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SUMMARY

We use two meshless local Petrov–Galerkin (MLPG) formulations to analyse heat conduction in a
bimetallic circular disk. The continuity of the normal component of the heat flux at the interface
between two materials is satisfied either by the method of Lagrange multipliers or by using a jump
function. The convergence of the H 0 and H 1 error norms for the four numerical solutions with
an increase in the number of equally spaced nodes and in the number of quadrature points is
scrutinized. With an increase in the number of uniformly spaced nodes, the two error norms decrease
monotonically for the MLPG5 formulation but are essentially unchanged for the MLPG1 formulation.
To our knowledge, this is the first study comparing the performance of the two methods of modelling
a discontinuity in the gradient of a field variable at the interface between two different materials.
Copyright � 2004 John Wiley & Sons, Ltd.

KEY WORDS: meshless MLPG1 and MLPG5 methods; jump function; Lagrange multipliers; conver-
gence studies

1. INTRODUCTION

Meshless methods such as the element-free Galerkin [1], hp-clouds [2], the reproducing kernel
particle [3], the smoothed particle hydrodynamics [4], the diffuse element [5], the partition of
unity finite element [6], the natural element [7], meshless Galerkin using radial basis functions
[8], the meshless local Petrov–Galerkin (MLPG) [9], and the modified smoothed particle hy-
drodynamics (MSPH) [10] for seeking approximate solutions of partial differential equations
have become popular during the last two decades because of the flexibility of placing nodes
at arbitrary locations and the ability to treat the evolution of cracks. Many of these methods
employ basis functions obtained by the moving least squares (MLS) technique of Lancaster
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and Salkauskas [11] to approximate the trial solution, and a background mesh to numerically
evaluate integrals appearing in the weak formulation of a problem. However, in the MLPG
method no background mesh is used to evaluate integrals appearing in the local weak formu-
lation of the problem. The MLS basis functions are generally continuously differentiable over
the entire domain which results in continuous derivatives of the trial solution. Thus for ther-
moelastic problems for a monolithic body, stresses, strains and the temperature are continuous
throughout the body.

In the MLPG method, a weak formulation (or a weighted residual formulation) is derived
over a subdomain, �s , of the domain, �, of study. By repeated use of the divergence theorem,
some or all of the spatial derivatives on the trial solution are transferred to the test function.
For problems governed by second-order partial or ordinary differential equations, Atluri and
Shen [12] have proposed six different choices of the test (or the weight) function and numbered
the corresponding formulations as MLPG1, MLPG2, . . . , MLPG6. The MLPG1, MLPG5 and
MLPG6 have first-order derivatives of the test function and the trial solution. The MLPG6 is the
meshless local Galerkin formulation of an initial-boundary-value problem; it uses a MLS basis
function as the test function, and results in symmetric mass and stiffness matrices. However,
because of the considerable amount of CPU time required to find the MLS basis functions, it
is computationally expensive. In MLPG5, the test function is a Heaviside unit step function on
�s and is generally less CPU intensive than the MLPG1 in which the test function equals a
weight function appearing in the MLS basis functions for the trial solution but with �s as its
support.

For the Poisson equation, Atluri and Shen [12] have shown that the MLPG5 requires less
computational effort than either the MLPG1 or the MLPG6 or the Galerkin finite element
method (FEM). Qian et al. [13] compared the performance of the MLPG1 and the MLPG5
formulations for static deformations of a thick plate modelled by a compatible higher-order shear
and normal deformable plate theory of Batra and Vidoli [14]. Both formulations gave results in
close agreement with those either available in the literature or found from the analysis of the
three-dimensional problem by FEM. With an increase in the number of equally spaced nodes
in a square plate, and the number of quadrature points used to evaluate integrals numerically,
displacements and stresses computed with the MLPG1 formulation converged monotonically to
their ‘exact’ values and those with the MLPG5 method exhibited oscillations. Raju and Phillips
[15] have compared the performances of the MLPG1 and the MLPG5 formulations for a beam
problem governed by a fourth-order ordinary differential equation. Xiao and McCarthy [16]
have used the multiquadratic radial basis functions and the MLPG5 formulation to analyse
elastostatic problems.

