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SUMMARY e

Finite deformations of a nonlinear viscoelastic rubber layer bonded to a uniformly rotating rigid cylinder
and indented by another rigid cylinder are studied by the finite element method. The problem formulation
includes both material and geometric nonlinearities. The effect of the change in the thickness of the layer,.
its speed of rotation and its material properties on the pressure distribution at the contact surface, and
other aspects of the deformation of the layer, are studied.

T INTRODUCTION /'

Rubber-covered roll covers similar to the set-up shown in Figure 1 are used in the paper-mill
industry and the textile industry. In these and other applications of the roll covers, a relatively
thin rubberlike layer bonded to a cylindrical core made of a considerably harder material is
indented by another cylinder also made of a hard material. Typically, the indentor and the
core are made of steel or granite. The maximum principal strain induced in the rubberlike
layer in these applications seems to exceed 20 per cent. Also, depending upon how the rubber
was cured and other factors (such as the environmental temperature), the rubberlike layer may
behave viscoelastically. Earlier, Batra® studied the deformations of these roll covers wherein
the rubber has b_eeri modelled as a nonlinear elastic material. Herein we assume that the
rubberlike layer can be modelled as a nonlinear viscoelastic material and study its finite
deformations. We assume that sufficient time has elapsed since the start-up of the operation
for the transient effects to die down and consequently we study the steady-state problem wherein
the rubberlike layer has a constant angular velocity of () rad/sec.

We briefly review some of the previous work done on this and other related problems. For
the case of infinitesimal deformations of the rubberlike layer presumed to beé made of 2 Hookean
material, Hahn and Levinson® used the Airy stress function to solve the problem. They also
showed that the effect of Coulomb friction at the contact surface on the deéformations of the
layer was negligible for moderate values of the coefficient of friction. Soong and Li> used the
same Airy stress function, but used the point-matching method rather than th_e Gram-Schmidt
orthonormalization method used by Hahn and Levinson. In a later paper,* Soong and Li
considered the effect of a thin sheet of paper being pressed between two rubber-covered rollers.
The deformations of the roll covers were assumed to be infinitesimal.
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Figure 1. System to be studied

Contact problems in which one of the bodies is made of a homogeneous linear viscoelastic
material and the other is taken to be rigid have been studied by Hunter,” Morland®’ and
Harvey These studies have entailed the contact of a viscoelastic cylinder with a rigid plane
or that of a rigid cylinder with a viscoelastic half-space. Various transform methods have been
used to reduce the problem to that for an elastic case. A contact problem involving the cold
rolhng of a viscoelastic sheet was solved by the finite element method by Lynch.’ In this
problem, the boundary surface where surface tractions are prescribed is not a material surface.
Lynch studied the steady-state rolling process and consequently was able to express the
dependence on the past history of the strain rate in the stress—strain law on the spatial variation
of the strain. Thus, the resulting stiffness matrix had a bandwidth considerably larger than that
required to solve an elastic problem. Batra et al.'® used a similar technique and solved the roll
cover problem when the rubberlike layer is assumed to be made of a thermorheologically
simple material.. Both Lynch and Batra et al. accounted for the incompressibility of rubber by
taking the bulk modulus to be much larger than the shear modulus. Subsequently, Batra'' used
an exact formulation for 1ncompress1b1e materials and solved for the finite deformations of
nonlinear rubber-covered rolls.

Experimental work involving varying thickness of the rubberlike layer and different combma-
tions of diameters of mating cylinders has been performed by Spengos.'? We note that in his
experimental sei up, the ratio of the diameter of roll cover to the length of cylinders is of the
order of one. Therefore, in order to compare analytical results with his experimental ﬁndmgs
one will need to solve a three-dimensional problem. We also note that the only: matenal property
listed in Spengos’ work is the durometer hardness.

