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Abstract-The problem of  simple shearing of  a block of  simple (nonpolar) and dipolar ther- 
moviscoplastic materials is studied with the objectives of  exploring the initiation and growth 
of, and the interaction among, adiabatic shear bands. A shear band is assumed to have formed 
if the addition of  a perturbation to the homogeneous fields just before the peak stress is reached 
results in a localization of  the shear strain. The effect of  adding perturbations of  different sizes 
and of  the same size but at different locations in the slab is investigated. It is shown that in 
simple materials, two shear bands coalesce if the distance between them is small but grow inde- 
pendently, although at a slower rate, if the distance between them is large. However, for dipolar 
materials, the two bands coalesce even when the distance between them at the time of  their initi- 
ation is 20 times the material characteristic length. 

I. INTRODUCTION 

Adiabatic shear is the name given to a localization phenomenon that occurs during high- 
rate plastic deformation, such as machining, explosive forming, shock impact loading, 
ballistic penetration, fragmentation, ore crushing, impact tooling failure, and metal 
shaping and forming processes. The localization of shear strain has been observed 
mostly in steels, but also in nonferrous metals and polymers. Practical interest in the 
phenomenon derives from the fact that progressive shearing on an intense shear band 
provides an undesirable mode of material resistance to imposed deformation, and the 
bands are often precursors to shear fractures. 

Shear band formation is generally enhanced at high strain rates because the lack of 
time for heat diffusion allows nonuniform straining to cause nonuniform heating. Non- 
uniform temperatures enhance plastic flow in the hotter regions and reduce plastic flow 
in the colder regions. Furthermore, heat generation is greatest in the regions of high- 
est strain rate. Thus, the strain rates in the hot, high-strain-rate regions tend to become 
larger, while those in the cold, low-strain-rate regions tend to become more nonuniform 
and may localize into a narrow region referred to as a shear band. Whether or not this 
thermoplastic instability mechanism leads to shear bands seems to depend upon strain 
hardening, strain-rate hardening, thermal softening, thermal diffusivity, and the strength 
of the initial inhomogeneity. 

ZENER and HoLLou.~ [1944] recognized the destabilizing effect of  thermal soften- 
ing in reducing the slope of the stress-strain curve in nearly adiabatic deformations. The 
dynamic torsional experiments of Ctn.vER [1973] on mild steel, titanium, and 6061-T6 
aluminum indicate that the localization began near the peak in the stress-strain curve 
for each material tested. This observation seems to be borne out by the experimental 
work of Cos~.N et aL [1980]. They found that in dynamic torsion tests on short speci- 
mens of 1018 CRS and 1020 HRS, the shear bands appeared in the 1018 CRS specimens 
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and not in 1020 HRS specimens. Extensive experiments, conducted at different temper- 
atures and strain rates, revealed that the shear stress-shear strain curve for HRS was 
increasing monotonically, whereas the curve for CRS had a peak in it. 

JOHNSON et al. [t983] and LINDHOLM and JOHNSON [1983] reported dynamic torsion 
test data on six ductile metals and six additional materials of much less ductility. They 
proposed a constitutive relation that accounts for strain and strain-rate hardening and 
thermal softening. Their analysis indicates that high ductility tends to produce a rela- 
tively wide shear band when compared to other materials. In their experimental setup, 
the frictional force at the grips provided a constraining axial force. Thus, an axial load 
or stress component developed with increasing torsional deformation. However, this 
axial load component was not measured. 

STAI~ER [1981] made use of an instability analysis to model the appearance of adia- 
batic shear bands in the controlled explosive expansion of steel cylinders. He argued 
that because of the short times involved in explosive loading the deformation could be 
considered adiabatic and there was no need to consider the thermophysical properties 
of materials. RECHT [1964] included heat conduction and thermal softening in the 
interpretation of shear bands formed during high-speed machining. In his investigation 
of  instability in the shear zone ahead of  a cutting tool during orthogonal machining, 
he used a thermal model incorporating uniform, constant-rate heat generation at a plane 
in an infinite medium. He showed that the critical strain rate for catastrophic shear in 
mild steel is 1400 times greater than that for titanium. Based on these data it can be 
shown that the difference in the thermophysical properties of St and Ti contributes a 
factor of 6, the ratio of yield stresses a factor of 4, and the difference in mechanical 
behavior a factor of 58. This last factor is directly proportional to the material's capacity 
to strain-harden and inversely proportional to its tendency to thermally soften. 

