant and Kirchho! (e.g. see [2]), (3) is a special
case of that proposed by Signorini, (2) is usually
known as the neoHookean material, and (4) has
been studied by Hill [3]. The deformations studied
herein are homogeneous; thus the balance of linear
momentum is trivially satis"ed.

2. Unconstrained materials

2.1. Simple shear

In rectangular Cartesian coordinates, consider
the simple shearing deformation

x
1
"X

1
#kX

2
, x

2
"X

2
, x

3
"X

3
, (6)

where x gives the present position of the material
particle that occupied place X in the reference con-
"guration and k is a constant. For the four consti-

tutive relations (1)}(4), the shear stress ¹
12

is
related to the shear strain k as follows:

¹(1)
12

"kk#A
j
2
#kBk3,

¹(2)
12

"kk,

¹(3)
12

"kk,

¹(4)
12

"

k

J1#k2/4
lnA1#

k2

2
#kJ1#k2/4B. (7)

Here ¹(1)
12

denotes the value of ¹
12

for the consti-
tutive relation (1). For j/k"20, the normalized
shear stress, ¹

12
/k, vs. the shear strain, k, is plotted

in Fig. 1 for the four constitutive relations. Whereas
for constitutive relations (2)}(4), the shear stress
depends only upon the LameH constant k, for consti-
tutive relation (1), it also depends upon j. For
rubber-like materials, j'k. Note that the shear
stress vs. the shear strain curve is concave upwards
for constitutive relation (1), it is concave down-
wards for constitutive relation (4) and is linear for
the other two constitutive relations. The shear
stress monotonically increases with k for constitut-
ive relations (1)}(3) but attains a maximum value of
1.3255k at k"3.0178 for constitutive relation (4).
Adopting the Considère criterion [4], i.e., the
material becomes unstable when the applied load
is maximum, the material described by (4) will
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Fig. 2. The normalized axial load, P/k, vs. the axial stretch, a, for
simple extensional deformations.

become unstable at k"3.0178. The normal stress
on planes X

2
"const. is given by

¹(1)
22

"A
j
2
#kBk2,

¹(2)
22

"

j
2
k2,

¹(3)
22

"!A
j
2
#kBk2,

¹(4)
22

"!

kk

J4#k2
lnA1#

k2

2
#kJ1#k2/4)B.

(8)

For k'0 and j'0, constitutive relations (1) and
(2) require that a tensile normal stress be applied to
planes X

2
"const. in order to produce simple

shear. However, constitutive relations (3) and (4)
require that this normal stress be compressive.
Thus, in the absence of these normal stresses, the
Poynting e!ect (e.g. see [2]) predicted by constitut-
ive relations (1) and (2) is opposite to that given by
constitutive relations (3) and (4). For j/k"20, the
magnitude of the Poynting e!ect predicted by con-
stitutive relation (4) is much smaller than that for
constitutive relations (1)}(3). For constitutive rela-
tions (1)}(3), the magnitude of the normal stress and
hence of the Poynting e!ect is proportional to
k2; for constitutive relation (4) this holds for k;1.
The normal stresses on planes X

1
"const. and

x
1
"const. are also di!erent for each constitutive

relation.

2.2. Simple extension

Following the usual approach (see e.g. [1]) we
obtain the following relations (9) between the axial
load, P, per unit undeformed area and the corre-
sponding axial stretch, a, in a prismatic isotropic
and homogeneous elastic body deformed in simple
extension:

P(1)"k
3j#2k
2(j#k)

a(a2!1),

P(2)"kA
3j#2k
2(j#k)B

2
(a2!1)A1!

j
3j#2k

a2B,

P(3)"kA1#
2(j#k)

j!(3j#2k)a2B,

P(4)"k
3j#2k
j#k

1

a
ln a. (9)

