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Abstract

We find closed-form solutions for axisymmetric plane strain deformations of a functionally graded circular cylinder comprised of an isotropic
and incompressible second-order elastic material with moduli varying only in the radial direction. Cylinder’s inner and outer surfaces are loaded
by hydrostatic pressures. These solutions are specialized to cases where only one of the two surfaces is loaded. It is found that for a linear through-
the-thickness variation of the elastic moduli, the hoop stress for the first-order solution (or in a cylinder comprised of a linear elastic material) is
a constant but that for the second-order solution varies through the thickness. The radial displacement, the radial stress and the hoop stress do not
depend upon the second-order elastic constant but the hydrostatic pressure and hence the axial stress depends upon it. When the two elastic moduli
vary as the radius raised to the power two or four, the radial and the hoop stresses in an infinite space with a pressurized cylindrical cavity equal the
pressure in the cavity. For an affine variation of the elastic moduli, the hoop stress in an internally loaded cylinder made of a linear elastic isotropic
and incompressible material at the point R = √

RinRou is the same as that in a homogeneous cylinder. Here Rin and Rou equal, respectively, the
inner and the outer radius of the undeformed cylinder and R the radial coordinate of a point in the unstressed reference configuration.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded structures (FGSs) are macroscopically inhomogeneous bodies with material properties perceived to vary
continuously in space even though they are generally comprised of more than one constituent. From a continuum point of view
one ignores microstructural details and smears out the material moduli. Such materials abound in nature and common examples
include a bamboo stick and human teeth. Engineered functionally graded materials (FGMs) include heat-resistant refractory shields
with composition continuously varying from pure ceramic on one side to pure metal on the other side. It can potentially achieve
multifunctional properties such as the thermal, wear, and oxidation resistance of ceramics combined with the high strength, high
toughness, machinability, and bonding capability of metals. Another example is a nitrided steel.

Solutions of boundary-value problems for linear elastic and inhomogeneous materials are given in Lekhnitskii’s book [1]. Batra
[2] provided a numerical and an analytical solution to the problem of radial expansion of a cylinder made of an incompressible
nonlinear (Mooney-Rivlin) elastic material with the two material parameters varying in the radial direction; he did not call the
material functionally graded (FG). Even though FG polymeric and composite materials [3,4] were introduced in 1972, significant
interest in FGMs seems to have originated with the first International Symposium on FGMs [5]. In view of the enormous literature
on the subject, it is almost impossible to review it here. Accordingly, we only mention some of the analytical works. Vel and Batra
[6,7] have provided analytical solutions to linear static and dynamic problems for FGSs. Horgan and Chan [8–10] have studied
static deformations of cylinders, bars and rotating disks made of FGMs. Batra [11] has analyzed torsional deformations of a solid
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cylinder with material moduli varying continuously in the axial direction. Pan and Han [12] have provided analytical solutions for a
simply supported flat magneto-electro-elastic plate loaded on its top surface. Cheng and Batra [13] have given a closed-form solution
for a clamped elliptic FG plate, and for simply supported plates [14,15] have delineated correspondences between deflections and
frequencies of FG and homogeneous plates. Jin and Batra [16,17] have studied fracture characteristics of FGSs under thermal and
mechanical loads. Rather than assuming that the volume fraction of constituents varies through the thickness, Batra and Jin [18]
proposed that a FG fiber-reinforced plate be fabricated by continuously varying the fiber orientation angle through the plate thickness.
Vidoli and Batra [19] analyzed a piezoelectric rod with the orientation of the axis of polarization varying continuously in the cross-
section. Batra and Love [20] have studied plane strain transient thermo-mechanical deformations of a thermo-visco-plastic prismatic
body with material properties varying continuously with the distance of a point from the centroid of the rectangular cross-section.

Even though complicated non-linear problems involving FGMs can be solved numerically, e.g., see [2,20], their closed-form
solutions can only be obtained for simple structural geometries and loadings. Here we analyze plane strain axisymmetric deformations
of a FG cylinder loaded by internal and external pressures and comprised of an isotropic and incompressible second-order elastic
material with material moduli varying only in the radial direction. Signorini’s [21] perturbation method is adopted to analyze this
problem. The reader is referred to Truesdell and Noll’s [22] book for details of the Signorini method. Iaccarino et al. [23] have used
Signorini’s method to study axisymmetric deformations of a cylinder and a sphere with pressures applied to internal and external
surfaces, and the material of each taken to be isotropic, homogeneous, unconstrained and second-order elastic. Saint-Venant’s
problems for second-order elastic materials have also been studied in [24–26]. Radial deformations of FG cylinders comprised of
linear elastic materials have been studied in [27–37].

Here we analyze the cylinder problem for a second-order elastic FG material with material moduli varying continuously in the
radial direction and the cylinder material to be isotropic and incompressible. Whereas there are six moduli in the constitutive relation
for an isotropic second-order elastic compressible material, the second-order elastic incompressible material is characterized by two
material parameters [22]. It is common to consider rubberlike, polymeric and biological soft tissue materials as incompressible.

For isotropic, unconstrained, homogeneous and linear elastic materials, the solution for a plane stress problem can be obtained
from that for a plane strain problem by modifying Young’s modulus and Poisson’s ratio. However, such is not the case for plane
problems for second-order elastic materials. Furthermore, plane strain problems for a linear elastic incompressible material cannot,
in general, be analyzed by setting Poisson’s ratio equal to 0.5 in the solution of the corresponding problem for a compressible linear
elastic material.

The rest of the paper is organized as follows. Section 2 gives the problem formulation. Section 3 describes the solution for a
cylinder made of a second-order elastic incompressible material subjected to internal and external pressures with the elastic moduli
given by a power law. For the first-order problem, these results are specialized to cases when the applied pressure acts on only one
of the surfaces. For an affine variation of the elastic moduli in the radial direction, displacements and stresses are given in Section
4. Solutions for the case of an infinite space with a pressurized cylindrical cavity at its center are deduced in Section 6. Section 7
describes conclusions of the work.

