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Abstract-Simple shearing deformations of a block made of an elastic-viscoplastic material are 
studied. The material of the block is presumed to exhibit strain hardening, strain-rate harden- 
ing and thermal softening. The effect of modeling the material of the block as a dipolar mate- 
rial in which the strain gradient is also taken as an independent variable has been investigated. 
The uniform fields of temperature and shear stress in the block are perturbed by superimpos- 
ing a temperature bump at the center of the block, and the resulting initial-boundary-value prob- 
lem is solved by the Galerkin-Gear method. It is found that for simple materials as the shear stress 
within the region of localization begins to collapse, an unloading elastic shear wave emanates 
outwards from the edges of the shear band. For dipolar materials, the localization of the defor- 
mation is considerably delayed as compared to that for nonpolar materials, the shear stress does 
not collapse suddenly but decreases gradually, there is no unloading wave traveling outwards 
from the edges of the band, and the region of localized deformation is wider as compared to 
that for nonpolar materials. 

I. INTRODUCTION 

Since the time ZENER and HOLLOMON [1944] observed 32 #m wide shear bands in a steel 
plate punched by a standard die and estimated the maximum strain in the band to be 
100, there has been a considerable amount of research done in understanding factors that 
influence the initiation and growth of adiabatic shear bands. ROGERS [1979,1983] has 
vividly summarized in his review articles the work done on adiabatic shear banding until 
1982. References to some of the other experimental, analytical and numerical studies 
may be found in Ct.WTON et al. [1984] and BATRA [1987]. 

Recently, M~a~C~.AND and DUFF',, [1988] have given a detailed history of the temper- 
ature and strain fields within a band. Their experimental observations confirm the earlier 
prediction by WRIGHT and WALTER [1987] that the shear stress within a band collapses 
as the deformation localizes. Wright and Walter gave details of the shear band morphol- 
ogy for a rigid viscoplastic material. Herein we also account for (i) the material elasticity, 
(ii) work hardening, and (iii) the consideration of strain gradient as an independent vari- 
able. For simple materials, it is found that as the deformation begins to localize the shear 
stress collapses and an unloading elastic shear wave travels outwards from the region of 
severe deformation. For dipolar materials the shear stress drops gradually and there is 
no unloading elastic wave observed. The region of severe deformation is wider for dipo- 
lar materials as compared to that for nonpolar materials. 

Whereas CLzr'ror~ et aL [1984], WmGHT and BATP.A [1985], and B~T~ [1987] ac- 
counted for the effect of material elasticity, their calculations were not carried far 
enough in time to see what effect, if any, the material elasticity has once a shear band 
has formed. Wright and Batra, and Batra used, respectively, the forward-difference 
method and the Crank-Nicolson method to integrate the ordinary differential equations 
obtained by applying the Galerkin approximation to the governing partial differential 

127 



128 R . C .  BATI~A and C. H. KrM 

equations. Both these methods became unstable once the deformation started to local- 
ize. The Gear method used by WRIGHT and WALTER [1987] and also employed here en- 
ables us to study the details of the deformation within the severely deformed region. The 
results presented here should help to better understand the mechanics of the shear band 
formation. 

II. F O R M U L A T I O N  OF T H E  P R O B L E M  

Equations governing the thermomechanical deformations of a block of material un- 
dergoing simple shearing motion are: 

The balance of linear momentum, p / /=  (s - a,y),y, (l) 

The balance of internal energy, pe = - q , y  + sv,y + ov,y3,. (2) 

Here p is the mass density, u is the x-displacement and v the x-velocity of a material par- 
ticle, s is the shear stress, cr is the dipolar stress associated with the kinematic variable 
u,)y, q is the heat flux, e is the specific internal energy, a comma followed by y implies 
partial differentiation with respect to y, and a superimposed dot signifies material time 
differentiation. For the sake of completeness and brevity, we give only the equations 
which are absolutely necessary for our work. Detailed discussions of these equations and 
those given below may be found in GREEN, Mclsms  and NAom)I [1968] and WRInHT 
and BATP.A [1987]. 