In a departure from the notion of a criterion based on a stress maximum, CLIFTON 
[1980] and BAt [1981] examined the growth of infinitesimal periodic nonuniformities 
in an otherwise uniform simple shearing deformation. They included strain hardening, 
thermal softening, strain rate sensitivity, and heat conduction. Bai also included the 
effect of inertia forces. Both linearized the field equations about the unperturbed time- 
dependent homogeneous deformation state and found that the magnitude of the im- 
perfections may grow or decay in time, depending on the material parameters, the 
average rate of strain, and the fixed spatial wavelength of the initial imperfection. BURNS 
[1983] used a dual asymptotic expansion to include the time dependence of the homo- 
geneous solution in the analysis of the growth of an initially small perturbation. His 
work suggests that initiation of an unstable shear band, followed by exponential growth, 
occurs after a critical shear strain corresponding to the peak stress in the homogeneous 
deformation for the same overall strain rate is reached. On the other hand, SnAWKI et 

al. [1983], by using both numerical and perturbation techniques, concluded that expo- 
nential growth is not a sufficient condition for judging whether or not a shear band 
forms, as the corresponding homogeneous deformation may also grow extremely rap- 
idly once the peak stress has been reached and growth is not restricted to a narrow band. 

ERLICn e t  al. [1980] noted that according to simple wave theory applied to one- 
dimensional plastic wave propagation, the strain level at which the shear tangent modu- 
lus becomes zero propagates at zero speed. They postulated a criterion of adiabatic shear 
band formation based on this "wave trapping" idea. This idea was applied by OLSON 
et  al. [1981] in a numerical finite element simulation of  plastic shear wave propagation 
under adiabatic conditions. The numerical solution did indeed exhibit a concentration 
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of shear strain in a layer of finite elements that was similar in nature to observed adi- 
abatic shear bands. 

In studying the growth of shear bands in the center of a finite slab after initiation 
at a small imperfection, MEWR [I9831 concluded that the final width of the band 
depends on the thermal diffusivity and the overall strain rate. WV and FREUND (19841, 
in studying the formation of shear bands at a moving boundary, concluded that ther- 
mal diffusivity has little influence on the final shape of the band. The detailed geome- 
try and constitutive equations considered in these two papers-are quite different, so 
perhaps it is not surprising to find apparently contradictory results. In fact, in both 
papers there are two natural length scales: one arising from the rate effect in the con- 
stitutive equation and one arising from heat conductivity. In the latter paper, these scales 
have been arbitrarily set equal to each other, whereas in the former paper the relative 
effect of heat conductivity has been examined parametrically for at least one specific 
type of constitutive equation. 

Recently, WRIGHT and BATICA [1985a, 1985b, and 19861 described the results of com- 
putations that simulate the formation of a single shear band from a local temperature 
inhomogeneity in simple and dipolar materials. A general theory of thermoviscoplastic- 
ity, obtained by modifying the dipolar theory of GREEN et al. (1968) to include rate 
effects, was used. Wright and Batra’s calculations for simple materials, as well as the 
experimental observations of Moss [1981], indicated that peak strain gradients reached 
0.2 per pm or higher. Therefore, they considered worthwhile to investigate the dipo- 
lar effects. Their computations show increasing inhomogeneity in the strain-, temper- 
ature-, and strain-rate fields, with the central amplitudes growing at an accelerating rate. 
The inclusion of dipolar effects has a stiffening effect in the sense that the rate of 
growth of central amplitudes of the strain, temperature, and strain-rate fields is lower 
as compared to that for simple materials. For dipolar materials there are at least three 
length scales: one is from viscous stress effects, the second is from thermal conductivity, 
and the third is the material characteristic length. WRIGHT and BATRA [1986] studied 
the case when all three length scales are equal to one another. 

This paper describes the results of some numerical experiments conducted with the 
objective of analyzing the interaction between two shear bands. It also examines the 
effect of the amplitude and distribution of the initial inhomogeneity on the initiation 
and growth of a shear band. It is shown that a narrower inhomogeneity results in a 
rapid growth of the band as compared to a wider one having the same central ampli- 
tude. A stronger inhomogeneity results in the formation of a shear band even before 
the peak in the homogeneous stress-strain curve is reached. The two shear bands that 
would grow independently in simple materials seem to coalesce in dipolar materials even 
when the material characteristic length is &, of the distance between them at the time 
of their initiation. 

We note that there is no experimental evidence available on the interaction between 
two or more shear bands in simple or dipolar materials. 