2. Problem formulation

We consider an infinitely long hollow cylinder of inner radius Rin and outer radius Rou in the unstressed reference configuration.
The cylinder, made of an isotropic second-order elastic material, is loaded by pressures pin and pou, respectively, on its inner and
outer surfaces as shown in Fig. 1. We assume that values of material parameters of the cylinder vary only in the radial direction. Since
material properties, the cylinder geometry, and the applied loads are independent of the angular position and the axial coordinate
of a point, we presume that its deformations are axisymmetric and are independent of the axial coordinate, z. Thus a material point
of the cylinder moves only in the radial direction. Let r and R denote radial coordinates of a point in the present and the reference
configurations, respectively, and u(R)=r(R)−R its displacement in the radial direction. Note that the radial displacement of a point
also induces strain in the circumferential direction, and the state of deformation in the cylinder is that of plane strain in the r�-plane
where � is the angular position of a point. Even though the axial strain identically vanishes, the axial stress is not necessarily zero.
However, it is independent of the axial coordinate, z.

In cylindrical coordinates (r, �, z) physical components of the displacement gradient H are given by

[H ] =

⎡
⎢⎢⎢⎣

u′ 0 0

0
u

R
0

0 0 0

⎤
⎥⎥⎥⎦ , (2.1)

where u′ = du/dR, and (R, �, Z) are coordinates of a point in the reference configuration. In order for the deformation (2.1) to
occur in a body comprised of an incompressible material, it must be volume preserving. That is,

det(1 + H) = 1. (2.2)
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Fig. 1. A schematic sketch of the problem studied.

Expanding the left-hand side of Eq. (2.2) in H and retaining terms up to second-order in H, we get

2IH + (IH)2 − IH2 = 0, (2.3)

where IH = tr(H) is the sum of the diagonal components of H. Thus for a second-order elastic incompressible material, the
displacement gradient H must satisfy Eq. (2.3).

The constitutive relation for a second-order elastic incompressible material is [22]

� = −p1 + 2�E + �HHT + �E2, (2.4)

where

E = (H + HT)/2 (2.5)

is the infinitesimal strain tensor, � the Cauchy stress, p the hydrostatic pressure not determined from the deformation field, 1 the
identity tensor, IE = tr(E), � the shear modulus, and � the second-order elastic constant of the material. Both � and � have units of
stress. For a FG cylinder � and � are taken to be functions of the radial coordinate, R. In terms of the first Piola–Kirchhoff stress
tensor T, Eq. (2.4) becomes [22]

T = −p(1 − HT + HTHT) + 2�(E − EHT + HHT/2) + �E2. (2.6)

Besides Eq. (2.3), equations governing static deformations of the body are

Div T = 0, Rin < R < Rou,

TN = −pin
r

Rin
N on R = Rin, TN = −pou

r

Rou
N on R = Rou. (2.7)

Here Div is the divergence operator with respect to coordinates in the reference configuration, N is an outward unit normal to the
surface in the reference configuration, and pin and pou are pressures (normal force per unit surface area in the present or the deformed
configuration) acting, respectively, on the inner surface R = Rin and the outer surface R = Rou.

For a FG cylinder we assume that the material moduli � and � depend upon the radial coordinate R as follows:

� = �0R
n, � = �0R

n, (2.8)

where �0, �0 and n are constants. Whereas n is non-dimensional, units of �0 and �0 depend upon those of R and the value of n.
For a homogeneous material n = 0, and units of �0 and �0 are those of stress. A solution of the first-order problem for an arbitrary
variation of � is given in [38].

The FGMs are generally made of two or more constituents and their effective elastic moduli are derived by using either the rule
of mixtures or a homogenization technique (e.g., see [6]). For a non-linear elastic material homogenization methods are scarce,



386 R.C. Batra, G.L. Iaccarino / International Journal of Non-Linear Mechanics 43 (2008) 383–398

and a possibility is to employ numerical experiments [39] to deduce effective properties from those of the constituent phases. The
assumption (2.8), similar to that adopted in [8–10], simplifies the algebraic work.

We non-dimensionalize stresses, �, and pressures by �̄ = �0R
n
ou, displacements by Rou, and the radial coordinate R by Rou.

Henceforth we use non-dimensional variables and denote them by the same symbols as before. When studying problems for an
infinite space with a cylindrical cavity, we use Rin to non-dimensionalize R.

Let ε = max(pin, pou). For concreteness, let pin > pou; thus ε = pin. Then boundary conditions given in Eqs. (2.7)2 and (2.7)3
can be written as

TN = −�
r

Rin
N on R = Rin, TN = −pou

pin
�

r

Rou
N on R = Rou. (2.9)

We assume that �>1, the pressure p and the radial displacement u are analytic functions of �, expand them in terms of Taylor
series, and retain terms up to second order in �. Recalling that for � = 0, u = 0 and p = 0, we have

p = �p(1) + �2p(2),

u = �u(1) + �2u(2). (2.10)

Up to second-order terms in �, substitution from Eq. (2.10) into Eq. (2.6) gives

T = �T(1) + �2T(2), (2.11)

where

T(1) = −p(1)1 + 2RnE(1),

T(2) = −p(2)1 + 2RnE(2) − RnH(1)T
H(1)T + p(1)H(1)T + �0R

nE(1)2
, (2.12)

H(i) =

⎡
⎢⎢⎢⎢⎢⎣

du(i)

dR
0 0

0
u(i)

R
0

0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , i = 1, 2, (2.13)

2E(i) = H(i) + H(i)T
etc.

