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COLD SHEET ROLLING, THE THERMOVISCOELASTIC
PROBLEM, A NUMERICAL SOLUTION
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SUMMARY

The coupled system of equations governing the thermomechanical deformations of a viscoelastic sheet
while it is being cold rolied is solved numerically. The pertinent energy equation is solved by the finite

difference method and the mechanical problem is solved by the finite element method using uniform

first order rectangular elements. The developed computer program enables one to compute the complete
deformation and temperature fields in the sheet. Results presented graphically include the temperature

distribution, the stress distribution at the middle surface, the contact pressure distribution and the
asymmetric surface deformation of the sheet.

INTRODUCTION

Problems involving viscoelastic rolling contact find technical applications in the fields of paper
and plastic processing. These problems have been studied both analytically' ~* and experimen-
tally.” The complexity of viscoelastic boundary problems, especially of those in which the
boundary surface where surface tractions are prescribed 1s not a material surface, forces one to
resort to numerical methods such as the finite element method.”* Earlier study’ of the
deformation of a viscoelastic sheet while it is being cold rolled assumes homothermal deforma-
tion field. Since mechanical properties of viscoelastic materials depend significantly upon
temperature, the study of heat generated due to thermomechanical coupling and its effect upon
the mechanical properties of the material 1s necessary.

Thermoviscoelastic boundary value problems have been studied by Cost®, Oden and Arm-
strong’, and Batra et al.* The reader is referred to the book by Oden® for other references on
this subject. Of these, the problem studied in Reference 4 is a contact problem. These authors
study the thermoviscoelastic problem of the indentation of paper mill roll covers by the finite
element method and assume that the rolls are rotating at a uniform speed, the steady state has
been reached, the effect of dynamic forces and of frictional forces at the contact surface on the
deformation of the roll cover is negligible and the temperature of each material particle is
constant in time. Thus the energy equation can be integrated over a cycle and this averaged
equation 1s a non-homogeneous ordinary differential equation in temperature. A fourth order
polynomial in the independent variable is fitted to the dissipation function (the non-
homogeneous term in the energy equation) and the energy equation is integrated directly. The
deformation of the roll cover is studied in two parts. First the layer is assumed to deform due to
temperature changes and then the mechanical problem is solved by taking the thermally
deformed state as the reference configuration and thermal stresses as the initial stresses. This
procedure though valid for the roll cover problem because of its special geometry is not quite
general. What one should do is that after having obtained a solution of the energy equation, one
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should account for thermal effects in the mechanical problem by introducing apparent body
forces caused by thermal gradients. This is the approach followed here. The present problem
differs from the ones treated in references 4 and 6 in that a material particle is not undergoing a
cyclic deformation and thus one cannot consider the cycle averaged energy equation. Also, 1n
the problem of sheet rolling, the temperature varies both along the sheet and across the
thickness of the sheet so that the thermal problem is at least two-dimensional.

The present thermoviscoelastic study of the cold rolling of a viscoelastic sheet is an extension
of the earlier viscoelastic study of Lynch’ and the thermoviscoelastic study of a roll cover by
Batra et al.*

FORMULATION OF THE PROBLEM

A schematic diagram of the system studied herein is shown in Figure 1. We assume that the
rollers are made of a material considerably harder than the material of the sheet so that these can
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Figure 1. System to be studied

be regarded as being rigid. Assuming that there is no external body force and the supply of
internal energy, thermomechanical deformations of the sheet are governed by the following
system of equations’

Tiij = pff:
(1)

pe = —qi; T OiXi;.