In this paper we study finite plane strain deformations of the roll covers, assuming that these
are made of a nonlinear viscoelastic material. The constitutive relation used is that proposed
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recently by Christensen.'* We use the formulation valid for incompressible materials and regard
pressure in each element as an unknown quantity. Using 4-noded isoparametric elements with
2 X2 Gaussian integration rule, we solve for unknown nodal displacements and the discon-
tinuous pressure field. The developed computer code has been tested for accuracy by solving
a nonlinear elastic. problem solved earlier'' by using a-different computer code and also by
solving a linear viscoelastic problem studied earlier by Batra.'* In each case the solution
obtained by using the present code compared favourably with that obtained earlier. The
parameters whose effect on the deformations of roll covers have been studied in this work
include the thickness of the roll cover, the speed of rotation, material moduli and the radius
of the indentor. When studymg these different cases, the depth of indentation has been kept
constant.

FORMULATION OF THE PROBLEM

We use a fixed rectangular Cartesian co-ordinate system with origin at the centre of the roll
cover to describe the deformations of the rubberlike layer. We denote the position of a material
particle in the reference configuration by X, and the position of the same material particle in
the current configuration at time ¢ by x;. Thus, x; = x;(X,, t) describes the deformation which
is governed by the following equations: '

%;=0 Xi=—— px; = Tij.j (1

Equation (1), is the continuity equation for incompressible materials and equation (1); describes
the balance of linear momentum. Here, p is the present mass density which, for the material
being studied, equals the mass density in the reference configuration, a superimposed dot
implies material time. derivative, oy; is the Cauchy stress tensor,-and a repeated index implies
summation over the range of the index. Equations (1) are to be supplemented in general by
initial conditions, boundary conditions and a constitutive relation. Before we state these, we
give below the assumptions made to make the problem tractable. -

We assume that steady state has been reached and the effect of all dynamic forces such as
the inertia forces and centrifugal forces on the deformations of the rubberlike layer is negligible.
This assumption seems reasonable since the mass density of rubber is quite low, being close
to that of water. Also, we will consider only those situations for which'the length of the roll
covers is very large compared to their diameters.: Thus, plane strain state of deformation is
assumed to prevail. Under these conditions, x;= X; and equation (1)3 for i=3 is identically
satisfied. Thus we need to solve :

%,=0  0,=0 (i=1,2) N )
under the following Boundary conditions. At the inner surface ’ N
| =x-X8a=0, . 6)
and at the outer:surface - . .
 eom=0 ‘
noyn; =0 |6—8|> 6, g =arctan (x,/x,), @

”;Uﬁ"j =f(0) |o“ﬁ|< 6o
f(8)>0 as|6—pB|- 6,
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In these equations, n; is a unit outward normal to the boundary and e, is a unit tangent vector
to the boundary in the present configuration. The boundary condition (3) implies that there is
perfect bonding at the inner surface between the rubberlike layer and the supporting cylinder.
This seems to be supported by experiments, since an examination of failed roll covers indicates
that there is always some rubberlike material left on the cylinder. The boundary conditions (4)
indicate that the part of the outer surface of the rubberlike layer not in contact with the indentor
is traction free. Also, on the part of the outer surface of the roll cover that is in contact with
the indentor, there is no traction in the tangential direction and the normal force between the
two is given by the function f(#). The corner condition (4), implies that a .contact problem
rather than a punch problem is being solved. What is left to complete the formulation of the
problem is the constitutive relation for the rubberlike material. We take this to be the one
proposed by Christensen.'® That is

" 3E,5(X, 7) df]. )

. B . t B
ay(x(X, 1), t)=—p(x, 1)8; +FiaFj3[805a3 L*’J’ g&i(t—17) a7

Here, p is the hydrostatic pressure not determined by the deformation, g, and g, are material
moduli, g; describes how the present stress at the material point X depends upon its past
deformation history, g,(f) decays to zero as time goes to infinity, 8,4 is the Kronecker delta
and the right Cauchy-Green tensor C,g and the Green—Lagrange strain tensor E,g are related
to the deformation gradient F,, by

CaB = FiaFi/.a ZEAB = CaB - 5aﬁ F,= Xia = 0x;/90X,. 6)
In the present work we have taken the material modulus £1(?) to have the form
g()=g@exp(~t/7) o

where 7, is the relaxation time of the material. It is possible that the material may have more
than one relaxation time. For simplicity, we have assumed the existence of only one relaxation
time. Our procedure and the numerical work can easily be modified to accommodate situations
where the material response function g,(t) is represented by a series rather than the one term.
Implicit in the constitutive relation (5) is the assumption that the rubberlike layer is made of
a homogeneous and isotropic material.