COLEMAn and HOOODON [1985] have developed a theory of shear banding in which the 
shear yield stress depends upon the accumulated shear strain ~ and its second spatial gra- 
dient. For monotonic loading the accumulated shear strain equals the present value of 
the shear strain 7- Previous numerical (e.g., BATRA [1987]) and experimental work (MA~- 
CItAm~ & DuF~ [1988]) on the adiabatic shearing problem indicates that peak strain gra- 
dients are of the order of 107 per meter. It seems reasonable to assume that such a 
deforming region will experience a force which opposes these sharp gradients of 7. COLE- 
mAn and Hot)coN [1985] introduced such a force into the theory by adding, to the ex- 
pression for the stress in the classical flow rule, a term linear in the second spatial 
derivative of 7. Here we account for this force by taking the first spatial derivative of 
7 as a kinematic variable and account for the effects of the associated dipolar stress cr 
on the deformations of the body. 

We presume that the shear strain 7 and the shear strain gradient d have additive 
decompositions into elastic (Te, de) and plastic (%,, dp) parts. That is, 

3' = u,y = 3'~ + 3% (3) 

d =  u , ~ = d ~  + dp. 

For the constitutive relations we take 

q = - kO ,~ ,  (5) 

= ~,~, (6) 

0 = ~ ,  (7) 
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= co + s-~ + oa~, (8) 

;/p = As, (9) 

A 
a ,  = e-7 ° '  (1o) 

where k is the thermal conductivity, c the specific heat, 0 the change in the temperature 
of  a material particle from its temperature in the reference configuration, # is the shear 
modulus, ~, is the modulus associated with the dipolar effects, el is a material charac- 
teristic length, and A = A (s, a,~,p, dp) is positive for plastic deformations and equals 
zero when the deformations are elastic. All of  the material parameters #, k, c and p are 
assumed to be constants. 

To decide whether the ensuing deformations are elastic or plastic, we presume that 
there exists a loading function 

f(s,a,~,d.,o) = , ~ ( ' y p , d . )  (11) 

such that for all positive A and real numbers a and b, 

a f  
=z_ (s,o, Aa, Ab, O) < O. 
OA 

(12) 

The function ~ on the right-hand side o f  eqn (11) describes the work hardening o f  the 
material. The condition (12) ensures that the equation 

f (s,a, as,-~2 ~ o,O) = x( ~/p,dp) (13) 

has a unique solution for A. We make the following choices for f and 

az~ I/2 1 (1 + b('~ 2 + ¢2up, p , (14) 02~2~,1/2~--m f =  S2 + -~l ] (1 -- aO) 

x = r . o  1 + , (15) 

~ = s~ .  + od..  (16) 

The parameter a describes the thermal softening of  the material, b and m its strain-rate 
hardening, ~0 and n characterize its work hardening, and r.o is the yield stress in a 
quasi-static isothermal test. The parameter ~ introduced through eqns (15) and (16) may 
be thought o f  as an internal variable. It describes the effect of  the history of  the defor- 
mation on the current value of  the yield stress in a quasi-static and isothermal test. It 
is referred to as the work hardening parameter below. 

Substitution from (14), (15), (9) and (10) into (11) yields 
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. °72; 0"~)|/2 = K O ( I +  ~ 0 ) ( 1 - - a O ) ( l  + b A ( s  2 g~ s + etZ + - -  
(17) 

which is to be solved for A when plastic deformation is occurring; otherwise A is zero. 
The constitutive eqn (17) is a simple variation of  the "overstress" idea, due to MALVERN 
[1984], where the overstress in the present case is obtained through the use of  a mul- 
tiplicative factor rather than an additive one. When the dipolar effects are neglected and 
the material is presumed to be viscoplastic without any yield surface, then eqn (17) re- 
duces to LITONSKI'S [1977] constitutive relation. 

Before discussing the initial and boundary conditions, we nondimensionalize the vari- 
ables as follows: 

y = H 2 ,  u = H f t ,  et=~tH, e,=~2H, 3 " = %  d = d / H ,  6 = ¢ ,  

S = x o g ,  a = x 0 e 2 # ,  X=Koi ,  A =  % A ,  t = - - , [  0 = 0 o 0 ,  
K0 3'0 

KO pH2~_____.~ = P, k = ic, aOo = a, b'~o = [~, 0 o -  , 
~o pC~o H 2  pc 

0 8 )  

~ o = / ~ ,  ~Xo1'32=1,, e 3 = g 3 H .  

