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SUMMARY

The coupled thermomechanical behaviour of a layer of thermorheologically simple material bonded to a
uniformly rotating rigid cylinder and indented by another rigid cylinder is studied by the finite element method.
The various approximations necessary to reduce the problem to one of tractable size and the computational
methods used are discussed in some detail. The complete thermal, deformation and stress fields may be
computed. Some results, computed for a grid using 'rectangular' elements, presented graphically include the
temperature distribution, the stress distribution near the bond surface, the contact pressure distribution and
the asymmetric surface deformation of the rubberlike laver.

INTRODUCTION

In this paper we study the problem of the indentation, by a rigid cylinder, of a thermovisco-
elastic layer bonded to a uniformly rotating rigid cylinder. Such a situation occurs in various
industrial settings, e.g. the paper and pulp industry where both cylinders are of comparable
diameters. Other industrial applications may involve quite different geometries. The approach
presented here is applicable to all possible geometries. A schematic diagram of the system
studied is shown in Figure 1. We assume that sufficient time has elapsed since the start up
of the operation for the transient effects to become negligible and consequently we study the
steady-state problem where the rubber-like layer has a constant angular velocity of.Q revolutions
per sec.

We briefly review the earlier work done on other aspects of the present problem. The analytic
elastostatic1.2 and elastodynamic3 studies as well as the elastostatic numerical4 studies show that
stresses at the bond surface decay to nearly zero values at points far from the contact region. In
addition, the effects of the frictional force at the contact surface, for moderate values of the
coefficient of friction, are not significant.2 Furthermore, dynamic forces do not cause any asym-
metry in the deformation3 and numerical calculations, not included in Reference 3, show that the
effect of these forces on the stress distribution is negligible for practical geometries and angular
velocities.
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Whereas analytical methods are available to solve linear elastic problems, as has been noted
by Lynch,S such methods are hardly existent for viscoelastic boundary value problems in which
the boundary surface where surface tractions are prescribed is not a material surface. Accordingly
one, in general, must resort to numerical approaches such as the finite element method. Lynch's
studyS of another steady-state dynamic (homothermal) viscoelastic contact problem shows that
the finite element method provides results which agree well with experimental findings. Lynch's
work leads one to believe that the finite element method should be applicable to the thermo-
viscoelastic problem studied herein.

'- RIGID CORE

Figure System to be studied

A difference between the cold rolling problem solved by Lynch and the title problem is the
following: whereas in the present case a material particle is subjected to cyclic loading, this is not
so for the cold rolling problem. If the material of the covering layer were of a constitutive nature
such that the material particle has not recovered completely from the effects of the previous
deformation before being subjected to the next loading cycle, then there might be a gradual
build up of stresses (as opposed to a cyclic stress pattern) and quite likely the rolls would not last
as long as they do in practice. This suggests that the relaxation time of the material of the covering
layer is such that at the roll operating speeds currently used, a material particle recovers fully
from the effects of the previous deformation before being subjected to the next loading cycle.
This observation serves an important role in the development of a numeric-al solution of the
problem studied in this paper.

To ensure that the finite element method will give reasonable results for the present problem,
we first solved a homothermal viscoelastic problem.6 The results obtained were in qualitative
agreement with those of Lynch.s In view of the fact that no experimental results are available for
the problem at hand we were encouraged by the above noted qualitative agreement to proceed
with the study of the thermomechanical problem presented in the present. paper.

We note that familiarity with the contents of References 1-6, though helpful, is far from essential
for an understanding of the work reported below.
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FORMULATION OF THE PROBLEM

In the absence of any body forces and external supply of internal energy, the balance laws
governing the thermomechanical deformations of the rubber-like layer are 7-9

O"ij,j = PXj (1)

Pe = - q. .+O"..V. .
1.1 IJ I.J

Here O"jj is the Cauchy-stress tensor, P is the current mass density, Xj is the present position of a
material particle X at time t, a superposed dot denotes material time derivative, e i~ the specific
internal energy, qj is the heat flux per unit surface area in the present configuration, Vj is the
velocity of a material particle and a comma followed by an indexj indicates partial differenti~tion
with respect to xi. Throughout this paper we use rectangular Cartesian co-ordinates to describe
the defor~ation of the layer. The last term on the right-hand side of(lh represents the work done
by the internal stresses per unit time. For viscoelastic materials this term includes the energy
dissipated because of viscous dissipation (see, for example, Christensen9).