These correspond respectively to the constitutive
relations (1)}(4); the load deformation curves are
exhibited in Fig. 2 for a material with j/k"20.
According to the Considère condition [4], an insta-
bility occurs when the axial load per unit unde-
formed cross-sectional area reaches an extreme
value. We "nd that an instability initiates when

a"0.577, J(2j#k)/j) and 2.718 for constitutive
relations (1), (2) and (4), respectively. For the consti-
tutive relation (3), dP/da'0, and the load is
a monotonically increasing function of the stretch.
The load increases from k(3j#2k)/j at aP0 to
R for a"(j/(3j#2k))1@2,aH. This is unphysical
because an axial tensile load is predicted by the
constitutive relation for extremely large compres-
sive deformations. However, for a'aH, the load
monotonically increases from !R to k with
an increase in the value of the axial stretch. Thus,
the load is discontinuous at a"aH and the
constitutive relation predicts unphysical behavior
for stretches close to aH. For constitutive relations
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Fig. 3. The Poisson function, l, vs. the axial stretch, a, during
simple extensional deformations of a prismatic body.

(1), (2) and (4), the axial load, P
*/4

, at the initiation
of an instability is respectively given by

P(1)
*/4

"!

k

J3

j#2k/3

j#k
,

P(2)
*/4

"

k
4j

(3j#2k),

P(4)
*/4

"

k
2.718

3j#2k
j#k

. (10)

Hence, the magnitude of the axial nominal stress at
instability is of the order of the magnitude of the
LameH constants.

The Poisson function (e.g. see [9]),
l(a) ("(1!b)/(a!1), where b is the stretch in
a lateral direction), for the four constitutive rela-
tions (1)}(4) has the expressions

l(1)(a)"A1!A
3j#2k
2(j#k)

!

ja2

2(j#k)B
1@2

BN(a!1),

l(2)(a)"A1!A
3j#2k
2(j#k)

!

ja2

2(j#k)B
1@2

BN(a!1),

l(3)(a)"(1!((j#k)/((3!a~2)j/2#k))1@2)/

(a!1),

l(4)(a)"(1!a~j@2(j`k))/(a!1),

and its variation with a is depicted in Fig. 3. Note
that the Poisson ratio de"ned as

l
0
"lim

a?1

l(a)"
j

2(j#k)
,

has the same value for each one of the four consti-
tutive relations. However, the Poisson function for
constitutive relations (1) and (2) is the same but it
di!ers noticeably from those for constitutive rela-
tions (3) and (4). When l(a)'1, the contraction per
unit length of line elements in the lateral direction
will be greater than the elongation per unit length
in the axial direction. For a homogeneous isotro-
pic elastic body, the usual expectation is that
0(l(a)(1. Whereas constitutive relations (1) and
(2) violate these inequalities on l(a) for simple ex-
tensional deformations with a*1.7097, constitut-

ive relations (3) and (4) do so for a(0.7587 and
0.3488, respectively.

2.3. Biaxial loading of a membrane

2.3.1. Equal dead loads on the edges
In this subsection, we follow MuK ller [5] who

studied the stability of a biaxially loaded elastic
membrane made of a Mooney}Rivlin material. As-
sume that dead loads F

1
and F

2
per unit unde-

formed length are applied, respectively, in the
x
1

and x
2

directions to the edges of an isotropic
and homogeneous rectangular membrane whose
thickness in the unstressed reference con"guration
is uniform and equals t

0
. There are no loads ap-

plied to the top and bottom surfaces of the mem-
brane. Thus

F
1
"t

0
¹

11
, (11a)

F
2
"t

0
¹

22
, (11b)

F
3
"0"¹

33
. (11c)

Here and below we use rectangular Cartesian coor-
dinates with x

3
-axis in the thickness direction. Let

the homogeneous stretches produced in the mem-
brane along the x

1
, x

2
and x

3
axes be a, b and

c, respectively. Evaluating the stretch c from
the boundary condition (11c), requiring that
R'c'0, and setting F

1
"F

2
, we arrive at the
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following relations between a and b for the consti-
tutive relations (1)}(4).