Substitution from Eq. (2.10)2 into Eq. (2.3) gives

2� tr(H(1)) + �2[2 tr(H(2)) − tr((H(1))2)] = 0. (2.14)

Equilibrium equations, boundary conditions, and equations preserving the volume of the body for the first- and the second-order
problems can be written as

Div T(1) = 0, Rin < R < Rou,

T(1)N = −p
(1)
in N on R = Rin,

T(1)N = −p(1)
ou N on R = Rou,

tr(H(1)) = 0, Rin < R < Rou (2.15)

and

Div T(2) = 0, Rin < R < Rou,

T(2)N = −p
(2)
in N on R = Rin,

T(2)N = −p(2)
ou N on R = Rou,

2 tr(H(2)) − tr((H(1))2) = 0, Rin < R < Rou. (2.16)

Here

p
(1)
in = 1, p(1)

ou = pou/pin, (2.17)
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and

p
(2)
in N = pin(tr(H(1))1 − (N · (E(1)N)))N = pin

u(1)(Rin)

Rin
N on R = Rin,

p(2)
ou N =

(
pou

pin

)
(tr(H(1))1 − (N · (E(1)N))N) = pou

pin

u(1)(Rou)

Rou
N on R = Rou. (2.18)

Thus pressures to be applied on the inner and the outer surfaces of the cylinder for the second-order problem depend upon the solution
of the first-order problem. Eq. (2.18) follows from Eq. (24)2 of [23]. Note that for a given problem pin and pou have assigned values,
and do not vary with the deformation.

3. Analytical solution for power law variation of the two moduli

3.1. First-order problem (n �= 2, n �= 4)

We first study the problem when the exponent n in Eq. (2.8) is different from 2 and 4. Subsequently we provide solutions for n=2
and 4.

Eqs. (2.13)1 and (2.15)4 yield

du(1)

dR
+ u(1)

R
= 0, (3.1)

whose solution is

u(1) = B1/R, (3.2)

where B1 is a constant. Substitution from Eq. (3.2) into Eqs. (2.13)1 and (2.13)2 and the result into Eq. (2.12)1 gives the following
for non-zero physical components of the first Piola–Kirchhoff stress tensor:

T
(1)
RR = −2B1R

−2+n − p(1), T
(1)

�� = 2B1R
−2+n − p(1), T

(1)
ZZ = −p(1). (3.3)

Thus Eq. (2.15)1 implies that the pressure p(1) is a function of R only, and

p(1) = B2 − 2nB1

n − 2
R−2+n, (3.4)

where B2 is a constant of integration. Recall that N = (−1, 0, 0) on the surface R = Rin, and N = (1, 0, 0) on the surface R = Rou.
From boundary conditions (2.15)2 and (2.15)3 and Eqs. (3.3) and (3.4) we conclude that

B1 = − (pou − pin)(n − 2)

4pin(R
n−2
ou − Rn−2

in )
, B2 = pinR

n−2
ou − pouR

n−2
in

pin(R
n−2
ou − Rn−2

in )
. (3.5)

Note that

T
(1)

�� − T
(1)
RR = 4B1R

−2+n, (3.6)

and has the same sign as B1 since R−2+n > 0.
Substitution from Eqs. (3.4) and (3.5) into Eqs. (3.2) and (3.3) gives the following expressions for the radial displacement and the

stresses:

u(1) = − (pou − pin)(n − 2)

4pin(R
n−2
ou − Rn−2

in )

1

R
,

T
(1)
RR = pou(R

n−2
in − Rn−2) + pin(R

n−2 − Rn−2
ou )

(Rn−2
ou − Rn−2

in )pin
,

T
(1)

�� = pou(−(n − 1)Rn−2 + Rn−2
in ) + ((n − 1)Rn−2 − Rn−2

ou )pin

(Rn−2
ou − Rn−2

in )pin
,

T
(1)
ZZ = pou(0.5nRn−2 − Rn−2

in ) + pin(0.5nRn−2 − Rn−2
ou )

(Rn−2
ou − Rn−2

in )pin
. (3.7)
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It follows from Eqs. (2.10) and (2.11) that for the first-order problem and hence for a cylinder comprised of a linear elastic isotropic
and incompressible FG material, values of radial displacement u(1) and stresses T(1) equal � = pin times their values listed in
Eq. (3.7).

In the remainder of this sub-section, we drop the superscript (1) from various quantities to indicate their values for a linear elastic
incompressible material.

It is clear from Eq. (3.7)3 that for n = 1, the hoop stress is uniform throughout the cylinder thickness, and

T�� = −pouRou − pinRin

(Rou − Rin)
. (3.8)

Thus T�� = 0 throughout the cylinder thickness for pouRou = pinRin.

3.1.1. Solid cylinder
For a solid circular cylinder subjected to pressure pou on the outer surface, we set � = pou, and conclude that the constant B1 in

Eq. (3.2) must vanish in order for the radial displacement to be finite at the center. Eqs. (3.2) and (3.5)2 imply that u= 0 and B2 = 1.
Thus

TRR = T�� = TZZ = −pou.

The radial displacement of every point is zero, the cylinder does not deform, and the state of stress at a point is that of hydrostatic
pressure.

3.1.2. Hollow cylinder subjected to internal pressure only
We now consider the case when a hollow cylinder is subjected to internal pressure only, i.e., pou = 0. Thus

TRR = −pin
Rn−2 − Rn−2

ou

Rn−2
in − Rn−2

ou
< 0, T�� = pin

(1 − n)Rn−2 + Rn−2
ou

Rn−2
in − Rn−2

ou
. (3.9)

That is, the radial stress is everywhere compressive. For n= 0, i.e., a cylinder made of a homogeneous material, we recover classical
expressions for stresses given in a book on linear elasticity even when the cylinder material is incompressible; e.g., see [40]. Note
that most linear elasticity books consider the cylinder material to be compressible. From Eqs. (3.9) with n = 0, one can recover
classical results for Rou?Rin.

For n = 1,

T�� = pinRin

Rou − Rin
,

and is uniform throughout the cylinder. However, for a FG cylinder made of a compressible material studied in [8] the hoop stress
for n = 1 varied through the cylinder thickness. Differentiation of both sides of Eq. (3.9)2 with respect to R gives

dT��

dR
= pin

(1 − n)(n − 2)Rn−3

Rn−2
in − Rn−2

ou
. (3.10)

Eq. (3.10) implies that for a homogeneous cylinder (i.e., n = 0) the hoop stress monotonically decreases from the inner radius to
the outer radius. However, for a FG cylinder with 1 < n < 2 and n > 2, dT��/dR > 0 throughout the cylinder thickness and it is
negative for n < 1. Thus the variation of T�� through the cylinder thickness depends upon the value of n.