We assume that the deformations of the roll cover are sufficiently small so that we can use
constitutive equations linear in the strains. Since the relaxation functions of rubber-like materials
are highly temperature-dependent, we will retain the dependence of these functions upon tem-
perature T even though in a strictly linear theory one should assume that the relaxation functions
are calculated at the reference temperature To. We thus make the foliowing constitutive assump-
tions for O"jj and qjj. I ' :1vI::

O"ij{X, t) = Gl(7; t-T) !.~dT
I-I' OT

~

""ft OBkk

+- 3t) {G2-G1(T, t-.)}-;-(J',.) d.+aG2, \~J

t-t. U.

q. = -kT.1 .1

Here a is the (constant) coefficient of thermal expansion, k is the (constant) thermal conductivity,
Bij is the infinitesimal strain tensor, t* is some small fraction of the time period of revolution and
G1 and G2 are, respectively, the shear and bulk moduli. We assume that the bulk behaviour is
elastic so that G2 is independent of time. We remark that such an assumption is not uncommon
for rubber-like materials. to If either viscoelastic bulk behaviour is to be considered or the

dependence of G2 upon the temperature T is to be accounted for, only minor modifications of
the subsequent analysis and computational algorithm developed need be made. For reasons
stated below we do not need an explicit constitutive equation for e. If required, one should
assume a constitutive equation for e which is compatible with (2) and the second law of thermo-
dynamics e.g. see Christensen.9 Substitution of (2) and a constitutive equation for e into (1) yields
field equations for ~ and T. These field equations need to be supplemented by side conditions
such as boundary conditions.

We study here a steady state rotational problem and neglect the effect of all dynamic forces.
Thus the only side conditions needed are the boundary conditions which may be stated as
follows. At the inner surface, y = ~ - J' = 0 and at the outer surface,

e.(1..n. = 01 I) ) ,

ni(1ijnj = O,If}1 > f}o,

Ro( Ro) 2 uini = -uO+T 1+R (f}-P), jf}j < f}o, , ,

n.(1..n.~O as 1f}1 ~f} o1 I) )

(')\

(3)
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Here n; is an outward unit normal vector to the outer surface and e; is a unit tangent vector. The
right-hand side of (3)3 approximates, within the assumptions of the linear theory, the radial
displacement of the outer surface of the bonded layer. In this equation Uo is the indentation, Ii' is
the offset angle, Ro is the outer radius of the layer, R is the radius of the rigid indentor and eo
is the semi arc of contact. (3)4 states that the radial stress is continuous across the arc of contact
and ensures that a contact problem rather than a punch problem is solved. Of the three unknowns
uo, eo and Ii' appearing in (3)3 at most one can be assumed to be known and the other two are to
be determined as a part of the solution.

For the thermal boundary conditions, we take

T = 1inn at the inner surface of the layer
and (4)

T = 4ut at the outer surface of the layer

It is thus tacitly assumed that the rigid core is maintained at the constant temperature equal to
that of the inner surface of the covering layer and that the temperature is continuous across the
bond surface. If the core were not maintained at a constant temperature, then an appropriate
boundary condition would be that the normal component of the heat flux be continuous across
the bond surface. This would require a study of the thermal problem for the core. One could
approximate the effect of heat conduction in the core by means of a boundary condition of the
type suggested by Batra.11 Similarly, at the outer surface, an alternative boundary condition
might be that of mixed type, i.e. either (4)2 or forced convection at the free surface and prescribed
heat flux at the contact surface. Since a material particle is in contact with the indentor for a
very small fraction of the time of revolution, (4)2 or a boundary condition of the forced con-
vection type on the whole surface would seem to be a good approximation.

The problem as stated above is difficult to solve even numerically. We now make another
assumption which though not strictly valid is quite reasonable for the problem at hand. We
assume that the layer deforms isothermally, i.e. the temperature of each material point remains
constant in time. Note that the temperature of different material points need not be the same.
This assumption is equivalent to the assertion that, in cylindrical co-ordinates, the temperature
field for our problem is a function of the radius a)one. The physical basis for this assumption is as
follows. Since heat conduction is a slow process compared to the period of revolution of the rolls
the temperature of a material point will vary little during one cycle from its mean value during that
cycle. In addition, after a sufficiently long start-up period the mean value of the temperature at a
material point will be constant.