We note that because of the assumption of steady state, the variable of integration 7 in
equation (5) can be changed to the spatial co-ordinate 6. Also, in order for our assumption of
steady state to be valid, the relaxation time 7, of the material would have to be such that
stresses and strains at a material point relax to zero soon after it leaves the region |8 — B| =< 4,.
If it were not so, the stresses at a material point would very likely keep on building up and a
steady state would not be reached. Thus, the solution technique proposed herein will apply to
situations wherein the relaxation time of the rubber and the speed of rotation of the roll cover
are suitably related. ' .

The problem as formulated above is not well defined since 6o, B and f(8) are not known a
priori. These three should have values such that the boundary conditions (4) are satisfied and
the deformed surface of the roll cover in the region |6 — B| < 6, matches with the circular profile
of the indentor. In order to solve the problem, we use the following iterative procedure. We
assume 6, and B and iterate on the pressure profile f(8) until the computed deformed surface
within the assumed contact width matches with the circular profile of the indentor. We also
ensure that the presumed contact'width is correct by ensuring that points on the outer deformed
surface outside the assumed contact width have not penetrated into the indentor.

The problem as formulated above is too complicated for us to solve analytically. Therefore,
we seek an approximate solution of the problem by using the finite element method.
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FINITE ELEMENT FORMULATION OF THE PROBLEM

For the numerical work we use the referential description which is sometimes also called the
total Lagrangian description of the deformations. Equations equivalent to equations (2) that
govern the deformations of the rubberlike layer may also be obtained by using the principle
of virtual work. This principle for incompressible bodies (e.g. see Truesdell and Toupin'® for
one such version of the principle) may be stated as W =0 for all virtual displacements &u;
that vanish on the part of the boundary where essertial boundary conditions are prescribed.
Also, W is given by

W=JS§BEupdV—Jhaua dA—Jg(I;,—I)dV ®

where S2g may be called the deviatoric part of the second Piola~Kirchhoff stress tensor that
contributes to virtual work during a virtual deformation of the body compatible with the
incompressibility constraint I;(=det C)=1. Furthermore, in equation (8), h, is the surface
traction per unit area in the reference configuration and all integrations are over the region
occupied by the body in the reference configuration. The stress tensor S,z is related to the
Cauchy stress tensor o;; by the relation

Sep = 15"/ Fu0yFjp = FuoyFp « ©)
where the second equality holds ohly for 1ncompfess’1ble materials, since thesé materials can
undergo isochoric deformations only The constitutive relatlon for Ses that is compatlble with
the constitutive law (5) is _ ,

Sag =Sf'.p-p(C"')..p col N 4 (10)

0E. (X, 1) d}

X ¢ . -
Saa(X, t)=g08,p+J' g0 eI

(11)

Note that the Lagrange multiplier p/2 in equation (8) and the hydrostatic pressure p in equation
(5) play essentially similar roles since both are meant to account for the kinematic constraint
I;=1 on the deformations of the rubberlike layer. i

Setting §W = 0, noting that variations 8u; and 8p are independent and that 81, =2(C ") ,48E .,
we obtain

' J S.68E.z dV=J h.bu, dA e 1Y)

J%(I3—1)&V'%0 ‘ (13)

Assume that the entire load f(8) is applied in M equal increments and denote the increment
Auy; in displacements u; caused by the (N +1)st load increment by Au;. That is
ul '=ul+Au,  EN'=EN+AE,, et (19