We now investigate the sign of T�� for n �= 1, 2, 4, and first assume that n > 2. The function

f (R) = Rn−2, Rin �R�Rou (3.11)

is positive and monotonically increasing. Its minimum and maximum values equal Rn−2
in and Rn−2

ou , respectively. It follows from
Eq. (3.9)2 that

T�� �0 if and only if (1 − n)Rn−2 + Rn−2
ou �0 or Rn−2 � Rn−2

ou

n − 1
. (3.12)

We define

�(n) = (n − 1)1/(n−2), (3.13)

and note that 1 < �(n)�2. Thus Eqs. (3.9)2, (3.12) and (3.13) imply that for n > 2,

T�� �0 when
Rou

�(n)
�R < Rou,
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Fig. 2. For Rou/Rin = 10 and different values of n, variation of the hoop stress through the thickness of the cylinder. Curves 1 (black line), 2 (yellow line), 3 (red
line), 4 (green line), 5 (blue line) are for n = 0, 0.2, 0.5, 1.5 and 2.5, respectively.
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Fig. 3. For Rou/Rin = 10 and different values of n, variation of hoop stress through the thickness of the cylinder. Curves 1 (yellow line), 2 (black line), 3 (red line),
4 (green line), 5 (blue line), 6 (dotdash), 7 (dash) are for n = −0.5, 0, 0.5, 1.5, 2.5, 3.5 and 5, respectively.

T�� �0 when Rin < R� Rou

�(n)
, (3.14)

and if Rou/�(n)�Rin, then T�� �0 for all R ∈ [Rin, Rou].
For n < 2, f (R) defined by Eq. (3.11) is a positive monotonically decreasing function of R, and its minimum and maximum values

for Rin �R�Rou equal Rn−2
ou and Rn−2

in , respectively. Thus

T�� �0 if and only if (1 − n)Rn−2 + Rn−2
ou �0. (3.15)

For 1 < n < 2, the maximum value of T�� occurs at the outermost surface, and T�� �0 for Rin �R�Rou/�(n). For n < 1, T�� is
always positive and has the maximum value at the innermost surface of the cylinder. Thus the inhomogeneity in the shear modulus
strongly affects the through-the-thickness variation of the hoop stress.

For Rou/Rin = 10 and different values of n we have plotted in Figs. 2 and 3 the variation with R/Rin of T��/pin and TRR/pin.
In order to show that one cannot obtain results for the present problem by setting Poisson’s ratio � = 0.5 in the solution for the

compressible material reported in [8], we set � = 0.5 in their Eq. (2.4) and the resulting value of Poisson’s ratio in their Eq. (2.8) to
obtain

u′′ + (n + 1)

R
u′ + (n − 1)

u

R2
= 0, (3.16)

which is quite different from our Eq. (3.1). This is because the volume preserving condition governs the displacement field in an
incompressible material but Eq. (3.16) is derived from the balance of linear momentum and the constitutive relations.
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3.1.3. Hollow cylinder subjected to external pressure only
For a hollow cylinder loaded on the external surface only, pin = 0, and we set � = pou. Eqs. (2.10) and (3.7) imply that

u = pou(2 − n)

4(Rn−2
ou − Rn−2

in )

1

R
, TRR = −pou(R

n−2 − Rn−2
in )

(Rn−2
ou − Rn−2

in )
,

T�� = pou((1 − n)Rn−2 + Rn−2
in )

(Rn−2
ou − Rn−2

in )
, TZZ = −pou(0.5nRn−2 − Rn−2

in )

(Rn−2
ou − Rn−2

in )
. (3.17)

For n = 0, i.e., a homogeneous cylinder, Eqs. (3.17)2 and (3.17)3 give

TRR = − pouR
2
ou

R2
ou − R2

in

(
1 − R2

in

R2

)
�0, T�� = − pouR

2
ou

R2
ou − R2

in

(
1 + R2

in

R2

)
< 0, (3.18)

which are the same as in a cylinder made of a compressible material. One can recover classical results for Rou?Rin.
For n > 2, TRR �0, and

T�� �0 if and only if

(
1 − (n − 1)

(
R

Rin

)n−2
)

�0. (3.19)

Thus T�� vanishes at the point R = Rin(1/(n − 1))1/(n−2) provided that it is within the cylinder. For (1/(n − 1))1/(n−2) < Rou/Rin,
or Rou > 2Rin, T�� vanishes at a point within the cylinder.

For n < 2, TRR �0, and

T�� �0 if and only if

(
1 − (n − 1)

(
R

Rin

)n−2
)

�0. (3.20)

Differentiation with respect to R of both sides of Eq. (3.17)3 gives

dT��

dR
= pou

(1 − n)(n − 2)Rn−3

Rn−2
ou − Rn−2

in

.

Whereas for a homogeneous cylinder with n = 0, the hoop stress increases monotonically from the inner radius to the outer radius,
for the FG cylinder its variation depends upon the value of n. For example, for 1 < n < 2 and n > 2, T�� decreases monotonically
from the inner to the outer radius but the reverse holds for n < 1.