Because of the preceding assumption and (2)2' integration of(1)2 over a complete cycle yields

d2T 1 52
dr2 = -~ 0 trace ~ grad!) de = -s*(r) (5)

where J is Joule's constant, tp is the period of revolution and we have now written (1)2 in cylin-
drical co-ordinates. It is because of the above assumption that we did not need a specific con-
stitutive equation for e. In (5) s* is just a function of the radial co-ordinate r. Thus the thermal
problem has been reduced to that of solving (5) subjected to the boundary conditions (4). In
passing we note that for an elastic layer s* is identically zero but it is non-negative when the layer
is viscoelastic.

Method of solution of the problem

The problem stated above is solved by the following iterative procedure. We first assume an
expression such as a fourth order polynomial in r for s*(r) and solve the thermal problem defined
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by (5) and (4) next computing the associated thermal stresses assuming that there are no externally
applied mechanical loads. Now, taking the thermally deformed state as the reference configura-
tion and the thermal stresses as initial stresses we solve the mechanical indentation problem
wherein we assume that a plane strain state of deformation prevails and properly account for the
dependence of the shear modulus on temperature. Then the solution of the mechanical problem
is used to compute a new dissipation field which is compared to the assumed one. If these two
dissipation fields are sufficiently close to each other, i.e. meet a prescribed tolerance, we consider
the problem solved. Otherwise we use the new dissipation field and repeat the calculation until
the difference between two consecutively calculated dissipation fields is sufficiently small. In
effect, this procedure allows one to solve an intrinsically non-linear problem (in temperature) by
a sequence of linear computations. Our approach may be considered as an extension of that used
by Taylor et al.12 for somewhat different problems.

THERMAL STRESS ANALYSIS

We choose to discuss this aspect of our work first because of the ordering of the computational
scheme outlined in the preceding section. The question of uniqueness of solution is not con-
sidered.

When s*(r) is a fourth order polynomialt in r, i.e.

s*(r) = ao+a1r+av2+a3r3+a4r4; (6)

(1)+allr+a

where
011 = (Tout- ~nn-b1 +b2)/(Ro-R

012 = ~nn+b1-011Ri,

00 2 R~ R.4 R~ R!"b R I I , I
1 =""2 i +016+0212+0320+0430'

R~ R~ Rg Rg
- _-+01212+0320+0430

The constants 00'. . .,04 are chosen arbitrarily for the first iteration and may be taken as zeros.
For the subsequent iterations these are calculated by the least square method so as to provide
a best fit to the values of s*(r) computed from the immediately preceding iteration.

Once the temperat~re distribution is known, the thermal stresses are given by a solution of the
field equations

(8)

ao 2 -b - -RO+alL2 - ? n

:ij,j = Sij,j-(XG2~i ~ 0 (9)
under the boundary conditions

S..n.-cxG2n. = 0 r = Ro'i iI' ,

!:! = 0 r = Ri,
(1m

t This choice of s*(r) is arbitrary and is made just for convenience. If the layer is divided into L circumferential rings
a simple choice for s*(r) would be a polynomial of order L -I. However, other choices such as a sum of trigonometric
functions are also feasible.
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where

(11)

We take the reference temperature To equal to llnn and also have used the assumption that the
layer deforms isothermally in obtaining (9) from (1)1 and (2)1. After having solved the boundary
value problem given by (9) and (10), thermal stresses Ljj are calculated from (11).

A comparison of (9) and (10) with equations governing the mechanical deformations of elastic
roll covers3 suggests that the displacement l4 produced by the temperature field Tis the same as
the displacement produced by the body force - aG2 I:i and the surface tractions aG2ni

distributed over the surface. For further details concerning this see Reference 13, Section 153.
Hence the thermal stress problem can be solved by the finite element method in the same way as
the purely mechanical problem. We shall discuss the finite element formulation of the thermal
stress problem after discussing the finite element formulation of the mechanical problem since
this seems more convenient to us.

