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SHORT COMMUNICATIONS

FINITE PLANE STRAIN DEFORMATIONS
OF RUBBERLIKE MATERIALS

R. C. BATRA

Department of Engineering Mechanics, University of Missouri-Rolla, Rolla, Mo., U.S'.A

SUMMARY

A finite element program capable of analysing finite plane strain deformations of incompressible
rubberlike (Mooney-Rivlin) materials has been develop~d. Two problems, namely a long wall loaded
uniformly in two directions and a thick-wall cylindrical pressure vessel loaded internally, have been solved.
The computed values of displacements, strains, stresses and hydrostatic pressure agree very closely with
their values obtained analytically.

INTRODUCflON

A general purpose finite element program, NONSAP, capable of analysing linear and nonlinear,
static and dynamic problems for elastic and elastic-plastic materials, has been developed by
Bathe et al.l.2 However, the capability to solve finite plane strain problems for incompressible
elastic materials has not yet been incorporated into this program.

In the finite element formulation of finite plane strain problems fOT rubberlike materials,
Scharnhorst and Pian3 have used a Reissner-type variational principle and Oden4 has employed
th~ principle of stationary potential energy. The problem of the inflation of a thick-wall
cylindrical pressure vessel made of a homogeneous Mooney-Rivlin material has been solved by
Scharnhorst and Pian3 and by aden and KeyS by employing the two different variational
principles.

Our motive is to develop a finite element program capable of solving static finite plane strain
problem.. for incompressib~e {';la'itic m~terials iilvo!"ing (=omplex gr.ometries anti loatii'1g
conditions. We follow Oden4 and use the principle of stationary potential energy. We solve tV/O
problems for Mooney-Riviin materials using this program and compare computed results with
those obtained from their analytical solutions.

For the thick-wall pressure vessel problem, as is done in Reference 3, we use a 4-node plane
strain isoparametric quadrilateral element with 2 x 2 Gaussian integration I'lie 1:0 evaluate the
integrals for the stiffness matrix. Comparison is made of the results obt:ained with those of
Scharnhorst and Pian3 and also of aden and KeyS who used axisymmetric formulation and
constant strain triangular elements.

We note that for plane strain deformations of homogeneous Mooney-Rivlin materials, the
values of displacements, strains and in-plane stresses for a given load distribution depend upon
the two material constants only through their sum. Differ.e_nt choices of the values of the two
constants with their sum being the same do result in different distributions of the hydrostatic
pressure and the normal stress on the plane of deformation.

0029-5981/80/0115-0145$01.00
@ 1980 by John Wiley & Sons, Ltd

Received 10 October 1978
Revised 27 April 1979

145



146 SHORT COMMUNICATIONS

FORMULATION OF THE PROBLEM

In this section we introduce the notation and give a summary of the equations used. Details of
deriving these equations are given in References 3 and 4. We use fixed rectangular Cartesian
co-ordinate axes to describe the position X of a material particle in the reference configuration
and its position x in the present configuration. Therefore u = (x - X) gives the displacement .of

the material particle that occupied place X in the reference configuration. The deformation
gradient F, the right Cauchy-Green tensor C and the Green-Lagrange strain tensor E are
defined as

ax;F;i ~ Xa .
.J

Throughout this paper we use the summation convention and in (1), b'ji is the Kronecker delta.
The strain energy density W for isotropic elastic materials depends upon the strain tensor only
through its principal invarian~s 11, 12 and 13. For Mooney-Rivlin materials W is given by

. W=Cl(Il-3)+C2(I2-3),Il=Cjj, 12=I3l(C~1)jj,I3=detC=1. "

Here Cl and C2 are material constants and for bodies homogeneous in the reference configura-
tion, tbe~e ?SS'lme th~ same \alues for each ma~erial point of the boj) .

Let the region occupied by the body in the reference configuration be subdivided into a finite
number of subregions called elements. The principle of stationary potential energy states that
within each element and hence for the entire body, the potential energy

p= fv(W +~ (13-1)) dV -fA IjUi dA-Jv PogjUj d V (3)

takes an extremum value [Reference 6, p. 253] for all admissible displacement fields that satisfy
the displacement boundary condition. In (3), f is the surface traction acting on a unit area in the
reference configuration, g is the body force per unit mass, Po is the mass density and all the
integrations are over regions in the reference configuration. t5P = 0 with W given by (2) gives

J Sjj<5Eji d V = f Ij<5uj dA + J Pogj<5Uj d \1",
V A V

Cu = Fk;Fki, 2Eii = Cii-8ii. (1)EXi.;,

(2)

(4)

in which

S=pC-1+2C1l+2C2(I11-C) (5)

is the second Piola-Kirchhoff ~tress tensor. It is related to the Cauchy stress tensor T by
T= (FSFT)/det F.