CR1: (a!b)[d(a2#b2!2)#a2#b2

#ab!1]"0, (12a)

a2#b2!3((1!d)/d, (12b)

CR2: (a!b)[d(a2#b2!2)!(1#ab)]"0,

(12c)

a2#b2!3((1!d)/d, (12d)

CR3: (a!b)[d(a2#b2!2a2b2)#a2#b2

#ab!a2b2]"0, (12e)

1

a2
#

1

b2
!3((1!d)/d, (12f)

CR4: (a!b)d ln(ab)#ln(ba/ab)"0. (12g)

The pre"x CR1 implies that the relation following
it between a and b is for the constitutive relation 1.
In (12a)}(12g) d"j/(j#2k). The constraints (12b),
(12d) and (12f) on the values of a and b are imposed
by the requirement that R'c'0. The constitut-
ive relation (4) does not restrict the admissible
values of a and b. Note that in each case, a"b is
a solution implying that equal axial edge loads per
unit undeformed length produce identical stretches
in the loading directions. However, there may be
other solutions for which aOb and which depend
upon the value of d. Regarding b as a positive-
valued function of a, we conclude from (12a), (12c)
and (12e) that unequal axial stretches with equal
biaxial loading are possible provided that

CR1: (1#d)a2!(1#2d)(0,

CR2: (1!4d2)a2#4d(1#2d)'0,

CR3: (1#2d)a2!(1#d)'0, (13)

respectively, for constitutive relations (1)}(3). The
corresponding relations between a and b are

CR1:

b"
!a#Ja2!4(1#d)[(1#d)a2!(1#2d)]

2(1#d)
,

(14a)

CR2:

b"
a$Ja2!4d(da2!2d!1)

2d
, (14b)

CR3:

b~1"

!a~1#Ja~2#4(1#d)[(1#2d)!(1#d)a~2]

2(1#d)
.

(14c)

Note that a and b must also satisfy inequalities
(12b) (12d) and (12f), respectively, for constitutive
relations (1)}(3). The solution (14b) with the minus
sign before the square root is valid only when
1#2d!da2(0. Multiple roots of Eq. (12g), if
they exist, can be found numerically. For j"20k,
Eq. (12a) also has unequal roots for 0(a(1, Eq.
(12e) for a*0.823, and the other two Eqs. (12c) and
(12g) do not have unequal roots. In order to ascer-
tain which one of the multiple solutions is realized
experimentally, we need to investigate the stability
of these solutions. For stretches prescribed on the
edges, the solution that gives lower value of the
stored energy will be stable. However, if dead loads
are prescribed on the edges, then the con"guration
with the lower value of the potential energy
=!F

1
a!F

2
b will be stable; e.g. see [5]. Here

="=(a,b) is the stored energy function for the
material of the membrane. Except for constitu-
tive relation (1), the stored energy function = for
the other three constitutive relations is unknown;
hence the stability of solutions has not been
studied. Treloar's experimental data [6, Table 1]
indicates asymmetric equilibrium stretches in a rec-
tangular rubber sheet subjected to in-plane equal
biaxial loads applied perpendicular to the sheet edges.

2.3.2. Equal stretches on the edges
Consider the case of a hard loading device

which applies equal stretches on all four edges of
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Fig. 4. The normalized axial load per unit thickness, F/kt
0
, vs.

the axial stretch, a, during the biaxial stretching of a membrane.

a homogeneous and isotropic rectangular mem-
brane. Assume that the state of deformation in the
membrane is such that equal stretches are produc-
ed. Then the load deformation relations for the four
constitutive relations (1)}(4) are

F(1)/(kt
0
)"(1#2d)a(a2!1), (15a)

F(2)/(kt
0
)"(1#2d)a(a2!1)(1#2d(1!a2))1@2,

(15b)

F(3)/(kt
0
)"(1#2d)Aa!