Since 8E,z =86AE,g 8p=8Ap, equations (12) and (13) for the (N +1)st load increment may
be written as

J‘(s +AS,5)8AE,; dV = Ihf*'aAuu dA 15)

5A
I 222N +AL—-1)dV =0 (16)
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Using the relations

AE.;=Ae,g +A17,,B ‘

Ae,g=(Du, g +Aug, +u, ,,Auw +u,BAu,,a)/2

Amag = (Au o Auyg)/2 '
AL=2I}(CN™)AE,;

an

we rewrite equations (15) and (16) as follows:
I AS.48AE, 4 dV+J s 5A1,,,,3 dv= I hY*'sAu, dA—J Sipdhens AV (18)
- 84
JI;”(C” )agAEapbAp dV=—-J’-Tp(I§'—1)dV ~9)

In order to evaluate AS,,, we first recall our assumption that steady state has been reached.
Also, as noted earlier, the stresses and strains at a material point decay to zero as it moves far
away from the contact zone. Therefore, we assume that E.g =0 at a material point if it lies in
the region {6 — B|> L8,, where L is a suitable integer. Of course, L6, < . Experience with this
problem worked out earlier with different constitutive relations for the rubberlike material
indicates that L =4 or 5. Therefore, for any material point X, the lower limit of integration in
the constitutive relation (10) may be set equal to the time when it crosses the line —6 — B = L8,
i.e. the line AB in Figure 2. For a material point X we start the clock when it crosses the line
AB. Hence, the upper limit of integration in equation (11) equals ¢/Q, where ¢ is the present
angular displacement in radians of X from the line AB (cf. Figure 2). Let ¢ be divided into
n equal intervals with ¢, =0, ¢, =¢/n, Y,=2¢/n,..., ¢, = . The Riemann-Stieltjes integral
in equation (11) may be written as a sum of a series. Thus, we rewrite equation (11) as

n *
S2a(X, 0= godun + £ i L2

)[Eap(ilfm) Eap(llf;n-l)]’ (20)

where ¢,,_; < ¢, < ¢,,. To facilitate the interpretation of this equation, let the region |0 — Bl=< L§,
be divided into uniform subregions, as in Figure 2. In each row number the elements temporarily
(locally) startmg from the end AB. For any material point X, according to equation (20), the
value of S,,ﬁ at X depends upon the strains the material point X experienced when it passed
through the corresponding locations in elements 1 through n of the rth row. From equations
(10) and (20) we obtam

ASus=—Ap(CN ) op +2pN(CN” '),.,(CN‘ )ssAE,s

21
n ‘/’ 4’*
+ E 81 [AEaB(‘//m) AEaB((,’m l)]
mas=1
We now make the assumption that the load increments are sufficiently small s0 thai
AS,s8AE,; ~AS,g8Ae,
8 B B 8 22)

IY(CN)apAE 5 =(CN pleg



NONLINEAR VISCOELASTIC RUBBER-COVERED ROLLS 1917

D

I

S =i==a

- . - 8 .
CENTROID OF AN
" i v 185 . . ~f— ELEMENT
© RIGID CORE. _ o
, LOCAL
€ NUMBERING OF

S erta ol
@/ ~9

AR @ &)
RO 1 VI
ROW 2 - 0)
ROW 3 , /B
ROW 4
ROW 5

Figure 2. A representative division of the rubberlike layer into finite elements

where .SA",,, is obtained from S, by substituting Ae,g for AE, in equation (21). Thus, we rewrite
equations (18) and (19) as follows:

J’ A§aﬁ8AeaB~dV+I She8An,g dV=J hl*'8Au, dA—J Shedlhe,; dV (23)

J (CNVuphen8hp dV =0 e

Note that we have set I;' =1 on the right-hand side of equation (19). We use equilibrium
iterations, ' i.e. iterations within a load step to ensure that equations (23) and (24) are satisfied
within a prescribed error.