We assume that the given load is applied in M, not necessarily equal, increments and denote
the incremental change in the value of say u caused by the (N + 1 )st load increment by ilu. That i..

UN+l = UN + ilu, EN+l = EN + ilE, etc. (6)

The relation between AE and Au obtained from equation -(1) is

A E .. = Ae.. + A-n.. A-n.. = _21 AU k .AU k .
UIJ IJ .,IJ' ."J .I.J' (7)
Ae.. =-21(Au. ,+AU..+UN k .AUL .+UN k .AU k .).IJ '., J.' .'...1 .1 .'

We note that AI) = 2C#1 AEir The relation between AS, AE and Ap is given in Reference 3.
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(8)ff+1SAu; dA,

f b'Ap«Ci7')-l AEjj) d V = -! f b'Ap(I~ -1) d V.
v v (9)

aSjj aSjj aSjj ( -1 )ASjj=-Aekl+-Ap=-Aek/+ C jjAp.

aEk/ ap aEk/

Hence an approximation to equations (9) and (10) is

Jv~SijO~eij dV +JVS;:O~7Jij dV=RN+l

b'ilp(Ct"}-l ileij d V = -1 J 8ilp(If -1) d V.
vv

If an analytical solution of a problem is known, then one can successively reduce the size of the
load increment until a solution of equations (11) and (12) matches well with the analytical
solution. This may require, depending upon the problem being solved, very large number of load
steps. One can use equilibrium iterations,2,7 i.e. iterations within a load step, to ensure that
equations (11) and (12) are solved within a pre-specified error.

COMPUTATION AND DISCUSSION OF RESULTS

A finite element program based on equations (11) and (12) and employing4-node isoparametric
quadrilateral elements with 2 x 2 Gaussian integration rule has been written. The hydrostatic
pr~ssurl: [- is a3~,umei11.0 be ';..)llstant within an eJ.~ment, The body for;e g i5 takel! tCl be z('.ro.
Even though for an assumed displacement field within a quadrilateral element, one can calculate
consistent nodal loads, we have chosen to use lumped nodal loads since it is simpler to do so. If
the applied load is dead, i.e. its magnitude and direction do not change during the deformation,
then the equivalent nodal loads can be computed in the reference configuration. For distributed
applied loads or for deformation dependent loads, one needs to compute nodal loads after each
increment in the load. A distributed load on the boundary can be resolved into a pressure load
and a tangential load. Let the pressure and the tangential load per unit length be denoted by p
and ~ respectively. Consider the line element between two nodes a and b on the bounding
surface (see Figure 1). The total force f acting on the line element ab is given by

i' A ( b a ) A ( b a
)Ji=t Xi -Xi -PE3ii Xi -Xi'

Therefore,
r: = fr = ![t(x? - xf) - PEJij(Xr - xi)]. (13)

Here Eijk is the permutation symbol and it takes on values 1 or -1 accordingly as i, j, k form an
even or an odd permutation of 1,2, and 3 and is zero otherwise. Since, after each increment in

We now make the assumption that the increment in the load is small so that

ASijl5AEij = ASijfj~eij, (C~)-l AEij = (C~)-l Aeij,
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load, the final positions of the nodes a and b are known, the nodes for the next load increment
can be calculated based upon their positions computed after the immediately preceding load
increment. Such an approach has also been suggested by aden and Key.s

Figure 1. Distributed loading at the boundary

Below we discuss results for two sample problems. To ascertain the effect of the dissatisfaction
of the incompressibility after the Nth load step as given by the right-hand side of (12h. we also
computed results with the right-hand side of (12h set equal to zero and found rather insignificant
differences between the two sets of results. The results presented below are for the case when the
rightehand side of (12h is taken to be zero.

.;i{11y

J

~

z/
Figure 2. Biaxially loaded unifol:~ wall

As a first test problem we considered a long wall of constant thickness loaded uniformly in two
directions, as shown in Figure 2. The grid used is shown in the same figure and we took
C1 = 80 psi, C2 = 20 psi. The computed and the values obtained from the analytic solution of
various field variables are shown in Table I. It is obvious that the computed results, without using
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equilibrium iterations, agree very well with those obtained from the exact solution. A reason for
getting such good numerical results with a rather coarse grid is that the exact solution
corresponds to a homogeneous deformation of the wall and this deformation mode is included in
the displacement field assumed within an element.