In (1) o;; is the Cauchy stress tensor, p is the present mass density, e is the internal energy per
unit mass, X is the present position in rectangular Cartesian coordinates of a material particle X
at time ¢, a superposed dot indicates material time differentiation, q;.1s the heat flux measured
per unit area in the present configuration, a comma followed by an index j indicates partial
differentiation with respect to x;, and the usual summation convention is used. (1) is to be
supplemented by the constitutive relations for o7;, ¢ and g; and side conditions such as boundary
conditions. Before we state these we outline below the assumptions made to simplify the
problem.
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We assume that the material of the sheet i1s homogeneous and isotropic, the sheet moves at a
constant velocity v, steady state has been reached, contact between rigid rollers and the sheet 1s
frictionless, and the deformations are small so that a constitutive law linear in displacement
gradients and temperature gradients applies. Note that the present temperature of a material
particle is not assumed to be close to some reference temperature so that constitutive relations
need not be linear in the change of the temperature of a particle from the reterence temperature.
The reason for not making such an assumption is that the relaxation functions of the matenal of
the sheet may be highly temperature dependent. Herein the shear modulus of the material of the
sheet is taken to depend upon temperature in a non-linear manner whereas the bulk behaviour is
assumed to be elastic and temperature independent. Such an assumption is not uncommon for
viscoelastic materials.”*” Usually the value of the bulk modulus for such materials is about
fifty times the value of the shear modulus at time ¢ = 0. This implies that the deformations ot
these materials are nearly isochoric so that the sum of the principal strains is close to zero.
Accordingly we neglect terms involving squares of the sum of principal strains in the energy
equation. Another simplifying assumption made 1s that v 1s presumed to be sufficiently small so
that all inertia effects including the rate of change of temperature are negligible. Lastly we
assume that the width of the sheet is very large and that plane strain state of deformation
prevails.

Constitutive relations for o, q and e which are compatible with the Clausius—-Duhem
inequality are discussed in references 6, 9, 10. That for o;; 1s

0;(X, 1)= J. Gi(T,t—7) %X, 7) d

— 00 orT

der (X, 7) q
or

T

5. [
T+?J |G>,—G(T, t—1)]

""' an(T_ Tg)&-j—. (2)

When the constitutive relations for q and e are substituted into (1), and it is simplified further in
view of the assumptions stated above, 1t becomes

0=«kT,; +A (3)

where

1(° 3G (X, 7) 0e;(X,
A(Xaf)=—“‘J. J‘ ——l(t—r,t—n)as"( ) 9e;(X,m)

dr dn, 4
) ) ot o7 om0 (4)

1 au,; Emf
+_.__
2 ax}' 6)6,;

ei(X, t)= : (5)

u; = (x; — Xi). (6)

Here « is the constant thermal conductivity of the material, « is the constant coefficient of
thermal expansion, G; and G, are, respectively, the shear and the bulk moduli, §; 1s the
kronecker delta, T is the present temperature of a material particle and T is the temperature of
a material particle when it was at minus infinity. A in (3) represents the energy dissipated because
of the viscoelastic effects. For elastic materials G, is time independent and therefore A=0. It
should be noted that in (4) terms involving ;€. have been neglected. Substitution of (4) into (3)
and of (2) into (1) gives field equations for x and 7. Note that these field equations are non-linear
in temperature 7T and in u. These field equations are to be solved under the following boundary
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conditions.

on =0, x,+cl|=, x,=0, (7)
X3

4%, O)=d—§-§,> X, +cl|<l, x,=0, ®)

e.oin; =0, )

u, =0, 012=0, x,=D/2, (9)

loin;| >0 as |x|> 00, (10)

T->T, aslx|»>o0, (11)

gn; = h(T—T,), x,=0, (12)

qn; =0, x,=D/2. (13)

Here n is an outward directed unit normal to the bounding surface, e is a unit vector tangent to
the bounding surface, D is the thickness of the sheet, d is the depth of indentationat x; =0, R 1s
the radius of the roller, ¢/ is the distance between the contact centre and the centre line ot the
rollers as shown in Figure 2, 2/ is the width of the contact surface and & is the surface heat

X2
A

Figure 2. A configuration of the indented surface

transfer coefficient and its value depends upon the smoothness of the surface of the sheet. The
fact that o;n; =0 at |x, +¢/| = implies that n,o;;n;, = 0 and this ensures that the normal stress 1s
continuous across the arc of contact and that a contact problem rather than a punch problem 1s
being solved. Since a material particle is in contact with the surface of the roller for afraction of a
second, (12) appears to be a good approximation. If desired one can use different values of 4 for
points on the contact surface. Of the three constants appearing in (7)—(13) only one can be
assumed to be known and the other two are to be determined as a part of the solution.