Here 2H is the height of  the block, % is the average strain-rate, g3 is a material char- 
acteristic length, and the overbar indicates the nondimensional quantity. Below we drop 
the overbars and give a summary of  the equations in terms of  nondimensional variables. 

pb = (s - ea,y),y, 

= kO,yy + A ( s  2 + 0.2), 

(19) 

(20) 

$ = ~t(v,y - A s ) ,  (21) 

( ao) 
O = ~ f  v , . ,  e ' (22) 

- -  A ( $  2 + 0 "2) 

(l+ 

A = max , (1 - aO) 1 + n -- I b ( s  2 + O'2) I/2 . (24) 

In writing these equations we have set el = l'2 = e3 = g since no information is currently 
available on their relative magnitudes. This was also done by WRIGHT and BATRA [1987] 
and by BATRA [1987]. Note that in the energy equation, all of  the plastic working is taken 
to be converted into heat. 
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We presume that the specimen is placed in a hard insulated loading device so that the 
velocity is prescribed on its top and bot tom surfaces. With the origin of  the rectangu- 
lar Cartesian system of  axes located at the center of  the specimen, we seek solutions of  
the governing equations which exhibit the following properties. 

v ( - y , t )  = - v ( y , t ) ,  O ( - y , t )  = O(y , t ) ,  

s ( - y , t )  = s (y , t ) ,  o ( - y , t )  = - a ( y , t ) .  

~b(-y,t) = 6 ( y , t ) ,  
(25) 

Thus the problem for the upper half o f  the block will be solved under the following 
boundary conditions. 

v(1, t )  = 1, O,y(1,t) = 0 ,  a ( l , t )  = 0, 

v(O,t) =0,  O,y(O,t) =0,  o(O,t) =0.  
(26) 

Figure 1 depicts a solution of  eqns (19) through (24), (26), the initial conditions 

v(y,O) =y,  O(y,O) = o(y,O) = s(y,O) = ~(y,O) = 0 (27) 

a n d  

p = 3 .928  x 10 -5 ,  k = 3 .978  x 10 -3 ,  a = 0 . 4 9 7 3 ,  

n = 0.09, ~bo = 0.017, b = 5 x 106, m = 0.025. 

/z = 240.3, 
(28) 

The aforementioned values of  various parameters are for a typical steel, the average ap- 
plied strain-rate o f  500 see- ' ,  and H = 2580 ~m. However, we have taken a rather large 
value o f  the thermal softening coefficient a to reduce the computational effort  required 
to simulate the formation of  a shear band. The chosen value o f  a gives the nondimen- 

[ 
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Fig. I. Average shear stress-average shear strain curve for a typical steel at a nominal strain-rate of  500 see - t .  
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sional melting temperature to be 2.011. For homogeneous deformations of the block, 
o -~ 0, and the peak (marked as point P in Fig. 1) in the shear stress-shear strain curve 
occurs at a strain of 0.093. The uniform temperature 00 = 0.1003 in the block when 
7 = 0.0692, corresponding to point I in Fig. 1 is perturbed by adding a smooth temper- 
ature bump 

0(y) = 0.1 (1 - y2)ge-SY', 

and the initial-boundary-value problem described by equations (19)-(24), (26), and the 
initial conditions 

v ( y , o )  = y, o(y ,O)  = o, ~ ( y , o )  = o.1, 

O(y,O) = 0.1003 + 0.1(1 - y2)9e-Sy2, (29) 

0"1Y'(I -- aO(y,O))(l + b)" 
s(y,O) = 1 +  ~/'o1 

is solved numerically by using the Galerkin-Gear method. The Gaierkin method is used 
to reduce the partial differential equations to coupled nonlinear ordinary differential 
equations which are then integrated by using the Gear method for stiff differential equa- 
tions (GEAR [1971]). We used the subroutine LSODE, taken from the package ODE- 
PACK, developed by Hn~rauxp.sn [1983], and employed the option of using the full 
Jacobian matrix. 

