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A b s t r a c t - A  simple version of thermo/viscoplasticity theory is used to model the formation 
of adiabatic shear bands in high rate deformation of  solids. The one dimensional sheafing defor- 
mation of a finite slab is considered. For the constitutive assumptions made in this paper, homo- 
geneous shearing produces a stress/strain response curve that always has a maximum when strain 
and rate hardening, plastic heating, and thermal softening are taken into account.  Shear bands 
form if a perturbation is added to the homogeneous  fields just  before peak stress is obtained 
with these new fields being used as initial conditions. The resulting initial/boundary value prob- 
lem is solved by the finite element method for one set of  material parameters.  The shear band 
grows slowly at first, then accelerates sharply, until finally the plastic strain rate in the center 
reaches a maximum,  followed by a slow decline. Stress drops rapidly throughout  the slab, and 
the central temperature increases rapidly as the peak in strain rate develops. 

I. INTRODUCTION AND F OR M UL ATION OF THE PROBLEM 

Adiabatic shear is the name given to a localization phenomena that is important in many 
problems involving high rate deformation of  solids. In the last five years or so there 
has been strong interest in the theoretical aspects of  the subject. CLIFTON. et  al. [1984] 
have listed and briefly described more than a dozen papers on rapid shearing deforma- 
tion in the recent literature, as well as several of  the earlier pioneering works. However, 
there still appears to be a need to define a theoretically complete framework for the phe- 
nomenon and to find and examine dynamic solutions within such a framework.  This 
paper summarizes our work to date in attempting to fill that need. 

A general theory of thermoplasticity, due to GREEN" & NAGHDI [1965], has been taken 
as the starting point. According to this theory, which is rate independent, plastic strain 
and work hardening are modeled as internal variables controlled by evolutionary equa- 
tions. In this paper those general features are retained, but in addition the yield func- 
tion is taken to depend on plastic strain rates, as well as stress and temperature,  in a 
manner similar to that used by RtrBIN. [1982] and DRX'SDAXE [1984]. This combination 
is completely self consistent in a thermodynamic sense and allows for smooth and con- 
tinuous transitions between elastic and viscoplastic states. Details are given elsewhere, 
WRmnT & BATI~ [1985], and only summaries of  the equations are given here. 

Figure 1 shows a block of  material lying between Y = - H  and Y = + H  and under- 
going only horizontal motion in the X direction. This motion is volume preserving and 
may be written as 
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x = X +  u ( Y , t )  , 

; ' =  Y , ( 1 )  

z ~ Z  , 

The balance relations for momen tum,  energy, and ent ropy in the absence of  body forces 
and externa l  sources of  heat  may  be wri t ten 

S ,  ~ = p[i , 

p O  = st),  ~ -- q ,  ~ , 

q 
p ~ -  ~ T , > , + q , r ~ O  . 

(2) 

In these equat ions ,  s is the shear stress on the planes of  constant  Y, U is internal energy, 
q is heat  flux due to conduc t ion ,  T is t empera tu re ,  r / is  specif ic  en t ropy ,  and  p is den- 
sity, which is constant .  The dot  and  the c o m m a  indicate  d i f fe ren t ia t ion  with respect to 
t ime t and  the ma te r i a l  c o o r d i n a t e  Y respect ively,  and  it is a s sumed  in the usual way 
that  shear  s t ra in  m a y  be d e c o m p o s e d  into elastic and plast ic  par ts  

~ / = U , y = T e + ~ / ~  - (3) 

Wi th  ~ t aken  to be a measure  of  work  hardening ,  it is a ssumed  that  a yield or loading  
func t ion  f exists such that  

f ( s ,  T,-~,) = ~ , (4) 

where f is mono ton i ca l l y  decreas ing in ~,~,, and  the cr i ter ion for  elastic or plastic load-  
ing is s imply  

(5) 
f ( s ,  T , O )  <_ K, elastic , 

f ( s ,  T,O) > K, plast ic  . 
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Fig. 1. Shearing of a finite block of material with dis- Fig. 2. Yield surface in stress-temperature space. 
placement u and temperature change 0. 
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If plastic de format ion  is occurring,  the sign o f  -~p is taken to be the same as that o f  s, 
and its absolute value may be found  uniquely f rom eqn (~) because o f  the assumed 
monotonic i ty  o f f .  I f  plastic de format ion  is not occurring,  then o f  course 5'p = 0. The 
situation is shown schematically in Fig. 2. When  the stress and temperature lie in the 
cross hatched region, de format ion  is wholly elastic; when they lie outside, the plastic 
strain rate is nonzero .  Fur thermore ,  the farther  outside that the point (s, T) lies, the 
larger the absolute value o f  -~.  Equat ion  (4) is similar to the yield functions used by 
R v m ~  [1982] and DRYSDAZE [1984], but the treatment that follows here is somewhat  
different f rom either o f  theirs. The work hardening parameter  is assumed to obey the 

following evolut ionary equation,  

k = M~p . (6) 

M is a constitutive funct ion that  depends only on s, T and r.~" 

II. CONSTITUTIVE FUNCTIONS 

For computa t iona l  purposes,  specific constitutive functions have been chosen as 
follows. 