3.2. Second-order problem (n �= 2, n �= 4)

Eqs. (3.2), (2.13)1 and (2.16)4 give

du(2)

dR
+ u(2)

R
− B2

1

R4
= 0, (3.21)

whose solution is

u(2) = B3

R
− B2

1

2R3
, (3.22)

where B3 is a constant of integration. Substitution from Eq. (3.22) into Eq. (2.13) and the result into Eq. (2.12)2 gives

T
(2)
RR = −2B3R

−2+n + B2
1R−4+n

(
4(n − 1) + �0(n − 2)

n − 2

)
− B1B2

R2
− p(2),

T
(2)

�� = 2B3R
−2+n + B2

1R−4+n

(−4(n − 1) + �0(n − 2)

n − 2

)
+ B1B2

R2
− p(2),

T
(2)
ZZ = −p(2). (3.23)

Substitution for stresses from Eq. (3.23) into the equilibrium equation (2.16)1 for the second-order problem gives equations that
imply that p(2) is a function of R only, and

p(2)(R) = B4 + B2
1 [4(n − 1) + �0(n − 4)]

(n − 4)
Rn−4 − 2nB3

(n − 2)
Rn−2, (3.24)
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where B4 is a constant of integration. In order to find constants B3 and B4 from boundary conditions, we note from Eqs. (3.2), (2.13)
and (2.18), that

p
(2)
in = B1

R2
in

, p(2)
ou = B1pou

R2
oupin

. (3.25)

Thus from Eqs. (2.16)2, (2.16)3, (3.23)1 and (3.24) we obtain

B3 = 3(n − 2)3(pou − pin)
2R2

ouR
2
in(R

4
ouR

n
in − Rn

ouR
4
in)

16(n − 4)p2
in(R

2
ouR

n
in − R2

inR
n
ou)

3
, (3.26)

B4 = 3(n − 2)2(pou − pin)
2Rn+2

ou Rn+2
in (R2

ou − R2
in)

4(n − 4)p2
in(R

2
ouR

n
in − R2

inR
n
ou)

3
. (3.27)

3.3. Complete solution (n �= 2, n �= 4)

The complete solution of the second-order problem in terms of non-dimensional variables, for n �= 2, 4, obtained by substituting
for u(1), u(2), p(1), p(2), T(1) and T(2) in Eqs. (2.10) and (2.11) is

u(R) = (n − 2)R2
inR

2
ou(pin − pou)

4(Rn
ouR

2
in − Rn

inR
2
ou)

1

R
+ (pou − pin)

2(n − 2)2R2
inR

2
ou

16R(R2
ouR

n
in − R2

inR
n
ou)

2

[
3(n − 2)(R4

ouR
n
in − Rn

ouR
4
in)

(n − 4)(R2
ouR

n
in − R2

inR
n
ou)

− R2
ouR

2
in

2R2

]
, (3.28)

p(R) = R2
ouR

2
in

(Rn
ouR

2
in − Rn

inR
2
ou)

[
(pinR

n−2
ou − pouR

n−2
in ) + n

2
(pou − pin)R

n−2
]

+ 3(n − 2)2(pou − pin)
2R2

ouR
2
in

4(R2
ouR

n
in − R2

inR
n
ou)

2(n − 4)

×
[

Rn
ouR

n
in(R

2
ou − R2

in)

(R2
ouR

n
in − R2

inR
n
ou)

− n(R4
ouR

n
in − R4

inR
n
ou)

2(R2
ouR

n
in − R2

inR
n
ou)

Rn−2 + (4(n − 1) + �0(n − 4))R2
ouR

2
in

12
Rn−4

]
,

TRR = pou(R
n−2
in − Rn−2) + pin(R

n−2 − Rn−2
ou )

Rn−2
ou − Rn−2

in

+ [c10 + c11R
−2 + c12R

n−2 + c13R
n−4],

T�� = pou(−(n − 1)Rn−2 + Rn−2
in ) + ((n − 1)Rn−2 − Rn−2

ou )pin

(Rn−2
ou − Rn−2

in )
+ [c20 + c21R

−2 + c22R
n−2 + c23R

n−4], (3.29)

where

c10 = 3(−2 + n)2(pou − pin)
2R2+n

ou R2+n
in (R2

ou − R2
in)

4(−4 + n)c3
33

,

c33 = (Rn
ouR

2
in − R2

ouR
n
in),

c11 = − (−2 + n)(pou − pin)R
2
ouR

2
in(−pinRouR

2
in + pouR

2
ouR

2
in)

4c2
33

,

c12 = 3(−2 + n)2(pou − pin)
2R2

ouR
2
in(−Rn

ouR
4
in + R4

ouR
n
in)

4(4 − n)c3
33

,

c13 = − (−2 + n)(−1 + n)(pou − pin)
2R4

ouR
4
in

2(−4 + n)c2
33

,

c20 = 3(−2 + n)2(pou − pin)
2R2+n

ou R2+n
in (R2

ou − R2
in)

4(−4 + n)c3
33

,

c21 = (−2 + n)(pou − pin)R
2
ouR

2
in(−pinR

n
ouR

2
in + pouR

2
ouR

n
in)

4c2
33

,

c22 = 3(−2 + n)2(−1 + n)(pou − pin)
2R2

ouR
2
in(−Rn

ouR
4
in + R4

ouR
n
in)

4(4 − n)c3
33

,
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c23 = (−2 + n)(3 − 4n + n2)(pou − pin)
2R4

ouR
4
in

2(4 − n)c2
33

. (3.30)

Note that terms in brackets in Eqs. (3.29)2 and (3.29)3 are contributions from the second-order solution, and the second-order
elastic constant �0 appears only in the pressure field but not in the expressions for the radial and the hoop stresses. Whereas the
first-order stresses are independent of the elastic moduli, �0 appears in the expressions for the second-order stresses. Even though
stresses (except for the axial stress) and the radial displacement do not explicitly depend upon �0, their values for the first-order
and the second-order elastic materials are different. At any point, the difference between the two displacements is proportional to
(pou − pin)

2 thereby necessitating a rather sophisticated sensor to detect it.
For n = 1, c22 = c23 = 0, but c21 �= 0. Thus the hoop stress in the second-order elastic material is not constant throughout the

thickness of the cylinder.
Recalling that the axial force, Fax, acting on a cross-section of the cylinder is given by

Fax = 2	
∫ Rou

Rin

TZZR dR, (3.31)

the difference in the values of Fax for the first-order and the second-order elastic materials is proportional to (pou − pin)
2. When

measured accurately, it can be used to estimate the value of the second-order elastic constant �0.
For a homogeneous second-order elastic material, n = 0, and Eqs. (3.28) and (3.29) reduce to

u(R) = R2
inR

2
ou(pou − pin)

2(R2
in − R2

ou)

1

R
+ (pou − pin)