FINITE ELEMENT FORMULATION OF THE MECHANICAL PROBLEM

Out of practical necessity we limit our study to the (asymmetrical) deformation in that portion
of the roll cover which is symmetric about the line joining the centres of the mating cylinders and
which extends over an arc about six times the arc in contact with the indenting cylinder. The
necessity referred to is the computing capability availablet and the justification for our choice
of grid size is as follows. Firstly we recall the rapid decay of stresses indicated by the various
analytical elastic studies of our problem 1-3 which was replicated to a high degree of accuracy in

the finite element elastic study.4 An even smaller portion of the roll cover was considered in that
numerical study than will be used in the present case. Secondly we note that numerical experi-
ments were conducted in connection with the homothermal viscoelastic case6 which showed
that for the region chosen in that case, which is the same portion of the roll cover we consider
here, the boundary conditions imposed on the exit end of the grid had little effect on the stress
distribution. This region of interest is divided into uniform curvilinear 'rectangles'. Figure 2
shows a typical element and thc location of the rectangular Cartesian axes.

Recalling that a plane strain state of deformation is supposed to prevail, we assume that in
each element the displacement is given by

Ul = 1X1 +1X2Xl +1X3X3+1X4X1X2,

(12)
U2 = .81 +.82Xl +.83X2+.84X1X2

Solving for the IX'S and .8's in terms of nodal displacements and calculating infinitesimal strain
components from the strain-displacement relation (11)3 we obtain

[E} = {A}{o} ( 13)

t McMaster Universitv's CDC 6400.

t.. = S..-aG2t5..
I) I) I)'