Gu and Liu [17], Batra and Ching [18] and Qian et al. [19] have used the MLPG1 formulation
and the Newmark family of methods to study, respectively, forced vibrations of a beam, plane
strain elastodynamic deformations of a prenotched/precracked plate, and forced vibrations of
homogeneous and functionally graded (FG) thick plates. Qian and Batra [20–22] have employed
the MLPG1 formulation and the higher-order plate theory of Batra and Vidoli [14] to analyse
transient thermoelastic deformations of a thick FG plate and to find the volume fractions of
two constituents that optimize the first or the second natural frequency of a cantilever FG plate.

The continuity of derivatives of the MLS basis functions throughout the domain necessitates
the use of special techniques to solve problems for an inhomogeneous body in which the
continuity of surface tractions and/or the normal component of the heat flux requires that the
derivative of displacements and/or temperature normal to an interface between two materials
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be discontinuous. For the analysis of linear elastostatic problems by the element free Galerkin
method, Cordes and Moran [23] used the method of Lagrange multipliers, and Krongauz and
Belytschko [24] employed a special jump function at the line or the surface of discontinuity
with parameters governing the strength of the discontinuity. Whereas Cordes and Moran studied
a two-dimensional elastostatics problem, Krongauz and Belytschko analysed a one-dimensional
elastostatics problem. Here we apply these two methods to the same problem and delineate
their performances. Furthermore, two meshless, MLPG1 and MLPG5, formulations of an initial-
boundary-value problem that corresponds to axisymmetric transient heat conduction in a circular
bimetallic disk are used; thus the same one-dimensional problem is analysed by four methods.
Warlock et al. [25] studied plane strain static deformations of a linear elastic body by the
MLPG1 formulation and used the method of Lagrange multipliers to enforce contact conditions
between a rough rigid wall and the elastic body.

The paper is organized as follows. Section 2 gives the governing equations, the MLS basis
functions, the two MLPG formulations with the discontinuity in the temperature gradient at
the interface modelled by a jump function and the continuity of the heat flux enforced by the
method of Lagrange multipliers, and the generalized trapezoidal algorithm for integrating the
coupled ordinary differential equations. The computation and discussion of results are given in
Section 3. Results of this investigation are summarized in Section 4.

2. FORMULATION OF THE PROBLEM

2.1. Governing equations

We study transient heat conduction in a circular disk of radius R with the inner part of radius b

made of one material and the annular disk of inner and outer radii b and R made of a different
material; (cf. Figure 1). The two disks are perfectly bonded together at the circular surface
r = b. A uniformly distributed heat source of intensity h is applied to the disk, and its outer
edge is maintained at a uniform temperature T0. The initial temperature of the disk is at most
a function of the radial co-ordinate r . Because of the symmetry of the geometry, and the initial
and the boundary conditions, we assume that the temperature distribution is axisymmetric.

bR

Figure 1. Schematic sketch of the problem studied.
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It is governed by

�1c1
�T1

�t
− 1

r

�
�r

(
r�1

�T1

�r

)
= h, r ∈ (0, b), t > 0

�2c2
�T2

�t
− 1

r

�
�r

(
r�2

�T2

�r

)
= h, r ∈ (b, R), t > 0

(1)

subject to the boundary conditions

�T1

�r
(0, t) = 0, t > 0

�1
�T1

�r
(b−, t) = �2

�T2

�r
(b+, t), t > 0

T1(b, t) = T2(b, t), t > 0

T2(R, t) = T0, t > 0

(2)

and initial conditions

T1(r, 0) = T 0
1 (r), r ∈ [0, b]