The problem as formulated above is too difficult to solve analytically. Therefore we solve it
numerically.

FORMULATION OF THE PROBLEM FOR A NUMERICAL SOLUTION

Because of the symmetry of the problem, we study the deformation of the lower half of the sheet.
Motivated by the good agreement between the numerical results and the experimental observa-
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tions reported in Reference 3 we limit our study to that portion of the sheet which at any instant
occupies the region of space symmetric about the line joining the centres of the rollers and
‘extending to about seven times the length of contact. This region of interest is divided 1into
uniform rectangular elements as shown in Figure 3. We assume that the ends of this region are
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Figure 3. The grid

stress free and are at temperature T,,. In each element the displacement and temperature are
assumed to be given by

U1 =f1'+f2x1 + f3x5 +f4x1x2:
Ur = 21T Z2X1 1T Z3Xs+ ZaX1X2, (14)

1 - T{) =@t arX1+A3X> T+ Q1X1X7,

where f’s, g’s and a’s are determined in terms of nodal displacements and nodal temperatures.
Calculating strain components from the strain-displacement relation (5) we obtain

{e} =[A]{8} (15)

- where [A]is a 3 X8 matrix whose elements are functions of nodal point co-ordinates, {8} is a
vector of displacements of nodal points and {&} is the vector of strain components £;;, £33, £1>.
‘Taking ¢t = 0 when a material particle enters the region of interest, we have

Ef,-(X, t)=0, t<0

We calculate stresses by approximating the integral in (2) by the sum of a finite series and
writing it as

N

{oin= 2. [Blarielr +{Bln, (16)

R=1



676 R. C. BATRA

where
(011
{G}N= {02
hh45‘r"12) N
anr Oar 0
[Blvg = [bNR ang 0 ]’
0 0 CNR
{%(GI(O)+GI(At)+Gz), R=N 17)
a —
7 UG((N-R+DA)-G((N-R-1)Ar), R#N,
1
{B}N=—GG2(T—' TO) 1 ’
0

cnr = (ANR — bar),

At=2A/v,

2 A = distance between the centroids of two consecutive elements, and bar 1S Obtained from axg
by replacing G, by —3G;. Using the principle of virtual work

Bl = | {olMelvaV,

and substituting from (15) and (16), we obtain

(Flv= T [Klxa{B}e +{Hx (18)

where

K]nvr = L’ [AE[B]NR [A]R dvV,
—aB +%a332]
—a1A +3a,A°
a.B —%ang
—a1A —3a,A°
aB +3a3B°

| a1 A +5a,A°

| —a;B —5a,B*

aA—3a,A° |n

2

a1=(7}+7}+Tk+Tm—4Tg)/4,
a2=(7}+Tm_ﬂ“Tk)/4A:
a3=(Tk+Tm_ﬂ"T})/4Ba
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and i, j, m, k signify the nodal points of a typical element in the counterclockwise direction
starting from the lower left corner. In these equations, {F}x is the column vector of forces acting
at nodal points of the element N, Vy is its volume, and 2B denotes the length of the element
along the x, axis. The a’s in these equations are the same a’s givenin (14);. Equation (18) states
that nodal forces on a typical element N in a control strip are affine functions of displacements of
nodal points associated with all the preceding elements in the same strip. In carrying out the
integration we use the value of G; corresponding to the temperature of the centroid of the
element. The elements of [K]nyr are listed in Reference 4. Calculating torces for each element
and assembling these for the entire grid we obtain

{F} =[K}i8} + {H}, (19)

where {F} is the vector of nodal forces, [K] is the stiffness matrix for the entire grid, {8} is the
vector of nodal displacements and {H} is the vector representing body forces induced by
temperature gradients. (19) is the equation of equilibrium and is the finite element equivalent of
(1)1.