Table I

No. of
load inc. E=t' Eyyt i %X t (psi) T 1'1' t (psi) u~:I: (in. u.:I: (in.) pt (psi)

10
50
0

(Exact)

-0.156
-0.154
-0.154

0.221
0.221
0-222

-48.9
-49.8
-50.0

102
100
100

-0-170
-0-168
-0-168

0.401
0.402
0.403

-228-0
-228-5
-228-6

t Values at the centre of element No.2.
:I: Displacement of nodal point No.6.

As a secC\nd test problem w~ considered a homogeneolls thick-wall cylindrical pressure vessel
(inner radius Ri = 7 in., outer radius Ro = 18.625 in., C1 = 80 psi, C2 = 20 psi) loaded internally
with a pressure Pi. Since the developed program can handle only zero displacemenl:s prescribed
along the axes, i.e. cannot handle oblique boundary conditions, we considered a quarter of a
circle and divided that into 10 uniformly spaced elements in the radial direction and 20 eq\laIJy
spaced elements across the circumference, as shown in Figure 3. This grid is called a lOT x 20C

Figure 3. Finite element representation for an infinitely long thick-walled cylinder

grid and should provide a severe test of the finite element formulation since the results should
come out to be axisymmetric. This problem with the same geometric and material parameters
has been solved by Scharnhorst and Pian3 by using a mixed model, and by aden and KeyS by
using an axisymmetric formulation. An exact solution of the problem obtained as a special case
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of a problem solved in Section 3.3 of the book by Green and Zerna8 is

Rz
T" =p+2Cz+2(C1+CZ)-r. r

[ b (1 1 ) R R2]P=-Pj-2C2-2(C1+C2) InR;+:2 ;Z--""ji'f -lnR;+7 '

Rj R~-R:
]+b lR: +b)lR~ +b) ,

r

[ R'?-+bPi=(C1+C2) In:i!+b-2InR: ,--v -,,-. (14)

b =2Riur+u~ =2Rur+u~,

r=R +Un

1
(R2 ) 1(r2 ) , Err = 2 7 - 1, E89 = 2 R"2 - 1 .

In these equations Ur is the radial component of displacement, ur is the radial displacement of Ii
Jloint 0.1 the inner surface, Trr is the radial Cauchy stress, T 99 is the circumferential Cauchy
stress, R is the radius of a point in the un deformed reference configuration, E" is the radial strain
and E98 is the strain in the circumferential direction.

The results obtained from the analytical solution (14) and those computed from the finite
element program without using equilibrium iterations are given in Table II. It is clear that the
computed values of various field quantities appear to converge to their values obtained
analytically. However, the rate of convergence is awfully slow. Even ~ith the entire load divided
into 70 equal increments, the computed values differ by about 6 per cent from their values
obtained from (14). In order to assess the effect of refinement of the grid we computed results by
using a 20T x 40C grid. There was no noticeable improvement in the results, implying thereby
that the lOT x 20C grid was adequate.

A comparison of these results with those of Scharnhorst and Pian3 reveals that, without the
use of equilibrium iterations, the Reissner-type variational principle yields acceptable results

Table II

% Errort
in incompr.
constraint

No. of
load inc. T 88 t (psi) T,. t (psi) pt (psi)u,:I: (in.) Eeet EITt

-119
-126
-134
-130
-131
-131
-132

-234.7
-232.7
-231.8
-231-4
-231.1
-231.0
-230,8

3.35
1.94
1.24
1.08
0.90
0.77
0.67

5.795
6.302
6.527
6.660
6.742
6.803
6.848

0.997
1.11
1.17
1.20
1-22
1.23
1.24

-0.
-0.
-0.
-0.
-0.
-0.
-0.

417
460
475
492
500
505
509

10
20
30
40
50
60
70

-230.0 0.07.182 1.32 -0.363 539 -135Exact

t Values at the centre of element No.1
t Radial displacement of interior node.