T2(r, 0) = T 0
2 (r), r ∈ [b, R]

T 0
1 (b) = T 0

2 (b), �1
dT 0

1

dr

∣∣∣∣∣
r=b−

= �2
dT 0

2

dr

∣∣∣∣∣
r=b+

(3)

Here � is the mass density, c the specific heat, � the thermal conductivity, t the time, T

the temperature, and subscripts 1 and 2 denote quantities for materials 1 and 2, respectively.
Equation (2)1 follows from the symmetry of the problem. Equations (2)2 and (2)3 imply that
the heat flux and the temperature at the common interface r = b between the two materials
are continuous. Since �1 �= �2, therefore �T/�r must be discontinuous at r = b. Boundary
conditions (2)1 and (2)2 are natural, and (2)3 and (2)4 are essential.

2.2. Moving least squares (MLS) basis functions

Let N nodes be located at r1, r2, . . . , rN in [0, R] with r1 = 0, and rN = R, and T h(r, t) be
the trial solution defined on a subdomain �s ⊂ [0, R]. Following Lancaster and Salkauskas
[11], we write

T h(r, t) =
m∑

j=1
pj (r)aj (r, t) (4)

where

pT (r) = {1, r, r2, . . . , rm−1} (5)
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is a complete monomial in r of degree m − 1. The unknown coefficients a1(r, t), a2(r, t), . . . ,

am(r, t) are determined by minimizing J defined by

J =
N∑

i=1
W(r − ri)[pT(ri)a(r, t) − T̂i (t)] (6)

where T̂i (t) is the time-dependent fictitious value of T at the point r = ri . Note that the number,
n, of nodes for which the non-negative weight function W(r − ri) > 0 at the point with the
radial co-ordinate r is much less than N . Belytschko et al. [1] have discussed requirements
to be imposed on the weight function W and several choices for it; here we take it to be a
fourth-order spline function

W(r − ri) =




1 − 6

(
di

rw

)2

+ 8

(
di

rw

)3

− 3

(
di

rw

)4

, 0 � di � rw

0, di > rw

(7)

where di = |r − ri |, and 2rw equals the support of the weight function W .
The stationarity of J with respect to a(r, t) yields

A(r)a(r, t) = B(r)T̂(t) (8)

where

A(r) =
N∑

i=1
W(r − ri)pT(ri)p(ri)

B(r) = [W(r − r1)p(r1), W(r − r2)p(r2), . . . , W(r − rN)p(rN)]
(9)

Matrices A and B are m × m and m × N respectively. However, because of several columns
in B of zeros, its size can be reduced to m × n. Solving the linear system of Equation (8) for
a and substituting the result in (4) we obtain

T h(r, t) =
N∑

j=1
�j (r)T̂j (t) (10)

where

�k(r) =
m∑

j=1
pj (r)[A−1(r)B(r)]jk (11)

are the basis functions of the MLS approximation. Lancaster and Salkauskas [11] have shown
that 1, r, r2, . . . , rm−1 can be exactly represented as a linear combination of �1, �2, . . . , �m.
In order for the matrix A defined by Equation (9)1 to be invertible, n �m. This puts a lower
limit on the radius rw of the support of the weight function W .
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2.3. MLPG formulations

2.3.1. Discontinuity at the interface modelled by a jump function

2.3.1.1. MLPG1. Let � defined on �s be a smooth function, and � a constant. For deriving
the MLPG1 formulation, we multiply both sides of Equation (1) by r�, integrate the resulting
equations with respect to r over their domains �s1 and �s2 of applicability in �s , integrate
the second term on the left-hand side of this equation by parts, add −��(R)(T2(R, t) − T0)��̄
to it for satisfying the essential boundary condition by the penalty method, and obtain[∫

�s1

�1c1r
�T1

�t
� dr +

∫
�s2

�2c2r
�T2

�t
� dr

]
+

[∫
�s1

r�1
�T1

�r

��

�r
dr +

∫
�s2

r�2
�T2

�r

��

�r
dr

]