IL FORMULATION OF THE SIMPLE SHEARING PROBLEM 

We study the simple shearing deformations of a dipolar viscoplastic material and 
assume that all of the variables have been nondimensionalized. Thus, the body occu- 
pies the inftite slab bounded by the planes y = f 1. Referring the reader to WRIGHT and 
BATIK [1986] for details, we note that the governing equations are 
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b = - (s - la, v),,., (1) 
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~=u(v,.,.-As), (3) 
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- 1 b ( s  2 + o2) t/z } (6) 

with boundary conditions 

v(_+ l, t) = _+ l, 0 , y ( + l , t ) = 0 ,  o ( _ + l , t ) = 0  (7) 

and a suitable set of  initial conditions. Equations (1) and (2) express the balance of linear 
momentum and internal energy, respectively. Herein v is the velocity of  a material par- 
ticle, / is a material characteristic length, 8 is the temperature change of  the material 
particle from that in the reference configuration, and s and a may be interpreted as the 
shear stress and the dipolar shear stress, respectively. A superimposed dot indicates 
material time differentiation, and a comma followed by y signifies partial differentia- 
tion with respect to y. The nondimensional variables are related to their dimensional 
(barred) counterparts as follows: 

y=F/H, t=i%, ~=v,y, d=v,yy, ~=~e+~p, d=de+dp, 

v = O / H % ,  s = -~/Ko, o = #/fKo, 0 = 0~?/Ko, (8) 

3 ' = %  d = d H ,  -~p=~p/-~0, d p = ~ p H / % ,  A = 2 K o / % .  

Besides m, n, and ~b0, there are six other nondimensional parameters, which are related 
to their dimensional (barred) counterparts as follows: 

a = $Ko/~C, b = b % ,  k = ~ / ~ Z / o H 2 ,  

t~ = [x/=o, a = ~H25/2o/~o. 

l = i / H ,  
(9) 

In eqns (8) and (9), % = O(H, i ) / H  is the average applied strain rate between the 
boundaries Y = +H,  and x0 is the yield stress in a reference quasistatic test. 

The constitutive relations (3)-(6) give one possible model of  viscoplastic materials. 
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Equation (6) implies that the plastic parts, As and Au/l, of the strain rate and the dipolar 
strain rate vanish when 

(s2 + u2y2 I ( 1 1+ $ n(l -a@. 

The material parameters go and n describe the strain hardening of the material, a the 
thermal softening, and b and m the strain-rate sensitivity of the material. 

We presume that the initial values of 6, s, and $ are symmetric and the initial val- 
ues of u and u are antisymmetric in y and seek solutions of eqns (1) through (6) with 
the same symmetry. Thus, the problem is to be studied over the spatial domain [O,l] 
and the boundary conditions become 

u(O,t) =o, &,(O,?) =o, a(O,f) =o, (11) 

u(l,t) = 1, &,(l,t) =o, a(l,t) =o. (12) 

For the initial conditions we take 

U(Y,O) =y, dY,O) = a iw.0) = $0, 

ffvY,O) = &3 + &Y), (13) 

s(y,O) =so = 
( 1 

1 + - i: “(1 + bAb)“( 1 - ae(y,O)). 

The values of Go, So, and Go are such that during homogeneous deformations of the 
block the shear stress So and the strain corresponding to Go lie on the shear stress-shear 
strain curve for the material. A in eqn (13)5 is given by eqn (a), with 8 = 80, s = So, 
$ = Go, and u = 0. The function 8 describes the aberration in the initial temperature 
distribution and will result in nonhomogeneous deformations of the body. 

111. NUMERICAL lNTEGRATlON OF GOVERNING EQUATIONS 

With the auxiliary variables 

u=u ,y, g=epu9 P=u,~, 

we rewrite eqns (l)-(4) as 

6= ; (s-lp),u, 

6 = kg,y + A(s2 + d), 

(14) 

(1% 

(16) 

(17) 

(18) 
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Thus, only first-order spatial derivatives of  the unknowns v, 0, s, o, u, g, and p appear 
in the governing equations. Let H z denote the space of  functions defined on [0,1] the 
square of  whose first-order derivative is integrable over [0,1]. We approximate the 
unknown functions v, 0, s, etc. by linear combination of the finite element basis func- 
tions {Oi(y), i = 1,2 . . . . .  N} in an N-dimensional subspace of  H ~. For example, 

v(y , t )  = v~(t)O~(y). (19) 

Throughout the article, a repeated index implies summation over the range of the index. 
Using Galerkin's method (e.g., see BECKER et al. [1981]) we thus reduce eqns (14) 
through (18) to the following set of  equations: 

M i j u i = - Q i j v , ,  Mi jg i=-Q, jO , ,  M , j p i = - Q i j a , ,  (20) 