A finite element computer program based on equations (21), (23) and (24), and employing
4-node isoparametric elements with 2 X2 Gauss integration rule has been written. In it the
hydrostatic pressure p is taken to be constant within each element. We remark that the program
developed is a specific purpose one in that it can solve only steady-state viscoelastic problems
of the type being studied here. The boundary condition of zero displacements at the interface
between the rubberlike layer and the core has been built into the code. This has resulted in
fewer equations to be solved. As has been pointed out by Batra et al.,'° the stiffness matrix for
this problem is asymmetric and has a much larger bandwidth as compared to that for the
corresponding problem in which the rubber is modelled as an elastic material.
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The accuracy of the developed finite element code has been established by comparing
computed results for the nonlinear elastic problem with those obtained earlier by Batra.'' In
order to solve a nonlinear elastic. problem with the presently developed code, the material
parameter g, in equation (5) is set equal to zero. Thus, a nonlinear elastic material is modelled
herein by the neo-Hookean constitutive relation. Also, a linear contact problem involving the
cold rolling of a viscoelastic sheet studied previously by Batra'* was analysed with the currently
developed code. The results computed for these two test problems compared favourably with
those obtained earlier-by using different codes. We note that in analysing a linear viscoelastic
problem with the present code, the entire load is applied in one step on the undeformed
configuration and no equilibrium iterations are performed.

COMPUTATION AND DISCUSSION OF RESULTS

As stated earlier in the paragraph following eqn. (19), a region of roll cover in width equal
to approximately five times the estimated contact width is divided into finite elements. This
subdivision of the region into finite elements is accomplished by drawing equally spaced radial
lines from the centre of the roll cover and by dividing the thickness of the rubber into numerous
layers of equal thickness.-Numerical experiments with the thickness of rubber divided into
three, four and five layers revealed that the division into three layers is adequate for all practical
purposes. The values of the total displacement of the nodal point that underwent maximum
displacement differed by about 5 per cent when the rubber was divided into three and five
layers. Also, because of the limited computer funds available, it was decided somewhat
arbitrarily to consider the region of rubber in width equal to 2-5 times the presumed contact
width. This will result in less accurate results, since the effect of different boundary conditions
on ends AB and CD (see Figure 2) on the deformations of rubber in the vicinity of the contact
area may not be insignificant. In the results presented below, the ends AB and CD are taken
to be traction free. The equilibrium iterations are stopped when, for each nodal point on the
presumed contact width, the increment in the x,-component of the displacement caused by
the residual (or unbalanced) forces is less than 0-25 per cent of the total x,-displacement of
that nodal point for the load applied thus far.

To solve a contact problem, contact width 26, and the pressure function f(6) are estlmated
The boundary value problem is now well defined and is solved numerically. After having found
the displacements of nodal points, the deformed shape of the roll cover is determined. A check
is now made to ensure that nodal points just outside the presumed contact width have not
penetrated into the indentor. If either of the nodes adjacent to but outside of the presumed
contact width has gone into the indentor, either the value of 28, is increased or the pressure
function f(6) is modified and the problem is solved again. However, if the estimated arc of
contact is correct, then the values of f(8) are modified until the deformed surface of the roll
cover within the contact width matches, within the specified tolerance, with the circular profile
of the indentor. The tolerance fixed for this comparison is that the distance of each nodal point
on the contact surface from the indentor should be less than 1-5 per cent of the indentation
u, (see Figure 1). The final pressure profile that results in the proper deformed surface is plotted
and the value of contact width 26, is read from the graph. Also, the value of 8, the angle of
asymmetry for the contact width, is determined from this graph. Even though it is feasible to
have the contact width start and end at a nodal point and thus not determine 6, and 8 from
the plot of f(8) vs. 6, the finite element grid needed to achieve this goal would have to be very
fine. Since we must have uniform elements in a row, such a fine gnd would indeed be very
expensive to use.
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It should have become clear by now that only an approximate solution of the problem has
been obtained. There is no implication that this solution is unique. Also, its closeness to the
analytical solution cannot be determined since the latter is unknown and there is no hope of
finding one in the near future. With this caution, we now present numerical results for a typical
set-up of the roll cover.