_l ( OUi OUj )--+-- 2 oX. oX.
) J



771

~

BOND
SURFACE

/

~- /'
1/

~~
/

,
/

//

~

4

~~~

Figure 2. A typical element in the grid

where {A} is a 3 x 8 matrix whose elements are functions of nodal point co-ordinates, {o} is the
vector of displacements of nodal points and {.:} is the vector of strain components. Since a rigid
translation of the co-ordinate axes does not affect stresses or strains in an element it is simple to
calculate {A} for each element with respect to local Cartesian axes Xi obtained by translating
the origin of the global axes to the centre of the 'rectangular' element. For a typical element,
shown in Figure 3,
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X2

Figure 3. Deformation of a typical element

where

Al = B-X2,
A2 = B+X2,

A3 = A-Xl'

A4 = A+X,l'

and 2A and 2B are the sides of the 'rectangular' element.
We calculate stresses (Jij is an element from the constitutive relation

(15)

N
{O"}N = L {B}NR{£}R + {-r}N, (16)t

R=N-M

tin (16), and elsewhere {t} denotes the vector of initial stresses 'jj and is not related to the dummy time variable ,. No
confusion should result from this notation.
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where

{G}N =

{B}NR =

aNR =

aNR bNR O

}ibNR aNR 0

..0 0 CNR

-i{Gl(Y)-Gl(Z)}, R # N, N-M

-i{Gl(Y)+Gl(Z)},R = N-M,N > M

l-MGl(O)+Gl(dT)} +iG2, R = N,

Y = (N-R-l)dt

Z = (N-R+ l)dt

M = t*jdt

dt = time taken j;)y a material particle to
travel from the centroid of one element
to the centroid of the next element in the
same strip

CNR = (bNR-aNR)/2

and bNR is obtained from aNR by replacing Gl by -tGl
The principle of virtual work yields

{O'}~{E}N dV

Substituting from (13) and (16), we obtain

{F}N = {&}~{t}NdV 17)
N

LR=N-M

where

{A}~{B}NR{A}R dV (18)

and {F}~ is the transpose of the matrix {F}N. Here {F}N is the column vector of the forces acting
at the nodal points of the element Nand VN is its volume. Equation (17) states that the nodal
forces on a typical element N in a control strip are affine functions of the displacements of nodal
points associated with all the preceding elements in the same strip. In carrying out the integra-
tion in (18) we assume that A and B have the same value for all elements in one strip and, in
each element, the mechanical properties are constant and equal their values at the centroid of
the element. This results in considerable simplification and, upon carrying out the integration,
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we obtain the following for the lower half of the symmetric matrix {K} NR.

[K11 = K33 = -2Ks1 = Kss = K77 = -2K73]NR = (aNRb1 +CNRb2)/3

[K21 = K61 = -KS2 = K74+K6S = -K87 = K83 = -K43]NR = (bNR+CNR)/4

[K31 = K7s]NR = (CNRb2-2aNRb1)/6

[K41 = K8s = K63 = -K81 = -K32 = -KS4 = K'2 = -K76]NR = (nBR-cNR)/4

[KS3 = K71]NR = (aNRb1 - 2CNRb2)/6

[K44 = K22 = - 2K84 = - 2K62 = K66 = K88]NR = (aNRb2 + CNRb1)/3

[K86 = K42]NR = (aNRb2 - 2CNRb1)/6

[K64 = K82]NR = (CNRb1 - 2aNRb2)/6

where

b2 =A/BBfA,

Calculating forces for each element from (17), assembling these for the entire grid, and using the
fact that for the entire grid

{t}T{t} dV = {O}

we obtain

{F} = {K} {o} (19)

where {K} is the stiffness matrix for the entire grid, {F} is the vector of the nodal forces, and {o}
is the vector representing the displacements of nodal points. Note that {K} is not symmetric
even though {K} NR is symmetric.

Since inertia forces are neglected, (19) is the equation of motion (or equilibrium) which is to
be solved together with suitable boundary conditions. To solve (19), we first rewrite it as

Kff Kfb }{ [)f

}Kbf Kbb [)b

Here the subscript b signifies, a quantity for the nodes on the bond surface where displacements
are prescribed and the subscript! signifies a quantity for the remaining nodes. Since

{6b} = {O}

it is the following reduced system of equations which must be solved.

{Ff} = {Kff} {~f} (20)

In order to solve (20) we assume an arc of contact and the distributed load on the contact
surface is replaced by a set of concentrated loads at nodal points on the contact surface. t At
these nodes only normal forces act and the forces in the tangential direction are taken as zero
in order to satisfy the assumed boundary condition of no frictional force at the contact surface.

t Instead of using (3)" we are substituting a boundary condition of the surface traction type.
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Since the effect of body forces is neglected, F f = 0 except at nodes on the contact surface. The
system of equations (20) is solved by the following iterative procedure.

The first step in this iterative scheme is to write K as the sum of two matrices14 i.e. to rewrite
(20) as

{F} = {Kl + K2} {3}

where

{ K;j, li-jl~nb' i=I,2,...Kl.. =IJ 0 I. .
1, r-J > nb

K2.. = K..-Kl..
IJ IJ IJ

Thus Kl is a banded matrix of band width 2nb + 1. The successive iterations are given by

{o}n = {Kl}-1{F-{K2}{o}n-J

where

{~}o = {Kl}-l{F}

and the subscript n signifies the iteration number. Writing (22) as
n-l
L (-1)m{K3}m-l

m=O
{O}n = {~}o

where
{K3} = {Kl} -1 {K2} (24)

we see that a sufficient condition for the convergence of the series on the right-hand side of (23)
and hence of the iterative scheme is that

L IK3jfl < 1, i = 1,2,... (25)
j