1

aB((1#2d)!2d/a2)~1@2,

(15c)

F(4)/(kt
0
)"2(1#2d)(ln a)/a, (15d)

where F is the edge load per unit undeformed
length. Fig. 4 evinces these load}deformation rela-
tions for d"10

11
. The right-hand side of Eq. (15b)

is real-valued only for a(1.245. Like the
load}elongation curves for simple extension which
essentially coincided for values of a close to 1.0, the
load}elongation curves for the biaxially loaded
membrane overlap for values of a near 1.0. The
qualitative nature of the load}elongation curves for
constitutive relations (1), (3) and (4) for the biaxially
loaded membrane is similar to the corresponding
curves for the axially loaded prismatic body. The
stretch corresponding to an extreme load that also

satis"es inequalities (12b), (12d) and (12f) with
b"a is given by

CR1: a"0.577,

CR2: 8a4!(10#3/d)a2#(2#1/d)"0,

a2((1#2d)/2d,

CR3: no value of a,

CR4: a"e"2.718. (16)

Thus an instability occurs at universal stretch
values of 0.577 and 2.718 in a very thin plate made
of materials described by constitutive relations (1)
and (4) and stretched by equal amounts in the two
lateral directions. Whereas the membrane made of
material (1) will become unstable in compression,
that made of material (4) will experience an instabil-
ity during extensional deformations. For constitut-
ive relations (1) and (4), the load, F

*/4
, at the instant

of instability equals, respectively,

F(1)
*/4

/(kt
0
)"!0.385(1#2d),

F(4)
*/4

/(kt
0
)"0.736(1#2d). (17)

2.3.3. Diwerent dead loads on the edges
We now investigate the case when loads (11a)

and (11b) are unequal, i.e., F
1
"/F

2
with /(1.

Inequalities (12b), (12d) and (12f) still apply for
constitutive relations (1)}(3), respectively. The rela-
tions between b and a for the four constitutive
relations are

CR1: b3!
ad

/(1#d)
b2#bA

a2d!1!2d
1#d B

#

a
/A

1#2d
1#d

!a2B"0, (18a)

CR2: b3!
a/(1#d)

d
b2#bA

1#d
d

a2!
1#2d

d B
#a/A

1#2d
d

!a2B"0, (18b)

CR3: b3(a2(1#2d)!(1#d))!b2(a2(1#2d)

!d)/a!bda2#/a3(1#d)"0, (18c)

CR4: d(b!/a) ln ab#b ln a!/a ln b"0.

(18d)
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Fig. 5. The relationship between the two axial stretches, a and b,
in a biaxially loaded membrane subjected to unequal surface
tractions on the two edges.

These equations can be solved numerically. It is
possible that for some values of / multiple roots
exist in the range a, b'0. For /"0.2 and d"10

11
,

Eq. (18a) is satis"ed by two positive values of b for
a close to 1.0. However, for a'1.2, there is only
one solution of Eq. (18a). Eq. (18b) has two solu-
tions for b when 0(a(1, no admissible solution
for 1(a(1.8 and only one solution for a'1.8.
Eq. (18c) has a unique admissible solution for
0(a(0.8, and two admissible solutions for
0.8(a(1.15 and also for a greater than about
8.6.

2.3.4. Equal surface tractions on the edges
When equal surface tractions f

1
, f
2

per unit cur-
rent area are applied on the edges of the membrane,
as will be in the case of pressure loading, then
constitutive relations (2)}(4) require that b"a but
constitutive relation (1) gives

b"a, b"S
1#2d
1#d

!a2.
(19)

Inequality (12b) must hold for constitutive relations
(1)}(3).

2.3.5. Unequal surface tractions on the edges
For the case of f

1
"/f

2
, /(1, the relationships

between b and a for the four constitutive relations
are given below:

CR1: b4/(1#d)!b2[a2d(!/#1)#/(1#2d)]

!a2(a2(1#d)!(1#2d))"0, (20a)

CR2: b2(d!/(1#d))#a2(1#d(1!/))

#(/!1)(1#2d)"0, (20b)

CR3: b2(d(1!/)(2a2!1)#a2(1!/)!1)

#a2(/(1#d)!d)"0, (20c)

CR4: a(1`d)~d("b((1`d)~d. (20d)

Whereas Eq. (20a) may have multiple solutions in
the range d, b'0, Eqs. (20b), (20c) and (20d) have
a unique solution b"b(a)'0. Numerical compu-
tations reveal that for /"0.2 and d"10

11
, Eq. (20a)

has two solutions for 0(a(0.3815 and
0.954)a(1.2, and only one solution for a'1.2.
Eq. (20b) has a unique solution only when

0(a(1.142, and Eq. (20c) for a'0.881. How-
ever, Eq. (20d) has a unique solution for all positive
values of a. The relationships between the values of
a and b for the four constitutive relations are exhib-
ited in Fig. 5.