To cast (3) into a form suitable for numerical work we found it convenient and economical to
use the finite difference method. Thus we write (3) as (e.g. see Reference 11, p. 134)

[A{T}=1{A} (20)

where {T} is a column vector representing temperatures of nodal points, [A] is a banded
matrix whose elements incorporate the flux boundary conditions (12) and (13) and {A} is a vector
representing the values of A at various nodal points except for nodal points on the bounding
surface for which this value is to be suitably modified to account for the boundary conditions.
The mesh used to write (3) in the form (20) is the same as that used in the finite element
formulation of (1),.

In the results presented below, G 1s taken as

Gi(T,t)=got g1 e D,

T(T)=7(To)/f(T), (21)

8:86(T'—T,)/1-8
101-6+(T—-Ty)/1-8

Here 7 is the relaxation time which depends upon the temperature as indicated above. The
assumptions (21), and (21); imply that the material is thermorheologically simple'”"* and
equations (21), 5 relating the relaxation time 7(7) at temperature 7T(°F) to the reference
temperature 7T,(°F) constitute the WLF equation.’” In (21); the factor 1:8 is the conversion
factor from °F to °C and the reference temperature is taken equal to T, for convenience. Figure 4
depicts how G; depends upon temperture. Substituting from (21) into (4) and approximating the
integral by a finite sum, we obtain for a nodal point situated at AMth position from the left end on
a row 1n the interior of the grid,

logof (T) =

gl —[2(M—1YAt/ (T, )] M [2{R—1-5)At/~(T, )]
e M e | M-S 22
ZT(TM)J Réz ’ ( )

A.M=

where
Sr = [(Sif)R — (Ef,f)R-l][(Ei,f)R ~ (Ef,f)R—l]-

In (22)J is the Joule’s constant, Ty, is the temperature at the nodal point and (g;; )& 1s the value of
strain component at the nodal point situated, respectively, at the Mth and the Rth position from
the left end. We remark that (19)and (20) are non-linear in temperature and (20) is non-linear in
g;; also.
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Figure 4. Variation of shear modulus with temperature

A solution of (19) and (20) satisfying various boundary conditions is found by the following
iterative procedure. For the (zero)th iteration we take the temperature to be uniform through-
out the region of interest and solve the homothermal viscoelastic contact problem. For this case
{H} = {0}. To prevent rigid body motion in the x-direction, the x;-component of the displace-
ment of the central node point on the middle surface is set equal to zero. The mechanical contact
problem is solved in a way essentially similar to that outlined in reference 4, except that now the
value of d in (8) is prespecified. From this solution of the mechanical problem, values ot
displacements and strains are calculated and thence the right-hand side of (20) is computed. (20)

is solved for T and the mechanical contact problem solved again by using this value of 7. The
whole process is repeated until, at each nodal point the difference in the values of temperature in

two successive iterations is less than one per cent of the value of the temperature obtained in the
immediately preceding iteration.

RESULTS FOR A SAMPLE PROBLEM
We took the following values of various geometric and material parameters to compute results
for a hypothetical problem.

G(T,1)=5,200+6,800e /™" psi

G,(T, t) =6x 10 psi,

7(70°F) = 0:46 sec, T,=70°F, v =0-4 in/sec,

a =0-00014/°F, x =0-00856 BTU/hr in °F,
h=1-5BTU/hrft*°F,  d=0-00575 in,
D =0-251n, R=1-251n

With a reasonably good estimate of the normal loads on the contact surface, the number of
iterations required on the normal loads can be less than five for the solution of the mechanical
problem to converge with the following criterion. The indented surface conforms to the circular
profile of the roller if each nodal point on the contact surface lies within 0-01 4 of the circular
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profile of the roller. With the above stated criterion for the convergence of the temperature the
number of iterations required for the temperature field to converge was four. The Gaussian
elimination followed by back substitution technique was used to invert the stiffness matrix and
the total computation time including the compilation time etc. required for each iteration on an
IBM 370 computer was 1-5 min. This is so because of the large band width of the stiffness matrix
in the viscoelastic problem and the need to write the stiffness matrix on an auxiliary tape. For
repeated use of the developed program it seems advisable to optimize it and there are places
where i1t can be done.