334
351
354
356
357
358
359
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Table III

% Errort in
incompr.
constraint

Tolerance in

displacements
(%)

Trrt
(psi)

pt
(psi)

T 88t

(psi)
No. of
load inc.

ur:l:
(in.) E..tBeet

30 load inc. with
uptolOeq.iter. -232-3 1.61 0.1-0-367 539 -1337.136 1.31

50 load inc. with
up to 15 eq. iter. 0.01-134 -231.4 1.07.152 1.317 -0.365 539

0-0-135 -230.0 0.07.182 1-323 -0-363 539Exact

t Value at the centre of element No.).
:j: Radial displacement of interior node.

with the load divided into fewer increments. For example, with the load divided into 29 steps,
the use of mixed model and the stationary potential energy principle give almost identical errors
in the values of the hydrostatic pressure and incompressibility constraint at the centre of element
No.1, but the value of radial displacement of the interior node has an error of 1 per cent with the
mixed model and an error of 7 per cent with the use of the stationary potential energy principle.
As expected, the presently computed values of ii" E," Eoo, Tr" and Too converge from below to
their values obtained from the analytical solution. Whereas, for Pi =128.2 psi and the load
divided into 40 steps with no equilibrium iterations used, Oden and KeyS who used an
axisymmetric formulation and constant strain triangular elements report an error of 2.4 per cent
for the radial displacement, we get an error of 7.4 per cent for Pi = 150 psi and the load divided
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Figure 4. Materia! constant C1 vs. the undeformed radius

801
I

6(1

40

20



SHORT COMMUNICATIONS

14()

.:In

2Inn 3

In
Q. 80

III I ~ I ~ - EXACT

~ r ////~ ' . FINITE ELEMENT SOLUTION

~.-' I . /
z ./,.. 20, /'

'/
-.I-

I 2 3 4 5 6 7
DISPLACEMENT OF INTERIOR NODE, in.

Figure 5. Internal pressure Ys. the radial displacement of a point on the inner surface

8

INTERNAL PRESSURE: 100 PSI

7 - EXACT

. FlrlrTE ELE~~ENT S")LUTION AT TH~
.,: NODAL POINT.- 6

.--
z
w
~
w 5
u
<
oJ
Q.
II)
0 4 3
oJ
5 2
0 ~ '~-"-.~ ~" ~ ~ < 3 II:

I.: I

y J7 9 II 13 15 17 19

UNDEFORMED RADIAL DISTANCE, in.