I lL COMPUTATION AND DISCUSSION OF RESULTS 

Guided by the work of WRIGHT and WALTER [1987] on rigid/visco-plastic materials, 
we selected a finite element mesh with coordinates of node points given by 

= { n - l y  
Y" k l ~ /  1 _ < n <  161, 

and computed results for p = 3, 5, 7 on the Floating Point System machine. We tested 
these meshes on the problem analyzed by Wright and Walter and obtained results vir- 
tually identical to their f'mdings. This assured us of the accuracy of the code and the ade- 
quacy of the finite element meshes used. All three meshes gave results which were 
essentially indistinguishable from each other. We t'n'st present and discuss results for non- 
polar (? = 0.0) materials and then for dipolar materials with e = 0.01. 

III.1 Nonpolar materials 

For homogeneous deformations of the block, the peak in the shear stress-shear strain 
curve occurs at an average strain of 0.093. The temperature perturbation (29) was in- 
troduced when the block had undergone deformations corresponding to point I in Fig. 1 
and the resulting initial-boundary-value problem was solved. We recall that (B~m~. 
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Fig. 2. Evolution of the shear stress, plastic strain-rate, temperature and work-hardening m e t e r  at points 
near the center of the specimen for nonpolar materials. 

[1987]) the average strain at which the deformation begins to localize depends upon, 
among other factors, the size and the shape of  the temperature perturbation. Figure 2 
shows the evolution of the shear stress, plastic strain-rate, the temperature and the work- 
hardening parameter ~. Initially, the temperature, plastic strain-rate and the work hard- 
ening parameter ~ increase slowly, and the values of the temperature and ~ at a point 
differ approximately by the magnitude of the initial temperature bump. When the aver- 
age strain in the block equals 0.1002 the rate of increase of the plastic strain rate at points 
near the center of the block rises sharply and shoots up at an average strain of 0.1011. 
Thus, for the present problem, the localization of the deformation begins in earnest at 
an average strain close to 0.1011. 

Figure 3 shows the evolution of the plastic strain-rate and the shear stress during the 
time the severe localization of the deformation is occurring. It is clear from these plots 
that the shear stress drops to essentially zero in nearly one micro-second even when the 
strain-hardening effects are included. The shear stress stayed uniform throughout the 
specimen prior to the initiation of the localiTation, and during the initial stages of  
the sudden collapse. But it became nonuniform during the time the localization of the 
deformation was in progress. This prompted us to examine the field variables more 
closely. 

Figure 4 depicts the distribution of the shear stress and the particle velocity within the 
specimen at intervals of one-tenth of a microsecond starting with the time when the 
deformation begins to localize. It is clear that an unloading elastic shear wave emanates 
outwards from the region of severe deformation. The emanation of the elastic unload- 
ing wave is probably associated with the sudden coUapse of the shear stress within the 
band. The computed speed, 3178 m/sec, of the wave essentially equals ( p / p ) ~ ,  since 
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Fig. 3. Collapse of  the shear stress and rise of the plastic strain-rate during the localization of  the deforma- 
tion for nonpolar materials. 

~ : fSOx 109~ 1/2 
\ 7860 ] = 3,190 m/sec. 

It takes 0.807 /~s for the shear wave to reach the outer boundary from which it is 
reflected back with a negative value of the shear stress. The numerical calculations were 
not pursued any further. 

Figures 5 and 6 depict, at different times, the particle velocity, temperature, plastic 
strain-rate, work-hardening parameter ~b, and the shear stress within the region of lo- 
calization. These results show that the calculations stay stable throughout the severe lo- 
calization of the deformation. The plots of the plastic strain-rate and ~b vs. y at different 
times indicate that the region of severe deformation becomes smaller with time. Even 
though the values of ~b at points near the center of the specimen keep on increasing 
monotonically, those of 5'u begin to oscillate. A possible explanation for this is that 
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Fig. 4. Distribution of the shear stress and the particle velocity within the specimen at different times dur- 
ing the localization of the deformation for nonpolar materials. These curves are plotted at intervals of 
0. I ~ts with curve I at t -- 64.0 #s, curve 2 at t = 64. I t~s, curve 3 at t = 64.2 t~s ..... and curve I 0 at t -- 64.9 t~s. 
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there is a diffusive term present in the energy equation, but there is no such term in the 
equation representing the evolution of ff with time. Because of the sharp temperature 
gradients at points near the center of the specimen, the rate of heat conducted out of the 
region of localization is high and at times balances the rate of heat generation due to 
plastic working. When this happens, the softening of the material caused by the rise in 
its temperature cannot overcome the hardening due to the increase in the value of ~k and 
the plastic strain at that material point drops significantly. This in turn reduces the shear 
stress required for the material to deform plastically because of the reduced hardening 
due to plastic strain-rate effects. Hence the plastic strain rate begins to increase again 
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Fig. 6. Evolution of the shear stress and temperature within the region of localization for nonpolar materi- 
als. See Fig. 4 for times at which these curves are plotted. 
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and the phenomenon is repeated though not with any periodicity. The nondimensional 
plastic strain-rate drops at the center by nearly four-tenth of a miUion during each one- 
tenth of a micro-second be~nning at t = 64.2 p.s, 64.6/~s and 64.8 #s. 