The values of various material and geometric parameters selected are:

R,=2'39in. R, =183 in. R=3-0in.
Q=12-5rad/sec 7, =0-002 sec (25)
£0=25 psi £:(0) =25 psi

Also, to investigate the effect of change in the values of these parameters, one parameter was
varied at a time. To shorten the notation in the graphs, we use the identification given in Table
I for these problems. We note that problem 2 represents the case when the rubber is taken to
be a neo-Hookean (the simplest nonlinear elastic) material. Figure 3 depicts the pressures
needed to cause an 0-127 in. indentation in the roll cover. The values of the total load required
to deform the roll cover, the values of the contact width 2@, in the referential description and
the angle 8 of asymmetry are listed in Table II. The total load P is evaluated from

6,8
P= I £(6)de

~68o-B

Table 1. Problem labelling

Parameter(s)
changed Its new value Problem No.
None o 1
. 8o, £1(0) 80="50psi, £,(0)=0 2
: R, 1-97 in. 3
Q 40 rad/sec. 4
5

R 2-0in.

Table II. Load and contact width

Problem No. - Load P (Ib/in.) 2@, (rad) - B (rad)

1 38-59 0-389 . 0-0018
2 77-2 0-4389 0-0

3 70-73 0-4109 0-0058
4 41-2 0-3970 - 0-0076
5

343 . - 0-360 0-0039

Note that the pressure distribution on the contact width is asymmetric about the centreline
of roll covers. The value of the maximum pressure occurs at a point to the left of the centreline
of roll covers. As expected, maximum load is required for the elastic problem. The decrease
in the thickness of the roll cover from 0-56 in. to 0-42 in. results in a considerable increase in
the total load required to cause the same indentation. For a decrease in the radius of the
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Figure 3. Pressure distribution at the contact surface
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indentor from 3 in. to 2 in., both the total load and the contact width decrease. However, an
increase in the angular speed of the roll cover from 125 rad/sec to 40 rad/sec is accompanied
by a slight increase in the requisite load. : '

Also, plotted in Figure 3 is the pressure profile for the linear viscoelastic problem. In this
case, the entire load is applied in one step on the undeformed outer surface of the roll cover
and no equilibrium iterations are performed. The numerical values computed for various
parameters are P=20-1941b, 2@,=0-316 rad, B =0-1174 rad. We note that the maximum
strains involved are of the order of 40 per cent. It is clear that for this set-up of roll covers
and 0-127 in. indentation, the solution for the linear problem differs dramatically from that for
the nonlinear problem.

In Figure 4 are shown the undeformed and deformed shapes of the roll cover and the
indentor. These plot as ellipses since the scales along horizontal and vertical axes are different.
One can determine the contact width from this figure too. Whereas the value of the contact
width determined from Figure 3 is in the reference configuration, that calculated from the
deformed shape shown in Figure 4 is in the present configuration. Therefore, the two sets of
values may not be equal. The change in curvature of the deformed surface on the exit side
plays a major role in some applications of the system, as in the paper industry. Depending
upon the radius of curvature at point A, the pulp may roll over with the roll, in which case
the system will be useless. As the plotted results show, the thickness of the roll ‘cover, the speed
of operation and the values of material moduli are some of the factors that determine the
change in curvature.
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Figure 4. Asymmetric surface deformation of the rubberlike layer

Figures 5-7 show, respectively, the variation of the radial, circumferential and the shear
stress with the angular co-ordinate @ at points near the bond surface. The distance of these
points from the bond surface equals 7 per cent of the thickness of the roll cover. All of these
stress distributions, except that for the elastic case (problem 2), are asymmetric about the
centreline. Even though the peak pressure at the contact surface for the elastic problem was

“rrl/[go + 91(0)]