~

4n

~~~~~~~~~~

152

I~

,--"

Figure 6. Radial displacement vs. the undeformed radius

60



153SHORT COMMUNICATIONS

300

\/)
Q. 260

\/)
\/)
w
n: 220
t-
\/)

-l
of
~ 180
z
w
n:
w

~ 14('
:;)
u
n:
u

100

INTERNAL PRESSURE: 100 PSI

- EXACT

. ... FINITE ELEMENT SOLUTION AT
CENTER OF ELEMENT

3

60 ---'--"" I

y I 7 9 Ii 13 15 17 19~

UNDEFDRMED RADIAL DISTANCE, in.

Figure 7. Circumferential Cauchy stress vs. the undeformed radius



154 SHORT COMMUNICATIONS

into 40 steps. Therefore, for this problem, axisymmetric formulation and the Reissner-type
variational principle give faster convergence if equilibrium iterations are not used.

With the use of equilibrium iterations, as can be seen from the results presented in Table III,
the accuracy of the results is significantly improved. When using equilibrium iterations, the
iterative process within a load step was stopped when the ratio of the Euclidean norm of the
newly computed displacements of the nodal point to the Euclidean norm of the total displace-
ments of the nodal point up to the immediately preceding iteration was less than a pre-specified
number. As is clear from the results presented in Table III, with tolerance set equal to 0,001, the
computed results agree closely with those obtained from the analytical solution.

We note that the use of equilibrium iterations results in improved numerical results because
the pressure load is applied on the deformed shape. Thus, if the displacements are under-
estimated after any load step, from there on the structure will always be underloaded and the
error in the computed displacements will keep on increasing. It seems that if the applied load is a
dead loading, then the results obtained should be less sensitive to the use of equilibrium
iterations.

In order to assess the effect of the non homogeneity of the material on the number of load steps
and the number of equilibrium iterations required for the numerical solution to converge to the
analytic solution, we also studied the pressure vessel problem for the cases when the material
constants C1 and C2 are given by

C1 = 15.914+3.4409 R psi, C2 = C1/4, (15)

2 .CI = -7-3759+3-4409 R +0'148 R pSI, C2= CI/4 (16)

We identify the problem of the homogeneous cylinder as problem 1 and the other two problems
for which C1 and C2 are given by (15) and (16), respectively, as problems 2 and 3. The variation
of C1 with the undeformed radius R is plotted in Figure 4.

For homogeneous materials, dividing the internal pressure of 150 psi into 30 equal incre-
ments and using up to 15 equilibrium iterations gave displacements accurate to within 0.1 per
cent of their values. However, for problems 2 and 3, the same accuracy could not be achieved
with everything else such as the number of increments into which the load is divided etc. kept the
same. Since the computer time for each complete run was approximately 4.5 CPU minutes on an
I'3M 370/168 compl1t;r, it 'vas d~l:id ~d to I ~duce the tol ~r2nce on llisr.la(;eme\lt~ to 1.)1.:1 cent or
their values. As should be clear from the results presented in Figures 5 to 8, for homogeneous
materials, the values of displacement and stresses came out very close to those obtained from the
analytical solution. For nonhomogeneous materials of problems 2 and 3, the same accuracy on
displacements could not be attained for internal pressure Pi greater than or equal to 120 psi with
the number of increments into which the load is divided and the maximum number of
equilibrium iterations kept the same as those for problem 1. Of cou,rse, the accuracy can be
improved by increasing the number of steps into which the load is divided and/or the number of
equilibrium iterations. What this numerical experiment establishes is that for nonhomogeneous
materials one will, in general, need to divide the load into more number of increments and/or
increase the number of equilibrium iterations to arrive at the same accuracy in displacements.
How many more steps into which the load is to be divided or what is the"optimum number of
equilibrium iterations depends upon the specific problem. It seems rather safe to conclude from
the preceding, as turned out to be the case for the results presented herein, that CPU time
required to solve a problem when the material is nonhomogeneous is more than that required to
solve an identical problem with the material being homogeneous.
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Results depicted in Figure 5 show that for the same internal pressure, as expected, points on
the inner surface undergo larger radial displacement for problems 2 and 3 as compared to that
for problem 1. This is so because the material of problem 2 is softer than that of problem 1. Even
though the material of problem 3 is harder than that of problem 1 or 2 near the outer surface and
softer near the inner surface, points on the inner surface undergo larger radial displacement for
problem 3 than they do for problem 1 or 2. From Figure 6 we see that the difference between the
radial displacement of a point for any two of the three problems is more for a point on the inner
surface than that for a point on the outer surface. A reason for this is that the material of the
cylinder is assumed to be incompressible and, therefore,points on the outer surface ought to
undergo less radial displacement in order to keep the area of cross-section unchanged.

In Figure 7 is plotted the variation of circumferential Cauchy stress through the thickness of
the cylinder. Since the values of material constants of problem 3 at the outer radius are
considerably higher than their values at the inner radius, the outer layers exert significantly
higher pressure on the inner layers than they do when the material is homogeneous. Thus in this
case the circumferential Cauchy stress increases as we go outwards from the inner radius. This is
opposite of what happens for problems 1 and 2. This suggests that by suitably varying the values
of material constants through the thickness of the cylinder, one can make the circumferential
Cauchy strcss to be more or less unifolm through the Lhickness of the cylinder and thereby ma:<e
optimum use of the material. The variation of the radial Cauchy stress across the thickness of the
cylinder is plotted in Figure 8.

Results presented in Figures 5 to 8 attest to the closeness of numerical results to the one
obtained from the analytical solution. At the risk of repetition we add that to achieve the same
accuracy in displacements one will need, in general, to divide the load into a larger number of
increments and/or use more equilibrium iterations for nonhomogeneous materials than for
homogeneous materials.

REMARKS
Equation (14) makes clear that for plane strain deformations of a thick-wall cylindrical
pressure vessel, the values of T rn Tee, Ern Eee and u, depend upon the material constants C1 and
C2 only through their sum (C1 + C2). The value of hydrostatic pressure p depends upon C2 and
(C1 + C2) and therefore T zz, the normal stres~ on a cro!;!;-s~ction, will depend up::>n C;. ,md C2.
The preceding result can be proved to be true for general plane strain deformations ofhomogeneous Mooney-Rivlin materials. .

The developed computer program differs from NONSAP in the way the stiffness matrix is
assembled and the linear equations are solved. Whereas in NONSAP, the applied loads are dead
loads, loads that always act normal and tangential to the deforming surface can be accounted for
in this program. In Reference 9, a problem in which the applied load is normal to the deformed
surface has been solved by using the present program.
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