This condition serves as a guide to the choice of a value of nb' A larger value of nb would, in
general, result in a smaller value of the left-hand side of (25) and, therefore, the iterative scheme
will converge in fewer iterations. However, a large value of nb requires more core storage and,
therefore, a compromise is sought between how large one can choose nb and the core storage
available. With nb equal to twice its value for the elastic case, the condition (25) is satisfied since
in our case G 1 is about two orders of magnitude lower than G2, the dilation was assumed elastic
and the relaxation time is very small. For the case when the bulk behaviour is also viscoelastic
or the relaxation time is large (25) may not be satisfied. In such a case, one can use the accelerated
Gauss-Seidel iterative method to solve (20) as was done in Reference 6. The iterative procedure
(23) is stopped when

I[O}J,,-[O}J,,-1 < 81' i = 1,2,3,...,j = 1,2 (26)

Here 81 is a preassigned small positive number. This iterative scheme converged in about 5
iterations for the problem studied here when nb was set equal to twice its value for th~ elastic
case and 81 = 10-5 (this is about 3 orders of magnitude smaller than omax)'

Having solved for the displacements, a check is made to ensure that the assumed arc of contact

t Here we have dropped the subscript/for convenience.
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is correct and the deformed surface of the roll cover conforms to, within an acceptable accuracy,
the circular profile of the indentor. Should the deformed surface of the roll cover not tally with
the shape of the indentor, the loads on the contact surface are adjusted in the manner detailed
below and the problem is solved again.

To perform the above-mentioned check and make an adjustment, if necessary, we proceed
as follows. First a point C is fixed on the line joining the centres of the mating cylinders. The
position of C is given by

- 1 ft, +m

(OC)} = - L
m i=ft, + 1

(27)(OC)ji

where
(OC)jc == {R2 - (x~ +(c5~)j)2} t - {X~ + (c5~)j}' (28)

"1 + 1, "1 + 2, . . . , "1 + m are the m nodal points which lie on the assumed contact surface, j is
the iteration number for the assumed loads, and R is the radius of the indentor. In geometrical
terms (27) states that if an arc of radius R is drawn with C as its centre, it would fit well the dis-
placed position of the nodes "1 + 1'"1 +2'...'"1 +m. Defining the error coefficient ejj by the
relation

eji = (OC)ji-(OC)j (29)

we consider that the nodes nl + 1, nl + 2, . . . , n1 + m lie on the rigid indentor, to within an
acceptable tolerance, if

lei;! ~ 82' i = nl+1,...,nl+m (30)

where 82 is a suitably chosen small positive number and accept that the assumed arc of contact
is correct if

(F~)j+ 1 = (F~)J{1 +e ji/c5il + Im/2]) (32)

In (31) [mI2] is the integer obtained by dividing either m or m + 1 by 2 and F~ stands for the radial
load at the ith node. The number of iterations required on the nodal load vectors depends
strongly on the initial choice of these loads.

The effect of the change in the direction of loads as the contact surface deforms is of an order
of magnitude smaller than that retained in a linear theory and is therefore not accounted for
herein. If desired, this can be built into the computation scheme without much effort.

To ensure that a contact problem rather than a punch problem has been solved, we verify
that the loads vanish as the ends of the arc of contact are approached. We find the arc of contact
by plotting the contact pressure and thus satisfy the above condition implicitly.

Having solved the mechanical problem, the value of s*(r) is calculated from (5)2. Assuming
that (1 ifij is negligible outside the region of interest, an assumption later verified by the numerical
results which indicate that the stresses and strains remain constant outside the region of interest,
we integrate (5)2 and obtain the following relation

~* =
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Here s* is the value of s*(r) at the centre of a strip, (j j}{N) is the value of the stresses at the centroid
of the Nth element in that strip, L\.Bj}{N) equals the value of Bjj at the middle point of the side li(l
of the Nth element (Figure 3) minus the value Bjj at the centre of the side ac of the Nth element,
and N* is the total number of elements in a strip.

FINITE ELEMENT FORMULATION OF THE THERMAL STRESS PROBLEM

We proceed, analogous to our approach to the mechanical problem, and use the principle of
virtual work to obtain

~fVN
{S}~{E}NdV-(XG2 r

JVN
(T-TO)N{E}NdV} = {O} (34)

or
{K4} {~} = {H}

where
{H} = L {H}N

N
(35)

{H}N = IXG2 f (T-~o){A}~ dV
VN ,

In carrying out the integration in (35)2' we assume that T varies linearly within an element i.e.

T-To = T1+T2X2

We assume this for the sake of simplicity; any other reasonable assumption concerning the
variation of T might be used. Note that to integrate the left-hand side of (18) we assumed that
{B}NR was evaluated at the temperature of the centroid of the element and had the same value
throughout the element. This is equivalent to assuming that the temperature in each element
remains constant. Since the 'body forces' induced by the temperature variation in the layer
depend upon thermal gradients, the assumption that the temperature is constant in each element