Mijbi = - ~  Aijsi + 1 Qijpi, MijOi = -kQi jgi  +AlP,  s, 
P 

(21) 

Mijsi = #Miju, - p-lisk Rijk, Mijai = -IxlO,jui - p./liaxRijk, (22) 

where 

! 1 

,23, 

0-.o = Qij - (~i4~j)~, (24) 

I 

Rijk = fo 4~idaJ4~kdY = R,kj = Rkij, (25) 

1 

Pij = fo 4~i4~j(s2 + °2) dy = Pji. (26) 

We note that because of  the nonlinear dependence of  Po and A upon s, o, ¢/, and 0, the 
coupled set o f  ordinary differential eqns (20)-(22) is not that easy to integrate. The 
matrices M~j, Q~j, Q.o, R~jx, and P0 have been evaluated by using the linear basis func- 
tions. Also, v~(t) denotes the velocity of  node i at time t. 

We use the Crank-Nicolson method to integrate eqns (20)-(22), with respect to time 
t. In it, eqns (20)-(22), assumed to hold at time (t + A t/2),  are used to predict the values 
of  v, O, s, o, g , p ,  u, and ~ at time ( t + z l t )  from a knowledge of  their values at time 
t. This is accomplished by approximating O~(t+At/2)  by ( O i ( t + A t ) - O ~ ( t ) ) / A t ,  
Oi(t +At~2)  by (Oi(t + A t )  + Oi(t))/2, and so forth and by first evaluating the non- 
linear terms on the right-hand side of  eqns (20)-(22) at time t. The resulting system 
of  linear algebraic equations is solved for v~( t+At ) ,  etc., the right-hand side in 
eqns (20)-(22) is now evaluated at time (t + At~2), and the system of  equations is solved 
again for v~(t + A t )  etc. This iterative process is continued until at each nodal point, 

T + + --s + ~ + l A a l + l a g l + l ' a P l + l A u l < - - e  (27) 
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where the subscript i has been dropped from ui and elsewhere, d u denotes the differ- 
ence between the newly found value of u and that used to compute the right-hand side 
in eqns (20)-(22), and e is a preassigned small number. The initial conditions (13) were 
used to find Vi(O) and so forth. 

IV. COMPUTATION AND DISCUSSION OF RESULTS 

In order to compute numerical results, the following values of various nondimen- 
sional parameters that correspond to a typical hard steel and the average applied strain 
rate $, = 500 set-’ were chosen. 

p = 3.928 x 10-5, k = 3.978 x 10-3, a = 0.4973, p = 240.3, 

n=0.09, &,=0.017, b=5 x 106, m=O.OtS. 

For homogeneous deformations of the block, the peak (marked as point P in Fig. 1) 
in the shear stress-shear strain curve occurs at a strain of 0.093. The uniform temper- 
ature or, = 0.1003 in the block when y = 0.0692, corresponding to the point I in Fig. 1, 
was perturbed by adding a smooth temperature bump 

2.0 

v) 
i 

t?(y) =&&(l - 1y* -y~()P~-4Y2-Ydl, 

‘ADIABATIC CURVE 
a#O, bf0 

\REFERENCE CURVE 
a=b=O 

0.56 I I P, I I 
QO5 0.10 Ql5 0.20 

AVERAGE STRAIN, G+- 

Fig. 1. Average shear stress-average shear strain curve for a typical steel. 
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and the resulting initial-boundary-value problem was solved by using the aforemen- 
tioned method• The domain was divided into either 20 uniform subdomains (usually 
called finite elements) or 20 nonuniform subdomains, with nodes at 0, 0:0025, 0.01, 
0.0225, 0.04, 0.0625, 0.09, 0.1225, 0.160, 0.2025, 0.2500, 0.3025, 0.360, 0.4225, 0.490, 
0.5625, 0.640, 0.7225, 0.81, 0.9025, and 1.0. The two temperature perturbations for 
J~o = 0.1, p = 9, c~ = 5 and for A~0 = 0. l, p = 2, cz = 1 are shown in Fig. 2. For non- 
polar materials, Fig. 3 depicts the growth of  the central plastic strain rate in time for 
the two subdivisions of  the domain. Numerical experiments with different values of- I  t 
indicated that air = 5 x 10 -6 gave accurate results. All of  the results presented herein 
are for this value o f ~ t  and E = 0.01. Unless otherwise noted, the nonuniform grid has 
been used. WRIGHT and BATRA [1986] gave a heuristic reasoning to explain that the pla- 
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Fig. 2. Temperature perturbations. 
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Fig. 3. Central plastic strain rate vs. elapsed time. 