2.4. Triaxial loading of a cube

We now consider a cube placed in a hard loading
device and stretched by an axial stretch a in each
direction. For the constitutive relations (1)}(4), the
load F per unit undeformed area is given by

FM (1)"a(a2!1),

FM (2)"a2(a2!1),

FM (3)"(a2!1),

FM (4)"
2 ln a

a
, (21)

where FM "2F/(3j#2k). The stretch at an extreme
load and hence at the initiation of a material insta-
bility and the corresponding non-dimensional axial
nominal traction equal

CR1: a"0.577, FM "!0.385,

CR2: a"0.707, FM "!0.25,

CR3: always stable,

CR4: a"2.718, FM "0.736. (22)
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Fig. 6. The normalized pressure, p/k, vs. the axial stretch, a, for
a triaxially loaded cube.

Constitutive relations (1), (2) and (4) predict mate-
rial instability at universal stretches of 0.577, 0.707
and 2.718; the corresponding loads and deforma-
tions are compressive for constitutive relations (1)
and (2) but tensile for constitutive relation (4).

For the case of equal nominal tractions, i.e., load
per unit undeformed area, applied on the faces of
the cube, each constitutive relation admits solu-
tions a"b"c, a"bOc, b"cOa, c"aOb,
and aObOc, where a, b and c are the axial
stretches. Rivlin [7] has given such solutions for
a cube made of a Mooney}Rivlin material.

For a cube subjected to a hydrostatic tension p,
the stretch a must be same in every direction, and
the pressure}stretch equations for the four consti-
tutive relations (1)}(4) are

p(1)"A
3

2
j#kBA

a2!1

a B, (23a)

p(2)"A
3j
2
#kB(a2!1), (23b)

p(3)"A
3j
2
#kB(1!1/a2), (23c)

p(4)"A
3j#2k

a3 Bln a. (23d)

Fig. 6 depicts the normalized pressure versus the
stretch for the four constitutive relations. For each

one of the four equations it is a monotonically
increasing function of a.

3. Incompressible materials

For an incompressible material, a stress tensor
equals the sum of two parts; one of these is not
determined by the deformation gradient and the
other is (e.g., see [2]). Analoges of constitutive rela-
tions (1)}(4) with the determinate part of the stress
tensor linear in a measure of the deformation are

S"!p(1#2E)~1#2kE, (24a)

r"!p1#k(B!1), (24b)

r"!p1#2kA, (24c)

TM "!p1#2kAl . (24d)

The hydrostatic pressure p cannot be determined
from the deformation "eld, but is completely deter-
mined by the balance of linear momentum and the
traction boundary conditions prescribed either on
a part or on the entire boundary of the body.

The deformation "elds envisaged below are ho-
mogeneous. Thus, the determinate part of the stress
tensor is constant throughout the body. The bal-
ance of linear momentum requires that the pressure
"eld also be uniform.

3.1. Simple shear

For the deformation described by Eq. (6) the
relationships between the shear stress ¹

12
and the

shear strain k for constitutive relations (1)}(4) are

¹(1)
12

"kk(1#k2),

¹(2)
12

"kk,

¹(3)
12

"kk,

¹(4)
12

"

k

J1#k2/4
lnA1#

k2

2
#kJ1#k2/4B. (25)

These relations are similar to Eqs. (7) for uncon-
strained materials. The pressure "eld, p, can be
determined by requiring that any one of the planes
x
1
"const., X

1
"const., and x

2
"X

2
"const. be

free of normal tractions. When normal tractions on
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Fig. 7. The normalized axial load, P/k, vs. the axial stretch, a, for
simple extensional deformations of an elastic incompressible
prismatic body.