−��(R)(T2(R) − T0)��̄ =
[∫

�s1

hr� dr +
∫

�s2

hr� dr

]
+

[
r�1

�T1

�r
�

]
�s1

+
[
r�2

�T2

�r
�

]
�s2

(12)

Here
�s = �s1 ∪ �s2, �s1 ⊂ [0, b], �s2 ⊂ [b, R]

��̄ =
{

1, r = R

0, r �= R

(13)

and �s1 and �s2 are boundaries of �s1 and �s2, respectively. Furthermore � is a penalty
parameter used to enforce the essential boundary condition (2)4 and has units of �.

Instead of approximating the temperature field by Equation (4), we follow Krongauz and
Belytschko [24] and set

T h(r, t) =
N∑

j=1
�j (r)T̂j (t) + q(t)�(r) (14)

where q is the amplitude of the jump in �T h/�r at r = b, and the jump function � is
continuous and differentiable on the entire domain [0, R] except at the point r = b where
its first derivative is discontinuous. The jump function � ensures the continuity of the heat
flux at the interface r = b between the two materials without affecting the continuity of the
temperature field. The continuity condition (2)2 gives

q(t) = �2 − �1

�1�′(b−) − �2�′(b+)

N∑
i=1

�′
i (b)T̂i(t) (15)

where a prime denotes differentiation with respect to r . Substitution from (15) into (14) yields

T h(r, t) =
N∑

j=1
�̃j (r)T̂j (t) (16)

where

�̃j (r) = �j (r) + �2 − �1

�1�′(b−) − �2�′(b+)
�′

j (b)�(r) (17)
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Figure 2. Plot of the jump function, �((r − b)/rJ ), and its derivative.

We take

�(r) =




1

6
− 1

2

( |r − b|
rJ

)
+ 1

2

( |r − b|
rJ

)2

− 1

6

( |r − b|
rJ

)3

, |r − b| � rJ

0, |r − b| > rJ

(18)

Thus the size of the support of the jump function � equals 2rJ . The jump function (18)
and its derivative �′(r) with respect to the normalized coordinate (r − b)/rJ , are plotted in
Figure 2. It is evident that �′(r) suddenly goes from 0.5 at r = b− to −0.5 at r = b+, and
�̃j (r) = �j (r) − 2�′

j (b)�(r).

When using MLPG1, we set �(r) = W̄k = W(r − rk)/
∑N

i=1 W(r − ri) with rw in Equation
(7) set equal to rws , and �s = [rk − 0.5rws, rk + 0.5rws]. Substitution from (16) into (12) gives

N∑
i=1

Mki
˙̂
T i +

N∑
i=1

KkiT̂i = Fk, k = 1, 2, . . . , N (19)

where

Mki =
∫

�s1

�1c1rW̄k�̃i dr +
∫

�s2

�2c2rW̄k�̃i dr

Kki =
∫

�s1

r�1
dW̄k

dr

d�̃i

dr
dr+

∫
�s2

r�2
dW̄k

dr

d�̃i

dr
dr−��k(R)��̄�̃i (R)+R�2

d�̃i

dr
(R)W̄k(R)

Fk = −�Wk(R)��̄T0 +
∫

�s1

hrWk dr +
∫

�s2

hrW̄k dr

(20)