may not be a good one, at least for a coarse grid, when analysing the thermal stresses.
Substituting for {A}N from (14) into (35)2 and simplifying, we 'obtain

Hi 'T2(B2/3)- T1B

H~ -AT1

H~ BT1-B2T2/3

H~ -AT1
{H}N =' = (XG2~ (36)

BT1 + T2B2/3

AT1

-BT1- T2B2j3

H~

H~

H1

l H1 , ,A T1 .I

{K4} in (34) can be obtained from {K} in (19) by setting Gl(t) = Gl(Q) in (15). {K4} is a sym-
metric banded matrix and the system of equatiol)s (34) can be solved directly. Knowing {o},
strains and hence stresses can be calculated.
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(37)

COMPUTATION AND DISCUSSION OF RESULTS

We proceed as follows in order to provide some sample results. The region of interest is divided
into six curvilinear strips of uniform thickness and each strip is divided into uniform elements
by radial lines 0.01 rad apart. The computer program developed computes the stiffness matrix
for each element of the grid, assembles the stiffness matrix for the entire grid, solves the system
of linear equations by the iterative procedure stated above and, in the mechanical problem,
checks whether the profile of the indented surface conforms, within an acceptable accuracy, to
that of the indentor and adjusts loads on the contact surface if necessary, computes stresses and
strains in each element, the temperature, and the work done per unit volume in each cycle.
Then a check is made to determine whether the computed value of s* is sufficiently close to the
assumed one. The program is documented in an internal report which is publicly available. 1 5

To solve the thermal stress problem, first a value of s* is assumed in each strip. A fourth order
polynomial is fitted to these values by the least square method; this determines the a's in (6).
The value of the temperature at the centre of each strip is then calculated from (7). The stiffness
matrix and the forces {H} due to thermal gradients are computed for each element and assembled
for the entire grid. Since the grid used does not span the complete ring, one has to apply forces
at the ends of the grid equal to those exerted on it by the remaining portion of the ring. The
system of linear equations (34) is solved for the displacements and the stresses at the centroids
of the elements are computed from (1Ih;

Since the temperature is assumed to vary radially only, one would expect that the thermal
stresses are functions of the radius alone. However, the numerical results computed by the above
procedure indicate that the thermal stresses are not the same for all elements in one strip. This
variation in the value of the stresses in the elements close to the edges of the grid can be explained
by Saint Venant's Pri~ciple13 since we are replacing the exact distribution of forces at the ends of
the grid by an approximate discrete one. One can overcome this problem by solving the thermal
problem for the entire ring. However, in the results presented below, we assumed that thermal
stres~es in a strip are the same as those in an element at the middle of the strip.

For our sample case we took the following values for the various parameters

Gl(t.) = 33557(1 +e-t/A(T») Ib/in2

G2 = 5x 106 Ib/in2

Ro = R = 18in R. = 17.5 in, I

.Q = 4 rev/sec

(X = 10-4/oF

k = 0.135 BTU/hr ftOF

1;1 = 10-5

A(T) = O.OI/f(T}

~, 8.86(T -1"inn)/1.8loglof(T} = lOl.6+(T-1Inn)/1.8

and the solution of the problem was assumed to converge when the current calculated value of
s* was within one per cent of the preceding value. In (37)4' No is the radius of the indentor. The
assumptions (37h.1O.ll imply that the material is thermorheologically simple15 and equations
(37)10.1 i relating the relaxation time )'(T) at temperature TrF) to the relaxation time ).(1;nn) =
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0.01 at the reference temperature 1!nn (OF) constitute the WLF equation.16 In (37)11 the factor
1.8 is the conversion factor from of to °C and the reference temperature is taken equal to 1!nn
for convenience. Usually it is taken equal, in degrees Celsius, to the glass transition temperature
of the material plus 50.16 Here we have assumed that GI(O) and G2 do not depend upon tempera-
ture. The former is consistent with the assumption of a thermorheologically simple material.
The dependence of G1(0) and G2 upon T can easily be incorporated into the analysis and the
computer program. Figure 4 shows how G1(t) varies with the temperature in our case.

:£

:<;;-
"

0.5 1.0

t X 105 secs.

Figure 4. Variatiori of shear modulus with temperature

To compute the results, we first used a grid with 24 elements in each strip and assumed that
t* = 24At. The resulting temperature distribution showed that the relaxation time of the material
points in each strip was extremely small so that the material 'forgot', almost instantaneously,
what happened to it in the past. We then computed results for the grid with 24 elements in each
strip but taking t* = lOAf and found that the two sets of results were nearly identical. Because
of the lower value of t*, we could compute results for a grid with 36 elements in each strip and
this grid is used henceforth.

The results presented below are for the case when the exit end of the grid is assumed free.
Because the grid is coarse, numerical results may not be very accurate. A finer mesh could not