Fig. 8. The relationship between the two axial stretches, a and b,
in a biaxially loaded incompressible elastic membrane subjected
to equal edge dead loads.

planes X
1
"const. (or X

2
"const.) are taken to be

zero, we get ¹
22

"0 (or ¹
11

"0) and there is no
Poynting e!ect for each one of the four constitutive
relations (24a)}(24d).

3.2. Simple extension

The axial load P per unit undeformed area is
related as follows to the corresponding axial stretch
a in an isotropic and homogeneous prismatic elas-
tic body:

P(1)"kAa3!a!
1

a3
#

1

a2B,

P(2)"kAa!
1

a2B,

P(3)"kA1!
1

a3B,

P(4)"
3k ln a

a
. (26)

The dependence of the normalized axial load, P/k,
upon the axial stretch, a, is exhibited in Fig. 7 for
the four constitutive relations. For 1)a)2.5, the
load}stretch curves are close to each other for con-
stitutive relations (24b)}(24d) and these are concave
down, but that for the constitutive relation (24d) is

concave upwards. Whereas dP/da'0 for consti-
tutive relations (24a)}(24c) it equals 0 at
a"e"2.718 for the constitutive relation (24d) and
the corresponding value of P is 1.1036k.

3.3. Biaxial loading of a membrane

For loads given by (11a)}(11c) the pressure "eld
can be determined from Eq. (11c). Relations be-
tween stretches a and b for the case of equal edge
dead loads F

1
"F

2
are

CR1: (a!b)[1!a2b2#a5b5(a2#b2

#ab!1)]"0, (27a)

CR2: (a!b)[1#a3b3]"0, (27b)

CR3: (a!b)[a2#b2#ab!a4b4]"0, (27c)

CR4: a ln b2a!b ln a2b"0. (27d)

These relations are universal in the sense that they
do not depend upon the shear modulus k. As for
unconstrained materials a"b is a solution of each
one of the Eqs. (27a)}(27d). Except for (27b) whose
only solution is a"b, other equations may also
have solutions with bOa and a'0, b'0. An
attempt to seek numerical solutions of these equa-
tions revealed that only Eq. (27c) has a solution
with aOb; this is shown in Fig. 8. When multiple
roots exist then the stable solution will minimize
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Fig. 9. The normalized edge load vs. the stretch in an incom-
pressible elastic membrane stretched equally in all directions.

either the stored energy or the potential energy
depending upon whether stretches or dead loads
are prescribed on the edges, respectively.

For a membrane placed in a hard loading device
which applies equal stretches on all four edges, the
relationships between the edge load F per unit
undeformed length and the stretch a are

F(1)/(kt
0
)"(a2!1)[a#(a2#1)/a9], (28a)

F(2)/(kt
0
)"(a!1/a5), (28b)

F(3)/(kt
0
)"(a3!1/a3), (28c)

F(4)/(kt
0
)"6(ln a)/a. (28d)

The load}deformation curves for the four constitut-
ive relations are plotted in Fig. 9. For a'1, the
F vs. a curves are concave upwards for the consti-
tutive relations (24a) and (24c) and concave down-
wards for the other two relations. The load}
deformation curves for the constitutive relations
(24b) and (24d) are close to each other. For Eqs.
(28a)}(28c) dF/da'0. As for the case of an uncon-
strained material, the edge load for a mem-
brane made of the material described by Eq. (24d)
attains an extreme value at a"e"2.718. For

F
1
"/F

2
, /(1, the corresponding stretches in

the two directions are related as follows:

CR1: A
1

a2b2
!1BA

/

a2b3
!

1

a3b2B#a(a2!1)

!/b(b2!1)"0, (29a)

CR2: A
/

b
!

1

aB#a2b2(a!b/)"0, (29b)

CR3: A
/

b3
!

1

a3B!a2b2A
/

b
!

1

aB"0, (29c)

CR4: a2b~a("b2a(~b. (29d)

It is possible that for some value of / multiple roots
exist in the range a,b'0. For /"0.2, only Eq.
(29c) could be satis"ed by positive values of a and
b and the relationship between the two is unique.