Note that the last two terms on the right-hand side of Equation (12) identically vanish for
test functions that vanish at r = R. In this formulation it is not necessary to locate a node
at the interface r = b. M may be called the heat capacity matrix, K the thermal conductivity
matrix, and F the thermal load vector. Because of the presence of r in the integrands of the
heat capacity and the thermal conductivity matrices, the entries in M and K are small for
nodes near the centre of the disk and large for nodes near the outer periphery of the disk.
Therefore, the condition numbers of the heat capacity and the thermal conductivity matrices
are influenced by the outer radius of the disk. Matrices M and K are neither symmetric nor
banded but are sparse; the sparsity depends upon the node numbering scheme and the support
of the weight function Wk used to find the MLS basis functions. The heat capacity matrix M
is not necessarily positive definite.
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2.3.1.2. MLPG5. For deriving the MLPG5 formulation, we multiply both sides of Equations
(1)1 and (1)2 by rH�s

where H�s
is the Heaviside unit step function on �s . Thus H�s

equals
zero at points exterior to �s . We integrate the resulting equations with respect to r on �s1
and �s2, add their respective sides, add −�(T2(R, t) − T0)��̄ to it and arrive at[∫

�s1

�1c1r
�T

�t
dr +

∫
�s2

�2c2r
�T

�t
dr

]
−

[
r�1

�T

�r

]
�s1

−
[
r�2

�T

�r

]
�s2

−�(T2(R) − T0)��̄ =
∫

�s1

hr dr +
∫

�s2

hr dr (21)

Substitution from (16) into (21) yields (19) with

Mki =
∫

�s1

�1c1r�̃i dr +
∫

�s2

�2c2r�̃i dr (22)

Kki = −
[
r�1

d�̃i

dr

]
�s1

−
[
r�2

d�̃i

dr

]
�s2

− ���̄�̃i (R) (23)

Fk = −���̄T0 +
∫

�s1

hr dr +
∫

�s2

hr dr (24)

Note that �s varies with k.
The heat capacity matrix M and the thermal conductivity matrix K given by (22) and (23),

respectively, are neither symmetric nor positive definite.

2.3.2. Continuity of heat flux at the interface accounted by a Lagrange multiplier. In this case
it is necessary to place two overlapping nodes at the interface r = b, one for each material,
and the weak form (12) is replaced by[∫

�s1

�1c1r
�T1

�t
�1 dr +

∫
�s2

�2c2r
�T2

�t
�2 dr

]
+

[∫
�s1

r�1
�T1

�r

d�1

dr
dr +

∫
�s2

r�2
�T2

�r

d�2

dr
dr

]

−�	(T2(R) − T0) − 	�2(R) − �
(T2(b
+) − T1(b

−)) − 
(�2(b) − �1(b))

=
[∫

�s1

hr�1 dr +
∫

�s2

hr�2 dr

]
(25)

Here 	 and 
 are Lagrange multipliers that enforce essential boundary conditions at r = R, and
the continuity of the temperature at the interface r = b, respectively, and �1 and �2 are test
functions defined on �s1 and �s2. Note that the Lagrange multiplier 
 enforces the continuity
of temperature at r = b, and the continuity of the heat flux is weakly satisfied. Equation (25)
must hold for all �	, �
, �1 and �2. Euler’s equations associated with (25) are Equations (1)
and boundary and continuity conditions (2), and 	 = �2R(�T2/�r)(R, t). For computational
purposes, heat conduction problems in [0, b] and [b, R] are essentially formulated separately
and the Lagrange multipliers connect the two. The temperature field on �s is approximated
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by (10). There are N + 2 unknowns: the fictitious temperature T̂ at N nodes and the two
Lagrange multipliers 	 and 
. Equations for their determination are

N∑
i=1

(Mki
˙̂
T i + KkiT̂i) + Gk
 + Lk	 = Fk, k = 1, 2, . . . , N

N∑
i=1

�i T̂i = 0,
n∑

i=1
�i T̂i = T0

(26)

where the heat capacity matrix M and the conductivity matrix K are given by Equations (20)1

and (20)2, respectively, with �̃i replaced by �i and the load vector F by Equation (20)3 with
the � term omitted. Using the additional subscript 1 on �1i and �1i etc. to denote their values
for the domain �s1, we set

G1k = W̄1(b − rk), G2k = −W̄2(b − rk)

L1k = 0, L2k = −W̄2(R − rk)

�1i = �1i (b), �2i = −�2i (b), �1i = 0, �2i = �2i (R)

(27)

While evaluating the mass and the stiffness matrices for nodes in �s1(�s2), contributions from
nodes in �s2(�s1) do not appear.