1 
p U  = 5 p''y2e + p T ° c " ( e ( " - ~ ° ) / " "  - 1 ) 

q = - k T , . ~  , 

(7) 

where ~ is a constant  shear modulus ,  To is a reference temperature,  c~ is the specific 
heat at constant  volume, and k is the thermal  conductivity.  Standard the rmodynamic  
arguments  show that 

s = o'y~,  T = Toe  ~"-"o~'% , (8) 

so that the elastic response is linear, and there is no thermoelastic effect. 
It is further assumed for a slow isothermal reference test at temperature To that 

s = K--~(e) ,  where ~ is the plastic strain in that  case, and that whatever the rate o f  
deformat ion ,  ~ depends only on the plastic work done. Thus it follows that 

lgV'p = Kg = s ~ p  , 

1 d ~  
M =  s ~ ' 

(9) 

where d~/de may be expressed as a function o f  r. To complete the constitutive assump- 
tions, the yield funct ion and k(~) were chosen as follows. 

"]'This scheme may be readily generalized to multidimensional states or to the case of dipolar stresses 
(WglGvrr ~, B^r~,.-x [198.5]), since it turns out that all plastic rates may be related by a single proportional factor, 
as in GgEE.~ ,- N^OHm [1%5] and GREES, MCINms * N^GHD~ [1%8]. Then it is the proportional factor that 
is determined from the analog of eqn (4) rather than -?~, itself. 
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~, trt s = ~ ( 1 - a O ) ( l + b / ; )  , 

~ ( e ) = g o  1 + - -  , 
60. 

(~o) 

where 0 = T -  To. It will be recognized  that  the v iscoplas t ic  effect  in the present  case 
comes f rom a muhip l i ca t ive  overst ress  factor ,  a l though  eqn (4) is suff ic ient ly  general  
to include an  addi t ive  overs t ress  or  many  o ther  possibi l i t ies .  

111. NONDIMENSIONAL VARIABLES AND HOMOGENEOUS SOLUTIONS 

With  nond imens iona l  var iables  def ined  by 

Y =  H ~ "  , u = H &  , s =  go2  , O =  --g° 0 
OCt 

1 _ 
t = - - t  , 7=~7  , ,<=go~. " , % 

(11) 

where 5'0 is the average s t ra in  rate imposed  in the p r o b l e m ,  the comple te  equa t ions  in 

nond imens iona l  form become 

oH-76 .. 
M o m e n t u m :  s, y - u , 

g0 

Energy:  0 -  k O, y y  4- gg 
O c v . ( / o H  2 ' 

Const i tu t ive :  X = ~ ( - ~ -  ~p) , 
K0 (12) 

6 )n  
g =  1 + - -  , 

60 

~ = s % ( =  ~ )  , 

Yield Surface: Is]= ( 1 -  ag-2° O ) (l + bS'°4/p)'~K 

where the  overba r s  have been d r o p p e d ,  and  eqn (12) 6 is sub jec t  to eqn (5). There  are 
two relative length scales implicit  in eqns (12), namely a thermal  length (k/oc~,~oH 2) w,., 
and  a viscous length b/h(Ko/O) w2. In add i t i on  there  are seven o ther  n o n d i m e n s i o n a l  
pa rame te r s  in eqns (12) which are  requi red  to def ine  the mass ,  elastic modu lus ,  ther-  
mal  sof ten ing ,  work  ha rden ing ,  and  rate  ha rden ing  o f  the  mate r i a l .  

In a h o m o g e n e o u s  d e f o r m a t i o n  the t rue  d i sp lacement  field has the  fo rm u = "~0 Yt, 
where ~0 is a cons tan t  s t ra in  rate,  or  with n o n d i m e n s i o n a l  var iables  u = Yt, and non-  
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dimensional values of  s, 0, 3'p, ~, and ~ depend only on time. For this case the equa- 
tions become ordinary differential equations with initial values 

s ( 0 ) = l  , 0 ( 0 ) = 0  , e ( 0 ) = 0  , (13) 

where time is counted from the first onset of plastic flow, and qt, is to be found from 
eqn (12)6. Equation (12)1 is satisfied identically, and (12)2 with (12)4 substituted for r 
can be integrated immediately to give 0(e). The remaining two equations may now be 
written as the autonomous pair 

~=  r ( 1 - ~ p )  , s (O)=  1 , 
gO 

~ ..= S~p 
~(o)  = 0 ,  

(14) 

where 

0(e) = e° [ ( I  q- e ) l+n ] 1  + n  --co - 1 

I 

1+ ~- " 1 -  ar_._q O(e) 
~0 PCu 

- 1  

(15) 