We now try to write the preceding explanation in the form of an equation. During the 
time the localization of the deformation is progressing, it is reasonable to assume that 
material particles near the center of the specimen are deforming plastically. Equation (17) 
then gives 

d-~p = ( b - '  + ~p) + 
m 1 - aO ~o + ~ ]  

Note that ds < 0, dO > 0 and d~b > 0. Therefore, if the middle term on the right-hand 
side is not larger than the sum of the magnitudes of  the other two terms, d~p will be 
negative. If the effect of work hardening is neglected, then the relative temperature rise 
has to overcome the relative drop in stress for d'~p to be positive. 

We note that when the shear stress begins to collapse, the temperature at the center 
of the band equals 76.9% of the presumed melting temperature of the material. It rises 
to 96% of the melting temperature within 0.9 ~ and then increases extremely slowly. 
~DatCR~,~D and DtJr~,~, [1988] estimated the maximum temperature within the shear 
band to be nearly 75% of the melting temperature of the structural steel tested. Since 
there is no failure or fracture criterion included herein, our calculations may have been 
carried too far in time. 

One possible way to define the width of a shear band is to equate it to the width of 
the severely deformed region when the unloading elastic wave emanates outwards from 
this region. This definition gives the width of  the shear band for the material model be- 
ing studied here to be 0.6 #m which does not compare well with those observed experi- 
mentally. The difference between the computed and the observed values could be due 
to the choice of the values of the material parameters and/or the constitutive relations 
used. The inclusion of nonlocal effects, as discussed below, does increase the width of 
the severely deformed region. 

III.2 Dipolar  materials 

In Fig. 7 is plotted the evolution of the shear stress s, the dipolar stress o, the temper- 
ature change 0 and the plastic strain-rate -~p when f is set equal to 0.01. Now the shear 
stress drops gradually rather than suddenly, and the plastic strain rate does not attain 
the enormously high values it achieved for nonpolar materials. Also the localization of 
the deformation is delayed considerably as compared to that for nonpolar materials. At 
points where the magnitude of  the gradient of  the dipolar stress is maximum, the shear 
stress attains minimum values. Since F ~ (s  -- to,y) acts as a flux for the linear momen- 
tum and s, -~ (s 2 + o2) ~ as the effective stress for determining whether the material 
particle is deforming elastically or plastically, we have plotted these in Fig. 8. As for the 
nonpolar case, the flux F o f  the linear momentum stays uniform throughout the block 
and drops in value first gradually and later on rather sharply. The sharp drop in F is as- 
sociated with the rapid heating of the material during the f'mal stages of the localization 
of the deformation. Because of the assumption ~(0,t) = 0, s, = s at the center and, 
therefore, se drops noticeably at the center due to the softening of the material caused 
by the rise in temperature. The negative values of • imply that dp exceeds v,yy. The 
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larger values of J al at points away from the center make the effective stress se bigger 
there. The point where se assumes maximum values moves towards the center of  the 
block as the deformation proceeds but becomes stationary when the deformation begins 
to localize severely. In Figs. 9 and 10 we have plotted the distribution of the particle 
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are:  c u r v e  ! ,  t --  0 . 0  #s;  c u r v e  2,  t --  50/Ls; c u r v e  3,  t = 100/~s;  c u r v e  4 ,  t = 1 5 0 / i s ;  c u r v e  5,  t --- 180/As; 
c u r v e  6,  t --  185/~s;  c u r v e  7,  t --  190/As; c u r v e  8,  t --  195/~s .  
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Fig. 9. Distribution of the plastic strain-rate, tem- 
perature and particle velocity at different times for 
dipolar materials. See Fig. 8 for times at which 
these curves are plotted. 

speed, temperature, plastic strain-rate, s and o within the specimen at different times. 
It is obvious that there is no unloading wave emanating outwards from the severely 
deformed region. This is to be expected since the governing equations for e ~ 0 do not 
have real characteristics. The particle speed increases from the prescribed value o f  zero 
at the center o f  the specimen to 1.14 at the edge of  the severely deformed region, and 
then almost linearly to the prescribed value o f  1.0 at the outer boundary of  the speci- 
men. The temperature and the plastic strain-rate at the center continue to increase. 