When using MLPG5, we take �1 and �2 equal to the Heaviside unit step functions defined
on �s1 and �s2. Contributions to the conductivity matrix from the derivatives at r = b and at
r = R of the Heaviside function are zeros.

Note that there are no 	̇ and 
̇ terms in Equations (26). However, Equations (26) can be
written in the form of Equations (19) by including zeros in rows and columns corresponding
to variables 	̇ and 
̇. This makes the mass matrix singular. One way to eliminate these two
rows of zero elements in M is to solve Equations (26)2 and (26)3 for T̂N and T̂M where M

is the node at r = b belonging to the material of the inner disk. Substituting for T̂N and T̂M

in Equations (26)1 and renumbering the N unknowns will make M non-singular.

2.4. The time integration scheme

We use the generalized trapezoidal algorithm [26] to integrate the coupled first-order ordinary

differential Equations (19). Recursive relations relating T̂ and ˙̂T at times tn and tn+1 are

M ˙̂Tn+1 + KT̂n+1 = Fn+1

T̂n+1 = T̂n + �t
˙̂Tn+�

˙̂Tn+� = (1 − �)
˙̂Tn + � ˙̂Tn+1

(28)

where T̂n and ˙̂Tn are approximations of T̂(tn) and ˙̂T(tn), respectively, Fn+1 = F(tn+1), �t

is the time step, and � ∈ [0, 1] is a parameter. For symmetric and positive definite matri-
ces M and K, the integration scheme (28) is unconditionally stable for � � 1

2 . For � < 1
2 ,
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the algorithm is conditionally stable and one must take

�t <
2

(1 − 2�)	̂max

(29)

where 	̂max is the maximum eigenvalue of

(M − 	̂K)T̂ = 0 (30)

For � = 0 and M a diagonal matrix, algorithm (28) is explicit; otherwise it is implicit. The
heat capacity matrix M can be diagonalized by using the row-sum technique in which the
diagonal element Mii equals the sum of entries in the ith row of M.

3. COMPUTATION AND DISCUSSION OF RESULTS

A computer code based on the four aforestated formulations has been developed. Results have
been computed for the following values of material and geometric parameters.

�1 = �2 = 10 g/cm3, c1 = c2 = 0.1 cal K−1g−1, �1 = 2 cal s−1cm−1K−1

T0 = 273 K, �2 = 0.5 cal s−1cm−1 K−1, h = 2 cal cm−3s−1 (31)

R = 10 cm, b = 4 cm, � = 106cal/(s K cm)

Complete monomials of degree 1 (i.e. m = 2 in Equation (4)) are used to generate the
MLS basis functions �i . Figures 3(a) and (b) depict the placement of 20 nodes when the
discontinuity in the temperature gradient is modelled by the jump function and the method
of Lagrange multipliers. In the latter case two overlapping nodes are located at r = b; one
of these nodes belongs to material 1 and the other to material 2. Equal number of nodes are
uniformly placed in [0, b] and in [b, R]. For the method employing the jump function, nodes
are equally spaced on [0, R] with rk = R(k − 1)/(N − 1) giving the radial co-ordinate of node
k, k = 1, 2, . . . , N . The radius rw of the support of the weight function Wk(r) = W(r − rk) is
taken to equal 1.63R/(N − 1) for k = 2, 3, . . . , N − 1; and 3.26R/(N − 1) for k = 1 and N .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a)

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

(b)

Figure 3. Location of nodes for the method of: (a) the jump function; and (b) the Lagrange multipliers.
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When using MLPG5, we set

�1 = [r1, r3]

�k =
[
rk − R

2(N − 1)
, rk + R

2(N − 1)

]
, k = 2, 3, . . . , N − 1

�N = [rN−2, rN ]

(32)

For the method of Lagrange multipliers, the subdomains and the supports of the weight and
the test functions are selected in the same way as for the method of the discontinuity function.