Figure 5 shows the temperature distribution along the sheet at the free surface and at the
middle surface. The temperature rise is not dramatic because of the low value of G, and v. At
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Figure 5. Temperature distribution along the sheet

any point along the sheet, the temperature was not found to vary much along the thickness of the
sheet. For example along the centre line of the rollers the temperature at various nodal points
starting from the one on the free surface came out to be 81, 81-3, 81-5, 81-6, 81-6, and 81:6 °F.
Asis clear from the figure, for a fixed value of x,, the maximum value of temperature occurs at a
point slightly to the left of the centre line of the rollers. This is due to the asymmetric
deformation of the sheet and this asymmetry is apparent in Figures 6 and 7 which depict,
respectively, the surface deformation of the sheet and the pressure distribution on the contact
surface. The semi-contact width for the elastic case as found graphically from Figure 6 1s 0-09 1n.
and that for the thermoviscoelastic case is 0-08 in. The value of the parameter ¢ appearing in (7)
also determined from Figure 6 is 0-153 for the thermoviscoelastic case. The total force required
to cause the same indentation is smaller in the thermoviscoelastic case than that for the
viscoelastic problem because the material is softened by the rise in temperature. The rise 1n
temperature results in more asymmetry in the contact pressure distribution. The power required
to drive the rollers when thermal effects are included 1s 1-31 of that for the homothermal
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Figure 7. Comparison of thermoviscoelastic, viscoelastic and elastic contact pressure distributions

~viscoelastic case. The deformed surface of the sheet in the thermoviscoelastic problem is below

~ that for the viscoelastic problem because of the thermal expansion of the sheet in the former
- case. The thickness of the sheet when it leaves the region of the grid is 0-25 in., 0-2486 in. and
- 0-2486 in. for the elastic, viscoelastic and the thermoviscoelastic cases respectively. The reason

~ for the thickness of the sheet to be the same in the viscoelastic and thermoviscoelastic problems

. is that the temperature at x; = 0-5 in. is taken to be equal to the reference temperature which is

~ the same as that at x; =—0-5 in.
In Figure 8 is plotted the normal stress at the middle surface. Both elastic and homothermal

~ viscoelastic analyses yield values for the maximum compressive stress greater than that obtained

- from the thermoviscoelastic analysis. The stress for the viscoelastic and the thermoviscoelastic
~ cases is asymmetric about the centre line of the rollers; the compressive stress 18 maximum at a

o T - point 0-02 in. to the left of the roller in the thermoviscoelastic problem.
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Figure 8. Normal stress distribution at the middle surface

REMARKS

The values of G, and G, taken for the sample problem are, respectively, twenty times the values
of G, and G, for Polyvinyl butyral with 37-5 per cent by weight of dibutyl sebacate plasticizer
reported in reference 3. The present results for the homothermal viscoelastic problem could not
be compared with those obtained earlier by Lynch’ because of the difficulty encountered in
scaling off the data from the graphs presented in Reference 3 and more specifically in
determining the value of the semicontact width at zero speed of the sheet. However the results
do agree qualitatively.

Herein G(T,0) and G, are taken to be constants. If the dependence of G(T, 0) upon
temperature, and the viscoelastic bulk behaviour is to be accounted for only minor modifications
of the analysis and the computational algorithm need to be made. Also the present work applies
to the cold rolling of a slab of any thickness since nowhere do we require that the thickness be
small. This work can be extended to include the frictional force at the constant surface, inertia
effects, the dependence of the thermal conductivity and the coefficient of expansion upon
temperature and the geometric and material non-linearities.
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