teau was formed because of the coarse mesh. The plot in Fig. 2 clearly proves that. 
Also, for the wider perturbation the rate of growth of the central plastic strain rate is 
quite a bit slower. Whereas for the narrower perturbation the shear band is formed 
when the average strain in the block corresponds to the point just past the peak in the 
shear stress-shear strain curve, the broader perturbation results in the formation of the 
band well past the peak in the average shear stress-average shear strain curve, which 
occurs at t = 47.6/~sec after the temperature field was perturbed. That a band is indeed 
formed for the wider perturbation should be clear from the plot of Fig. 4. It is appar- 
ent that the rapidly deforming region progressively narrows down to the one close to 
the center. The width of the rapidly deforming region is narrower for the finer mesh. 
Whether we have obtained the final band width or not is not quite clear yet, since we 
have not experimented with other fine meshes. Figure 5 depicts how the central shear 
stress changes in time. It decreases at a very slow rate and essentially follows the aver- 
age shear stress-shear strain curve. It stays nearly uniform throughout the specimen. 
Numerical instabilities developed for values of time t a little beyond the one up to which 
results are plotted here. These can be due to the improper size of the time increment 
and/or to the mesh size, among other factors. Efforts are now under way to overcome 
these and to extend calculations for longer values of time. 

Figures 6 and 7 depict the effect of  the amplitude 40o of the perturbation upon the 
growth of the central plastic strain rate for simple and dipolar materials with ! = 0.01. 
Obviously, for larger amplitudes of the perturbation, the shear band is formed well 
before the peak in the average shear stress-average shear strain curve is reached. A com- 
parison of the results presented in Figs. 3, 6, and 7 clearly brings out the stiffening 
caused by the inclusion of the dipolar stresses. 
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In order to understand the interaction among shear bands, we introduced a pertur- 
bation in the temperature centered at different points along the thickness c f  the slab. 
Because of  the symmetry of  0 about the horizontal axis, this amounts to introducing 
two aberrations symmetrically placed about the center line y = 0. The hypothesis here 
is that if the resulting nonhomogeneous fields, such as the plastic strain rate, temper- 
ature, and the plastic strain, eventually peak out at the center of the slab, then the two 
bands have coalesced; otherwise they grow independently. Perturbations m the temper- 
ature centered at y = 0.025, y = 0.05, and y = 0.1 but z-160 = 0.1 were introduced and 
the ensuing initial-boundary-value problems were solved. Figures 8 and 9 show the dis- 
tribution of  the plastic strain rate through the thickness of  the slab for simple and dipo- 
lar materials, respectively. For simple materials (Fig. 8), the two bands initially centered 
at y = _.+0.025 coalesce but the ones centered at =.05 and +.1 grow independently of  
each other. The rate of  growth of the peak strain rate (not the strain rate at v = 0) is 
considerably less as compared to that when either only one band appears at y = 0 or 
two bands initially centered at y = _.025 merge and grow as a single band. For dipo- 
lar materials, the bands coalesce in all three cases. Recall that the material character- 
istic length is ~ of  the distance between the bands originating at y = ±0.1. 

The distribution of  the dipolar stress across the slab is plotted in Fig. 10. Because of  
the boundary conditions a(0, t) = a ( l ,  t) = 0 and the fact that the dipolar stress for the 
elastic problem is proportional to the curvature, the maximum value of  a cannot occur 
at the center of  the slab. Note that a is very small as compared to 1.0, whereas s is gen- 
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erally greater than or equal to 1.0. At a point where -~p #: O, dp*  O, the dipolar stress 
has negligible contribution to the effective stress (s 2 + o2) ~/2 that determines whether 
A > 0  or A = 0  at that point. 

V. CONCLUSION 

it is shown that the constitutive model proposed by WRIGHT and BATRA [t986] does 
predict adiabatic shear bands in a block undergoing simple shearing. The rate at which 
a band grows depends upon the strength of the inhomogeneity, herein modeled as a per- 
turbation in the otherwise uniform temperature within the block. Perturbations of larger 
amplitude result in the formation of a shear band even before the peak in the shear 
stress-shear strain curve is reached, Also, a wider perturbation results in the shear strain 
localization at a lower rate as compared to the narrow perturbation, both being of the 
same amplitude. The inclusion of dipolar effects results in a very stiffening effect inthe 
sense that the formation of bands is delayed considerably as compared to that in sim- 
ple materials. In addition, two bands that would grow independently in a simple mate- 
rial coalesce when dipolar effects are included. Of course, the minimum distance 
between two shear bands to grow independently of each other will possibly depend 
upon, among other factors, the value of the material characteristic length l. 
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