In order to decipher the details of  the deformation at points near the center o f  the 
specimen, we have plotted in Figs. 11 and 12 several field variables within 0 < y < 0.10 
and at different times. These figures show vividly that the temperature and the work- 
hardening parameter have attained steady values at points for which 0.0175 < y < 0.10. 
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Adiabatic shear banding 139 

L.2 

0.6 

"r. 

o 

8 

. . . . . . . . .  -[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0.025 0.050 0.075 

DISTANCE FROM TIlE CENTER 

135 7 

~ 90 5 

0 
0 0.025 0.050 0.075 0. I 

DISTANCE FROM TilE CENTER 

Z. 0 _0  

l.O 

0.5 - .  

l 
0 

0.025 0.050 0.075 

DISTANCE FROM TIlE CENTER 
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points near the center of the specimen for di- 
polar materials. See Fig. 8 for times at which these 
curves are plotted. 

The shear stress continues to drop and is minimum not at the center but at a point 
slightly away from it. The temperature at points near the center of the block continues 
to rise and has essentially uniform values in the region 0 - y <- 0.01. Even though the 
shear stress at some points becomes negative for t _ 190 #sec, the flux F of linear 
momentum is still positive throughout the block. Up to the time these computations have 
been performed, the peak temperature has not reached the presumed value 2.011 of the 
melting point of the material. Since the severely deforming region is still narrowing 
down, it is unclear as to how to define the band width or when to stop the numerical 
computations for the dipolar case. One possibility is to end the computations when s at 
any point in the domain becomes zero and regard the width of the severely deformed 
region as equal to the band width. According to this criterion, the width of the heavily 
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Fig. 12. Distribution of the shear stress and dipolar stress at points near the center of the specimen. See 
Fig. 8 for times at which these curves are plotted. 
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deformed region, computed for t = 190/~s, equals 2 x 0.0129 x 2580 = 66.4/~m. This 
value is close to those observed experimentally, but the experimentally observed (MAR- 
CRAm) ~ ~ [1988]) quick drop of  the shear stress is not predicted by the dipolar the- 
ory. Since the value o f  ? was arbitrarily chosen to be 0.01, there is some room for 
adjustment. WRmwr and BA.~A [1987] did compute results for 1' = 0.001, but the cal- 
culations were not carded far enough in time. 

B,~XRA and Kn~ [1988], using the present material model, have computed results for 
~' = 0.005, 0.001 and 0.0005. Their computations show that as e is decreased from 0.01 
to 0.0005, the computed band width decreases from 66.4 ~m to 1.0/~m, the maximum 
plastic strain-rate at the center increases from 139 to 99,606, and the average strain when 
the shear stress first becomes zero decreases from 0.1642 to 0.1023. There was no un- 
loading elastic wave observed for any of  these three values of  the material characteris- 
tic length e. 

IV. CONCLUSIONS 

It is shown that when the uniform temperature field in an elastic/viscoplastic block 
undergoing simple shearing deformations is perturbed, the deformation localizes. During 
the localization of  the deformation, the stress collapses quickly for nonpolar materials 
but decreases to zero gradually for dipolar materials. For nonpolar materials, the sharp 
drop of  the shear stress in the narrow region undergoing severe deformations results in 
an elastic unloading wave to travel outwards from this region to the outer boundaries 
o f  the specimen. Both for dipolar and nonpolar materials the temperature and the work 
hardening parameter continue to increase. Whereas, for dipolar materials, the plastic 
strain-rate keeps on increasing within the region of  the localized deformation; for non- 
polar materials, the plastic strain rate oscillates indicating the competing effects of  ther- 
mal softening and hardening due to plastic strain and plastic strain-rate. 
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