2R2
ouR

2
in

4R(R2
ou − R2

in)
2

(
3

2
(R2

ou + R2
in) − R2

ouR
2
in

2R2

)
,

p(R) = pinR
2
in − pouR

2
ou

R2
in − R2

ou

− 3

4

(pou − pin)
2R2

ouR
2
in

(R2
ou − R2

in)

(
1 − (1 + �0)

3

R2
ouR

2
in

R4

)
,

TRR = pinR
2
in(R

2 − R2
ou) + pouR

2
ou(−R2 + R2

in)

R2(R2
ou − R2

in)
+ d10 + d11R

−2 + d12R
−4,

T�� = pinR
2
in(R

2 + R2
ou) − pouR

2
ou(R

2 + R2
in)

R2(R2
ou − R2

in)
+ d10 − d11R

−2 − 3d12R
−4, (3.32)

where

d10 = 3(pou − pin)
2R2

ouR
2
in

4(R2
ou − R2

in)
2

,

d11 = −R2
ouR

2
in[−4poupin(R

2
ou + R2

in) + p2
in(3R2

ou + R2
in) + p2

ou(R
2
ou + 3R2

in)]
4(R2

ou − R2
in)

2
,

d12 = (pou − pin)
2R4

ouR
4
in

4(R2
ou − R2

in)
2

. (3.33)

3.3.1. Homogeneous hollow cylinder subjected only to internal pressure
For pou = 0, Eqs. (3.32)3 and (3.32)4 simplify to

TRR

pin
= R2

in

R2
ou − R2

in

(
1 − R2

ou

R2

)
+ pin

4

R2
ouR

2
in

(R2
ou − R2

in)
2

(
3 − 3R2

ou + R2
in

R2
+ R2

ouR
2
in

R4

)
,

T��

pin
= R2

in

R2
ou − R2

in

(
1 + R2

ou

R2

)
+ pin

4

R2
ouR

2
in

(R2
ou − R2

in)
2

(
3 + 3R2

ou + R2
in

R2
− 3R2

ouR
2
in

R4

)
. (3.34)

For Rou?Rin, Eqs. (3.34) yield

TRR

pin
= −R2

in

R2
+ pinR

2
in

4

(
− 3

R2
+ R2

in

R4

)
,

T��

pin
= R2

in

R2
+ 3pinR

2
in

4

(
1

R2
− R2

in

R4

)
. (3.35)

Eqs. (3.35) give the stress field in a uniformly pressurized cavity in an infinite homogeneous isotropic second-order elastic material.
Second terms on the right-hand sides of Eqs. (3.35)1 and (3.35)2 represent corrections to stress fields in a linear elastic material.



R.C. Batra, G.L. Iaccarino / International Journal of Non-Linear Mechanics 43 (2008) 383–398 393

Note that T�� on the inner surface is unaffected by the consideration of second-order effects. However, at inner points of the cylinder,
T�� for the second-order elastic material is more than that for the linear elastic material.

3.3.2. Homogeneous hollow cylinder subjected only to external pressure
Setting pin = 0 in Eqs. (3.32)3 and (3.32)4, we get

TRR

pou
= R2

ou

R2
ou − R2

in

(
−1 + R2

in

R2

)
+ pou

4

R2
ouR

2
in

(R2
ou − R2

in)
2

(
3 − R2

ou + 3R2
in

R2
+ R2

ouR
2
in

R4

)
,

T��

pou
= − R2

ou

R2
ou − R2

in

(
1 + R2

in

R2

)
+ pou

4

R2
ouR

2
in

(R2
ou − R2

in)
2

(
3 + R2

ou + 3R2
in

R2
− 3R2

ouR
2
in

R4

)
. (3.36)

For Rou?Rin, we get the following from Eqs. (3.36):

TRR

pou
=
(

−1 + R2
in

R2

)
+ pouR

2
in

4

(
− 1

R2
+ R2

in

R4

)
,

T��

pou
= −

(
1 + R2

in

R2

)
+ pouR

2
in

4

(
1

R2
− 3R2

in

R4

)
. (3.37)

Eqs. (3.37)1 and (3.37)2 give stresses in an infinite homogeneous medium containing a cylindrical cavity and subjected to uniform
normal tractions at infinity. We conclude from Eq. (3.37)2 that

T��

pou
(Rin) = −2 − pou

2
. (3.38)

That is the magnitude of the hoop stress at the surface of the cylindrical cavity is slightly enhanced by the consideration of second-order
effects.

3.4. The case n = 2

For n = 2 in Eq. (2.8), Eqs. (3.2) and (3.3) still hold with constants B1 and B2 replaced by B̄1 and B̄2 respectively, and Eqs. (3.4)
and (3.5) become

p(1) = B̄2 − 4B̄1 ln R, (3.39)

B̄1 = − (pou − pin)

4pin ln(Rou/Rin)
, B̄2 = −pou[2 ln(Rin) − 1] − pin[2 ln(Rou) − 1]

2pin ln(Rou/Rin)
. (3.40)

The radial displacement u(2) and stresses T(2) for the second-order problem are given by Eqs. (3.22) and (3.23), respectively, with
constants B1 and B3 replaced by B̄1 and B̄3, respectively. The pressure field (3.24) is now given by

p(2)(R) = B̄4 − B̄2
1 (2 − �0)

R2
− 4B̄3 ln R, (3.41)

where constants B̄3 and B̄4, determined from the boundary conditions, have the following expressions:

B̄3 = 3(pou − pin)
2(R2

ou − R2
in)

32p2
inR

2
ouR

2
in[ln(Rou/Rin)]3

, B̄4 = 3(pou − pin)
2[(2 ln(Rou) − 1)R2

ou − (2 ln(Rin) − 1)R2
in]

16p2
inR

2
ouR

2
in[ln(Rou/Rin)]3

. (3.42)

Thus the complete solution of the problem for n = 2 is

u(R) = − (pou − pin)

4 ln(Rou/Rin)

1

R
+ (pou − pin)

2

32[ln(Rou/Rin)]3R

[
3(R2

ou − R2
in)

R2
ouR

2
in ln(Rou/Rin)