Unless otherwise specified, 12 quadrature points are used to numerically evaluate integrals
over each subdomain, and 20 nodes are used to compute all of the results. A convergence
study for the number of nodes and the number of quadrature points is performed.

3.1. Steady-state heat conduction

For steady-state heat conduction, the analytical solution of the problem is

T (r) =




T0 + hR2

4�2
− hr2

4�1
+ b2h

4

(
1

�1
− 1

�2

)
, 0 � r � b

T0 + h

4�2
(R2 − r2), b � r �R

(33)

In order to demonstrate the need for using either a jump function or the method of Lagrange
multipliers for modelling the discontinuity in the temperature gradient at the interface r = 4 cm,
we have plotted in Figure 4(a)–(c) the variation with r of the temperature gradient computed
with and without the use of these methods. It is transparent from these plots that one of the two
methods needs to be employed for accurately modelling the discontinuity in the temperature
gradient at r = 4 cm. However, the temperature gradient computed at points away from r =
4 cm without employing either one of the two methods is close to that obtained from the
analytical solution of the problem. The computed solution for different cases is compared with
the analytical solution in Figures 5–7. In each case, results computed with the discontinuity in
the temperature gradient modelled by a jump function and those obtained by the method of
Lagrange multipliers are presented in parts (a) and (b) of a figure.

The computed radial distribution of the temperature is compared with that obtained from the
analytical solution in Figure 5. It is clear that the MLPG1 and the MLPG5 formulations and the
two techniques of modelling discontinuity in the temperature gradient give results very close
to the analytical solution. It follows from the results plotted in Figures 6 and 7 that for the
MLPG1 formulation and the jump function used to model the discontinuity in the temperature
gradient, the H 0 and the H 1 norms of the error defined as

(H 0(e))2 =

∫ R

0
(Tanal − Tnum)2 dr∫ R

0
T 2

anal dr

(34)
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Figure 4. Radial distribution of the temperature gradient at points near the interface r = 4 cm between
the two materials computed: (a) with the use of the jump function; (b) with the method of Lagrange

multipliers; and (c) without the use of these methods.
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Figure 5. Steady-state radial distribution of the temperature rise computed with the method of:
(a) jump function; and (b) Lagrange multipliers.
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Figure 6. Variation with the number of nodes of the H 0 norm of the error in the
temperature computed with the method of: (a) jump function; and (b) Lagrange

multipliers. Note that the plot is on a log10–log10 scale.
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Figure 7. Variation with the number of nodes of the H 1 norm of the error in the
temperature computed with the method of: (a) jump function; and (b) Lagrange

multipliers. Note that the plot is on a log10–log10 scale.
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Figure 8. For the MLPG1, variation with the number of quadrature points of the H 1 norm of the
error in the temperature computed with methods of the jump function and the Lagrange multiplers.

Note that the plot is on a log10–log10 scale.

(H 1(e))2 =

∫ R

0
[(Tanal − Tnum)2 + R2(T ′

anal − T ′
num)2] dr∫ R

0
[T 2

anal + R2(T ′
anal)

2] dr

(35)

where T ′ = �T/�r , remain unchanged with an increase in the number of nodes, but this is not
the case for the method of Lagrange multipliers. For the same number of nodes, the error is
lower for the method of Lagrange multipliers than that with the method employing the jump
function. With the MLPG5 formulation and for total number of nodes exceeding 20, the error
decreases monotonically with an increase in the number of nodes irrespective of the method
used to model the jump in the temperature gradient at r = 4 cm. The rate of convergence
equals 2 for the H 0 error, and 2 for the H 1 error with the discontinuity in the temperature
gradient modelled by a jump function and is only 0.5 for the method of Lagrange multipliers.
In general, for the same number of nodes, the MLPG1 formulation gives a lower value of
H 0 and H 1 error than the MLPG5 formulation; the trend is reversed for the number of nodes
exceeding 40 and the jump function employed to model a discontinuity in the temperature
gradient.