1 ~ |
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Figure 5.'Radial stress distribution near the bond surface
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higher than the peak pressure for problem 3, the maximum value of the circumferential stress
for problem 3 is more than that for problem 2. The peak values of the radial stress and the
circumferential stress occur at points slightly to the left of the centreline of the roll covers. In
Figure 7, the curvature of the shear stress curve for viscoelastic problems at points to the left
of A and to the right of B is opposite to that for the elastic problem studied. To investigate
further the effect of the thickness of the roll cover, we have plotted in Figures 8 and 9 the
pressure distribution at the contact surface and the radial stress distribution at points near the
bond surface. Recalling that the indentation is kept constant, within the accuracy of our results,
the arc of contact increases with the decrease in the thickness and so does the total load
required. The point where the maximum radial stress occurs moves further to the left of the
centreline as the thickness is decreased.

PRESSURE/[3y + 9,(0)]

1

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
®/®0ELAST1C »

Figure 8. Pressure distribution at the contact surface for different thicknesses of the rubberlike layer

Figure 10 depicts the details of the deformations of the roll cover within the vicinity of the
contact width for problem 1. The position of points in the undeformed configuration is denoted
by upper case letters; their position in the deformed configuration by the corresponding lower
case letters. Since we have used 4-noded isoparametric elements, these have been plotted as
quadrilaterals both in the undeformed and deformed configurations. A close look at this figure
reveals that there is significant shear deformation of the rubber. For this problem the maximum
shear strain that occurs at a point within the rubber is of the order of 40 per cent. The exact
magnitude of the maximum shear strain and the point where it occurs depends upon parameters
such as the thickness of the roll cover. For problem 3, the maximum shear strain equals 0-472
and it occurs in the element No. 119 when the roll cover is divided into 3 rows of equal thicknesses
with 50 elements in each row. Nearly 16 central elements are within the arc of contact.
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Figure 9. Radial stress distribution near the bond surface for different thicknesses of the rubberlike layer

Figure 10. Details of the deformation of the rubber in the vicinity of the contact width
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Figure 11. Variation of radial stress through the thikcness of the rubberlike layer at @ = —0-00552 rad.

As is evident from the distribution of the radial stress plotted through the thickness of the
roll cover (Figure 11), for a specific value of @, the maximum radial stress occurs at points of
rubber on the bond surface. The value of the radial stress for a given set of values of the
material and geometric parameters does not vary much through the thickness of the roll cover.
In Figure 12 is plotted the load required to indent the rubber as a function of various parameters.
The variation of the load with the change in the thickness of the rubber layer is rather
predominant. Also significant is the dependence of the load P on the values of the material
moduli. In these calculations the values of g, and g,(0) were such as to keep (g, +£:(0)) fixed.
Thus, as the value of g,(0) increases, the load required to cause the same indentation of the
rubber decreases. At the risk of repetition, we remark that the values of the material and
geometric parameters, except the one being varied, are taken from equation (25). The load
increases with the speed of the roll covers, but the change is not really that dramatic. Also,
the radius of the indentor has less noticeable effect on the load.

CONCLUSION

The steady-state problem of a nonlinear viscoelastic roll cover in smooth contact with a rigid
roll has been solved numerically by the finite element method. Since the problem is too complex
to be solved analytically, no comments can be made as to the closeness of the numerical
solution obtained to the analytical solution of the problem. Also, due to the lack of the
experimental data available in the public domain, no comparisen has been made of the numerical
solution with the experimental findings. However, the computed solution exhibits the behaviour
expected intuitively. Also, results computed from this code for two problems studied previously
by the finite element method compared favourably :with: those obtained by using different
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‘Figure 12. Effect of various parameters on the total load required

computer codes developed earlier. All this 1nd1cates that the presently. developed computer
code to solve the title problem yields reasonably good results.

It seems that the critical factors in determining the performance of these roll covers are the
thickness of the.rubber layer, the relative values of the viscoelastic modulus g, to the elastic
modulus g, and, to a somewhat lesser extent, the speed of operation of the roll covers and the
radius of the indentor.
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