− 1

R2

]
,

p(R) = −pou [2 ln(Rin) − 1] + pin[2 ln(Rou) − 1]
2 ln(Rou/Rin)

+ (pou − pin)

ln(Rou/Rin)
ln R + 3(pou − pin)

2

8R2
ouR

2
in[ln(Rou/Rin)]3

×
[
(ln(Rou) − 0.5)R2

ou − (ln(Rin) − 0.5)R2
in − (2 − �0)

6

R2
ouR

2
in ln(Rou/Rin)

R2
− (R2

ou − R2
in) ln R

]
,
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TRR = pou ln(Rin/R) − pin ln(Rou/R)

ln(Rou/Rin)
+ e10(R) + e11(R)/R2,

T�� = pou(−1 + ln(Rin/R) + pin(1 − ln(Rou/R))

ln(Rou/Rin)
+ e20(R) + e21(R)/R2, (3.43)

where

e10(R) = 3(pou − pin)
2[−R2

ou ln(Rou/R) + R2
in ln(Rin/R)]

8(ln(Rou/Rin))
3R2

ouR
2
in

,

e11(R) = (pou − pin)[(3 − 2 ln(Rin/R))pou + pin(−3 + 2 ln(Rou/R))]
8(ln(Rou/Rin))

2
,

e20(R) = 3(pou − pin)
2[(1 − ln(Rou/R))R2

ou + (−1 + ln(Rin/R))R2
in]

8(ln(Rou/Rin))
2

,

e21(R) = − (pou − pin[(1 + 2 ln(R/Rin)pou − (1 + 2 ln(R/Rou)pin]
8(ln(Rou/Rin))

2
. (3.44)

As for the problem studied in Section 3.3, only the pressure depends upon �0. Stresses in this case have more complicated
distributions through the thickness as compared to that when n �= 2, 4.

For n = 2, the through-the-thickness distributions of the radial and the hoop stresses in a linear elastic FG cylinder are similar to
those for n = 3

2 and their plots are thus omitted.

3.5. The case n = 4

For n = 4 in Eq. (2.8), Eqs. (3.2) and (3.3) hold with constant B1 replaced by B̃1, and Eq. (3.4) holds with B2 and B1 replaced by
B̃2 and B̃1, respectively. That is

p(1) = B̃2 − 4B̃1R
2,

B̃1 = − (pou − pin)

2pin(R2
ou − R2

in)
, B̃2 = −pouR

2
in − pinR

2
ou

pin(R2
ou − R2

in)
. (3.45)

The displacement field and stresses for the second-order problem are given by Eqs. (3.22) and (3.23), respectively, with constants
B1 and B3 replaced by B̃1 and B̃3, respectively. The pressure field is now given by

p(2)(R) = B̃4 − 4B̃3R
2 + 12B̃2

1 ln R,

B̃3 = 3(pou − pin)
2 ln(Rou/Rin)

2p2
in(R

2
ou − R2

in)
3

,

B̃4 = (pou − pin)
2

4p2
in(R

2
ou − R2

in)
3
{�0(R

2
in − R2

ou) + 4[(3 ln(Rou) − 1)R2
ou − (3 ln(Rou) − 1)R2

in]}. (3.46)

Hence the complete solution of the problem for n = 4 is

u(R) = − (pou − pin)

2(R2
ou − R2

in)

1

R
+ (pou − pin)

2

8(R2
ou − R2

in)
2

[
12 ln(Rou/Rin)

R
− 1

R3

]
,

p(R) = − pouR
2
in − pinR

2
ou

R2
ou − R2

in

+ 2(pou − pin)

R2
ou − R2

in

R2 + (pou − pin)
2

(R2
ou − R2

in)
3

{�0

4
(R2

ou − R2
in)

−[(3 ln(Rin) − 1)R2
ou − (3 ln(Rou) − 1)R2

in] − 6 ln(Rou/Rin)R
2 + 3(R2

ou − R2
in) ln R

}
,

TRR = pin(R
2 − R2

ou) + pou(−R2 + R2
in)

R2
ou − R2

in

+ f10(R) + f11R
−2 + f12R

2,

T�� = pin(3R2 − R2
ou) + pou(−3R2 + R2

in)

R2
ou − R2

in

+ f20(R) + f21R
−2 + f22R

2, (3.47)
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where

f10(R) = − (pou − pin)
2[−(1 + 6 ln(Rin/R)R2

ou + (1 + 6 ln(Rou/R))R2
in

2(R2
ou − R2

in)
3

,

f11 = −p2
inR

2
ou + p2

ouR
2
in − poupin(R

2
ou + R2

in)

2(R2
ou − R2

in)
2

, f12 = 3 ln(Rou/Rin)(pou − pin)
2

(R2
ou − R2

in)
3

,

f20(R) = − (pou − pin)
2[(5 + 6 ln(R/Rin))R

2
ou − (5 + 6 ln(R/Rou)R

2
in]

2(R2
ou − R2

in)
3

,

f21 = p2
inR

2
ou + p2

ouR
2
in − poupin(R

2
ou + R2

in)

2(R2
ou − R2

in)
2

, f22 = 9 ln(Rou/Rin)(pou − pin)
2

(R2
ou − R2

in)
3

. (3.48)

For n = 4, the through-the-thickness distributions of the radial and the hoop stresses in a linear elastic FG cylinder have not been
plotted since they are similar to those for n = 3

2 .