For the steady heat conduction in a homogeneous disk and the MLPG5 formulation only
seven nodes and three integration points over each subdomain gave results essentially overlap-
ping the analytical solution of the problem.

Results plotted in Figure 8 evince that a minimum of twelve integration points ought to be
employed to numerically evaluate integrals appearing in the weak formulation of the problem;
this holds for both the MLPG1 and the MLPG5 formulations and also for either one of the
two methods to simulate the discontinuity in the temperature gradient at r = 4 cm.

3.1.1. Summary of results. Table I summarizes our findings for the two MLPG formulations
and the two methods of accounting for the discontinuity in the temperature gradient.
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Table I. Comparison of results from MLPG1 and MLPG5 methods.

MLPG1 MLPG5

Jump Lagrange Jump Lagrange
function multipliers function multipliers

Convergence rate of error in 0 0 for nnodes > 20 2 1.0 for nnodes > 20
H 1-norm with an increase in
the number, nnodes, of nodes

Convergence rate of error in Variable for 10 for nint < 6 — —
H 1-norm with an increase nint < 12 0 for nint > 6
in the number, nint , of 0 for nint > 12
integration points

Recommended minimum 16 7 16 7
number of integration points
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Figure 9. Time history of the temperature rise at the disk centroid computed with the method of:
(a) the jump function; and (b) the Lagrange multipliers.

3.2. Transient heat conduction

In order to compute results for the transient problem, we set � = 2
3 in Equation (28) and use

the consistent heat capacity matrix. Thus the integration method is implicit and unconditionally
stable. Figures 9–11 exhibit, respectively, the time histories of the temperature at the centre
of the disk, the jump in the temperature gradient at the interface r = 4 cm, and the heat flux
(�R �T/�r) at the outer edge r = 10 cm of the disk. The MLPG1 and the MLPG5 formulations
give virtually identical results with the method of the jump function, and very close results
with the method of Lagrange multipliers.

3.3. Comparison of MLPG, EFG and FE methods

Table II provides a comparison of the MLPG, the element free Galerkin (EFG) and the finite
element (FE) methods.
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Figure 10. Time history of the jump in the temperature gradient at the interface r = 4 cm computed
with the method of: (a) the jump function; and (b) the Lagrange multipliers.
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Figure 11. Time history of the heat flux at the outer edge (r = 10 cm) computed with the method
of: (a) the jump function; and (b) the Lagrange multipliers.

4. CONCLUSIONS

We have analysed axisymmetric heat conduction in a bimetallic circular disk with two, MLPG1
and MLPG5, meshless local Petrov–Galerkin formulations. For each MLPG method, the discon-
tinuity in the temperature gradient at the interface is satisfied either by using a jump function
or by the method of Lagrange multipliers. For the steady-state heat conduction, the four com-
puted radial distributions of the temperature agree very well with the analytic solution of the
problem. Also, the jump in the temperature gradient at the interface r = b between the two
materials computed from each numerical solution matches well with that from the analytical
solution. With an increase in the number of equally spaced nodes, the H 0 and the H 1 norms
of the error in the computed temperature field decrease monotonically for the MPLG5 method
but are essentially unaffected for the MLPG1 method. For the same error in H 1 norm, less
number of integration points are needed for the method of Lagrange multipliers than with the
method employing the jump function. The two MLPG formulations yield virtually identical
results for the transient heat conduction problem.
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For each MLPG formulation, the two methods of accounting for the continuity of the
temperature and the normal component of the heat flux at the interface between two adjoining
distinct materials can be extended to two- and three-dimensional thermomechanical problems.
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