be used because of the limited core storage available in the CDC 6400 computer at McMaster
University.
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In Figure 4, we have plotted G 1 as a function of t at the temperatures of the centres of various
strips. Figure 5 shows the temperature distribution across the thickness of the layer. Since Gl
has the same value for all points in one strip, we may view the roll cover as being made of various
homogeneous isotropic layers having different mechanical properties.

d = DISTANCE FROM BOND SURFACE

h = THICKNESS OF LAYER

I.L
0

I-

Figure 5. Temperature distribution across the rubber-like layer

Figures 6, 7 and 8 show that the deformed surface of the roll cover, the pressure distribution
at the contact surface, and stresses near the bond surface are all symmetric about the line joining
the centres of the mating cylinders. These results, due to viscoelastic dissipation, are in qualita-
tive agreement with those obtained earlier for the homothermal viscoelastic problem.6 Strains
computed from (14) indicated that the maximum strain occurred near the centre of the strip and
was approximately equal to 0.027. It is possible that for the sample calculation given here we
may have reached the limit of the range of validity of the linear theory. The elastic load
distribution shown in Figure 7 was obtained from the thermoviscoelastic program by taking

Gl(t) = 67114lbjin2

G2(t) = 5 x 106lbjin2

T.. = 0
I)

in the constitutive relation (15) and the semi-arc of contact eo = 0.02. Whereas in this elastic
case the arc of contact originated and terminated at a nodal point it was not so for the thermo-
viscoelastic problem. In that case the boundaries of the arc of contact were located graphically
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UNDEFORMED SURFACE

DEFORMED SURFACE

x in

Figure 6. Asymmetric surface deformation of the rubber-like layer

ELASTIC CASE

THERMOVISCOELASTIC CASE

81(8o)elastic

Figure 7. Comparison of thermo viscoelastic and elastic contact pressure distributions
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'",

BIB,

't

Figure 8. Stress distribution near the bond surface

by plotting the load distribution and there the value of eo was found to be 0.215. However, this
was checked by ensuring that nodal points beyond both ends of the arc of contact indeed were
neither on the contact surface nor penetrating the indentor.

It is clear from the pressure distribution shown in Figure 7 that the force distribution at the
contact surface gives a moment which opposes the motion of the layer. Thus to keep the system
running at a steady speed work has to be done on the system. For the values of various parameters
given in (37), the power required to maintain the system in steady state rotation is 5.17 HP per
linear inch of the roll. For our case this is equivalent to a coefficient of friction approximately
equal to 0.03 acting between the rolls.

A comparison of the results obtained here using the 'rectangular' element and those obtained
in Reference 6 using triangular elements shows that the present mesh with rectangular elements
gives considerably better results. One could further improve the aCGuracy of the results by
computing the stiffness matrix on the assumption that the temperature varies linearly or in some
other more complicated fashion across the element.

Here we have not accounted for the frictional force at the contact surface. One can account for
this easily by applying appropriate tangential forces at the nodal points on the contact surface.
For example, if one assumes Coulomb friction with impending slip everywhere on the contact
surface2 one can specify the tangential force at a nodal point to be equal to the cQefficient of
friction multiplied by the normal force and proceed to solve the problem in exactly the same
fashion as we have done.
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We have replaced the force exerted by the indentor by equivalent loads at the nodal points.
Sometimes one wishes to replace the actual load distribution by work equivalent loads. This
would require a knowledge of the exact arc of contact. Since, in the thermoviscoelastic case and
for the mesh used here, it is not feasible to specify the arc of contact precisely, we can not compute
the work equivalent loads. However for a sufficiently fine mesh for which the arc of contact
originating and terminating at a nodal point can be ascertained a priori, one can calculate work
equivalent loads and specify these at the nodal points on the contact surface.

Since, in practice, one is more likely to know the total contact force rather than the contact
arc, the application of our method to a real problem will involve prior work to estimate the
correspondence between total contact force and contact arc. An examination of Figure 7 suggests
that a sufficiently accurate estimate may be achieved if the preliminary work is done using an
elastic model.

Finally, we note for the interested reader that a paper surveying the paper mill problem and
the research strategy which led to the present work was presented at the Second Symposium
on the Applications of Solid Mechanics.17
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