Although solutions to eqn (14) cannot be given explicitly, some of  their features can 
be described qualitatively (see W~tmHr ~ B~,rva~ [1985]). In particular, for the consti- 
tutive and yield functions chosen here, s always has a simple maximum at a critical value 
of  7, the exact value of  which is influenced by work hardening, heat capacity, rate sen- 
sitivity, thermal softening, and yield strength, the first three tending to retard the peak, 
the last two to advance it. Figure 3 shows the homogeneous stress strain response for 
one particular choice of  nondimensional parameters, as follows: 

P'°--2--~2r4 - 3.928 x 10 -5 , k = 3.978 x 10 -3 __aro = 0.4973 , 
ro pcvH2"~o  ' PCu 

- - = 2 4 0 . 3  , n = 0 . 0 9  , eo=0.017 , " ~ o b = 5 x 1 0 5  , m = 0 . 0 2  . 
K0 

IV. RESPONSE TO PERTURBATIONS 

Other analyses (e.g., BtrRr~S [1983] or Srr~wKI et al. [1983]) have indicated that if a 
small perturbation is added to the homogeneous response, its amplitude will begin to 
grow once the peak stress for homogeneous deformation has been passed. The pertur- 
bation could be applied to any of the field variables, but in this paper a small symmetric 
temperature bump was added at the center of  the slab just before the peak stress, and 
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Fig. 3. Stress-strain response curves for a block of material in shear. 

the problem was restarted as an initial/boundar.v value problem, the material parame- 
ters remaining exactly as before. The boundary values are 

v ( _ l , t )  = ± 1 ,  O , g ( ± l , t )  .=0  , (~6) 

so that the average strain rate in the strip [ - 1 ,  + 1] is maintained, and the strip is adi- 
abatic overall. Equations (12)~.2 with/ / replaced by ~, govern the evolution of  v and 0 
in the slab. In order to solve these equations subject to boundary conditions (16) and 
a suitable set of initial conditions by the finite element method, we first obtain a weak 
form of eqns (12)~,_~. Referring the reader to BECKER et al. [1981] and WRIGHT & 
BATRA [1985] for details, we merely mention that weak forms of eqns (12)~,2 are 

~ b  = - P  

~ = - ~0 + W 
(17) 

where superimposed hats and tildes signify square matrices and vectors or column 
matrices respectively. In order that the same finite element code could be used for both 
dipolar and nonpolar materials, we used C~(Hermite) elements to approximate the 
velocity field and C o elements to interpolate the temperature field. Matrices t~, ~ etc. 
were evaluated by using the 4-point Gaussian quadrature rule. Equations (17), (12)3 
and (12)5 with ~p given by 

~p = max 

were integrated with respect to time t by using the forward difference method and 
At = .1 × 10 -6.  Some of the principal results are shown in Figs. 4, 5, and 6. 
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Figure 4 shows a cross section of  the temperature at various times after introduction 
of the perturbation. On this scale the peak in the initial temperature itself does not show 
since it is only 0.02 higher than the surrounding ambient value, which is reached at 
Y = _+0.1 on either side of  the central peak. Only half of the central part is shown since 
the profile is symmetric and remains flat on out to +_ 1. Cross sections of plastic strain 
rate also show a strong central peak at late times. 

Figure 5 shows the stress, plastic strain rate, and temperature as functions of time 
at a point very near to the center of the band. The plastic rate begins a slow increase, 
which is actually exponential at first, and then after a fairly long run-in time, it acceler- 
ates rapidly, goes over an abrupt peak, and finally begins a slow decline. The temper- 
ature begins with a slow but steady increase and then rises very rapidly at the end, 
whereas the stress begins with a slow decrease and then drops rapidly at the end. It is 
during the period of  most rapid change that the shear band takes recognizable shape. 

Figure 6 shows the same three functions as in Fig. 5, but at a point near the bound- 
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Fig. 4. Temperature distribution in a finite block of material at various times as a shear band forms. 
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Fig. 5. Stress, temperature, and plastic strain rate vs. time near the center of a block of material as a shear 
band forms. 
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Fig. 6. Stress, temperature, and plastic strain rate vs. time near the edge of a block of material as a shear band 
forms. 

ary. Here the plastic strain rate decreases slowly at first, and after the run-in time, it 
drops sharply and finally makes a rapid, but smooth transition to zero. Since plastic 
work ceases towards the end, the temperature arrives at a plateau, but the stress con- 
tinues to drop on into the elastic region. Compar ison of the stress curves shows that, 
although central and edge stresses are nearly equal during the run-in time, the edge stress 
actually drops later than the central stress. Thus the curves indicate that the stress in 
the center drops rapidly because of thermal softening, but the stress at the edge drops 
because of momentum transfer. Since the average strain rate is constant, the stress/time 
plot may be interpreted as a stress/average strain plot. This is shown in Fig. 3. 
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