When equal surface tractions f
1
"f

2
per unit

current area are applied on the edges of a mem-
brane, then for constitutive relation (24b)}(24d)
a"b is the only possible solution. However,
for constitutive relation (24a), either b"a or

b"J1!a2. For the case of f
1
"/f

2
, the relation-

ships between b and a for the four constitutive
relations are as follows:

CR1:
1

a2b2
(1!/)A1!

1

a2b2B#a2(a2!1)

!/b2(b2!1)"0, (30a)

CR2: a2!/b2!
1

a2b2
(1!/)"0, (30b)

CR3: a2b2(1!/)!
1

a2
#

/

b2
"0, (30c)

CR4: a2~(b1~2("1. (30d)

The "rst three of these equations may have more
than one solution b"b(a)'0, however, Eq. (30d)
uniquely determines b in terms of a and /.

3.4. Triaxial loading of a cube

For a cube made of an incompressible isotropic
elastic material placed in a hard loading device that
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applies prescribed stretches on all faces of the cube,
the hydrostatic pressure and hence the load defor-
mation relation cannot be determined from consti-
tutive relations (24a)}(24d). When either one or two
pairs of opposite faces of the cube are kept traction
free, the problems become similar to those treated
above in Sections 3.2 and 3.3. For the case of equal
dead loads (surface tractions per unit undeformed
area) applied on all faces of the cube, each consti-
tutive relation admits multiple solutions for the
three axial stretches. A discussion of the stability of
these solutions requires a knowledge of the stored
energy function for each constitutive relation, and
is not pursued here.

4. Discussion

Each one of the four constitutive relations (1)}(4)
and (24a)}(24d) is consistent with the principles of
Continuum Mechanics (e.g. see [2]) and reduces to
Hooke's law for in"nitesimal deformations.

The constitutive relation (3) gives a stable re-
sponse for each one of the deformations studied.
For simple extensional deformations, the axial load
per unit undeformed area becomes in"nite at an

axial stretch of Jj/(3j#2k) and is discontinuous
at this value of the axial stretch. It predicts a tensile
axial load for very large compressive axial deforma-
tions. According to the constitutive relation (4), the
value of the deformation measure at the initiation
of material instability is independent of material
parameters.

Note that the discussion of structural instability
also involves a consideration of the loading envi-
ronment which is not accounted for herein, e.g. see
[5]. The constitutive relation (1) predicts universal
values of the instability stretch for simple exten-
sional deformations of a prismatic body, biaxial
stretching of a membrane, and triaxial stretching of
a cube. Whereas constitutive relation (1) predicts
instability for compressive deformations, (4) does
so for tensile deformations. For simple shearing
deformations, constitutive relation (1) predicts
a hardening behavior.

For incompressible materials, constitutive rela-
tion (24d) predicts material instability in simple

extensional deformations at an axial stretch of
2.718, in simple shearing deformations at a shear
strain of 3.02, and in a biaxially stretched mem-
brane at a stretch of 2.718 in each direction. In
simple shearing deformations, the material de-
scribed by constitutive relation (24a) exhibits hard-
ening behavior. None of these constitutive relations
predicts the Poynting e!ect. In simple extensional
deformations, the axial load vs. the axial stretch
curves for materials (24b) and (24d) are concave
downwards, and the tangent modulus decreases
with an increase in the deformation. However, for
axial elongation of the bar made of material (24a),
the tangent modulus increases with the elongation
implying thereby that the material hardens as it is
stretched.

One can conclude from the aforestated results for
simple deformations that out of the four constitut-
ive relations studied, only (2) and (3) for uncon-
strained materials and (24b) and (24c) for
incompressible materials give results that agree at
least qualitatively with most of the test observations
detailed in Bell's encylopedia article [8]. If the
material instability is a desired feature of a consti-
tutive relation for "nite deformations of an
elastic material, then constitutive relation (3) is in-
admissible.

As noted in the text, each one of the four consti-
tutive relations studied reduces to Hooke's law for
in"nitesimal deformations. However, they predict
quite di!erent responses for moderate and large
deformations.
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