4. Analytical solution for the affine variation of elastic moduli

For the dependence of � and � upon the non-dimensional radial coordinate R given by

�(R) = �0(1 + mR), �(R) = �0(1 + mR), (4.1)

and stresses normalized by �0, the complete solution of the second-order problem is given below:

u = (−pou + pin)R
2
ouR

2
in

2R(Rou − Rin)(Rin + Rou(1 + 2mRin))
− (−pou + pin)

2R4
ouR

4
in

8R3(Rou − Rin)
2(Rin + Rou(1 + 2mRin))

2

+ (pou − pin)
2R2

ouR
2
in[3R3

in + Rou(3 + 4nRin)(R
2
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in)]
8R(Rou − Rin)

2(Rin + Rou(1 + 2mRin))
3

. (4.2)

p = 1

�D

[m(−pou + pin)R
2
ouR

2
in/R + (−pinR

2
in + pouR

2
ou) + 2mRinRou(pouRou − pinRin)]
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2
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]
, (4.3)

�1 = 4(Rou − Rin)
2(Rin + Rou(1 + 2m))3,

�D = (Rou − Rin)(Rin + Rou(1 + 2mRin)),

TRR = 1

�DR2
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2
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2
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]
, (4.4)

where
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ouR
2
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2
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ou(3 + 4mRin) + Rou(3 + 10mRin + 8m2R2
in)],
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Fig. 4. For Rou/Rin = 10 and different values of m, variation of the hoop stress through the cylinder thickness. Curves 1 (black line), 2 (yellow line), 3 (red line), 4
(green line), 5 (blue line) are for m = 0, 0.2, 0.5, 1.5 and 2.5, respectively.

1

0.75

0.5

0.25

0
1 2 3 4 5 6 7 8 9 10

R / Rin

1
4

T
R

R
/p

in

2 3

Fig. 5. For Rou/Rin = 10 and different values of m, variation of the magnitude of the radial stress through the cylinder thickness. Curves 1 (black line), 2 (red line),
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2
in(3 + 4mRin) + R3

ou(1 − 4mRin − 8m2R2
in)] + 4poupin(Rou + Rin)(−R2

in

+ R2
ou(−1 + 2m2R2

in) + p2
in(R

2
in + R2

ou(3 + 4mRin) + RouR
2
in(1 − 4mRin) + R2

ouRin(3 − 8mR2
in),

g23 = 3(pou − pin)
2R4

ouR
4
in. (4.5)

For m = 0 one recovers solutions (3.32) for the homogeneous second-order elastic cylinder.
For a linear elastic FG cylinder loaded only on the inner surface, the radial and the hoop stresses are obtained by setting

pou = 0 in the first bracketed term on the right-hand sides of Eqs. (4.4) and ignoring the second bracketed term. For m�0,
TRR is compressive throughout the cylinder thickness and T�� is tensile; T�� is a monotonically decreasing function of R and TRR

is a monotonically increasing function of R. For m1 �= m2, T��(R, m1)−T��(R, m2)=pin(R
2 −RinRou)f (R, Rin, Rou, m1, m2).

Thus at R = (RinRou)
1/2, the hoop stress is independent of the value assigned to the inhomogeneity parameter m and is the same as

that in a homogeneous linear elastic material. In Figs. 4 and 5, variations through the thickness of T��/pin and TRR/pin are plotted
for Rin/Rou = 1

10 and different values of m. It is clear that all curves for T�� intersect at the point R = √
10 = 3.16. However, for

all values of m, TRR decreases monotonically from the inner radius to the outer radius.

5. Exponential variation of elastic moduli

The analytical solution involves lengthy expressions, and is thus omitted.
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6. Pressurized cylindrical hole in an infinite space

In order to study this problem we assume that pou = 0 and Rou → ∞. Thus length like variables are non-dimensionalized with
Rin rather than with Rou. An example of such a problem is a pressurized cylindrical hole in the ground.

6.1. Power law variation of the elastic moduli

For elastic moduli given by Eq. (2.8), the radial and the hoop stresses for n �= 2, 4 are given by

TRR =
⎧⎨
⎩

−pin, n > 2,

−pin

(
Rin

R

)2−n

+ p2
inR

2−2n
in (n − 2)R−2+n

2(n − 4)

[
3(n − 2)

2
− (n − 3)R2

in

R2

]
, n < 2,

T�� =
⎧⎨
⎩

−pin, n > 2,

pin(1 − n)

(
Rin

R

)2−n

+ p2
inR

2−2n
in (n − 2)(n − 1)R−2+n

2(n − 4)

[
3(n − 2)

2
− (n − 3)R2

in

R2

]
, n < 2.

(6.1)

For n = 1, T�� = 0. The hoop stress for the first-order problem changes sign as n is increased from a value less than one to a value
greater than one.

For n = 2 and 4, the stresses are given by

TRR = T�� = −pin. (6.2)

6.2. Affine variation of the elastic moduli

For affine variations of the elastic moduli given by Eq. (4.1), the radial and the hoop stresses have the following expressions:

TRR = − (1 + 2mR)pinR
2
in

(1 + 2mRin)R2
+ p2

inR
2
in

2(1 + 2mRin)
2

1

R

[
(3 + 4mRin)

(1 + 2mRin)

(
−m − 1

R

)
+ 3R2

in

R3

]
,

T�� = pinR
2
in

(1 + 2mRin)R2
+ p2

inR
2
in

4(1 + 2mRin)
2

1

R2

[
(3 + 4mRin)

(1 + 2mRin)
− 3R2

in

R2

]
. (6.3)

For a homogeneous cylinder, stresses obtained from either Eq. (6.1) by setting n = 0 or from Eq. (6.3) with m = 0 equal those
given in Eqs. (3.35).

7. Conclusions

We have provided analytical expressions for displacements and stresses induced in a functionally graded cylinder by pressures
applied to its inner and outer surfaces. The cylinder material is isotropic and incompressible second-order elastic with all material
moduli having similar variation in the radial direction. For a homogeneous linear elastic material, our results reduce to those given
in a book on linear elasticity. For a linear through-the-thickness variation of the shear modulus, the hoop stress for the first-order
problem is constant throughout the thickness, but not for the second-order problem. Also, the hoop stress for the first-order problem
vanishes when pressures on the inner and the outer surfaces are inversely proportional to their radii. For an affine variation of the
shear modulus, the hoop stress at R =√

RinRou in an internally loaded cylinder is independent of the inhomogeneity parameter, and
equals that in a homogeneous cylinder. Here R, Rin and Rou equal, respectively, the radial coordinate of a point, the inner radius of
the cylinder, and the outer radius of the cylinder. The value of the second-order elastic modulus can be ascertained by measuring the
total axial force at the end faces of the cylinder.
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