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Abstract-- Dynamic plane strain thermomechanical deformations of a thermally softening vis- 
coplastic body subjected to compressive loads on the top and bottom faces are studied with 
the objective of exploring the effect of (a) modeling the material inhomogeneity by introduc- 
ing a temperature perturbation or assuming the existence of a weak material within the block, 
(b) introducing two defects symmetrically placed on the vertical axis of the block. The effect 
of setting the thermal conductivity equal to zero is also studied in the latter case. It is found 
that, irrespective of the way the material inhomogeneity is modeled, a shear band initiates 
from the site of the defect and propagates in the direction of maximum shearing stress. The 
value of the average strain at the instant of the initiation of the band depends upon the strength 
of the material defect introduced. Once the shear band reaches the boundaries of the block 
it is reflected back, the angle of reflection being nearly equal to the angle of incidence. 

1. INTRODUCTION 

Adiabatic shear banding refers to the localization of the deformation into thin narrow 
bands of intense plastic deformation that usually form during high-rate plastic defor- 
mation. These bands often precede shear fractures. The experimental work in this area 
is due to ZENER and HOI.I.OMON [1944], COSXI~ et ai. [1980], Moss [1981], LINDHOI.M 
and JOHNSON [1983], HAR~EY, DLrFF¢ and HAW~.EY [1987], and M,~RCR~qD and DUFl~ 
[1988]. HARTI.EY et al. [1987], and MARCR,M~D and Du~Y [1988], have given a detailed 
history of the temperature and strain fields within a band formed in a thin steel tube 
deformed in simple torsion. 

During the last ten years, there have been numerous studies aimed at analyzing the 
initiation and growth of shear bands in the one-dimensional simple shearing problem. 
For example, CLWrON [1980] and B~ [1981] analyzed the growth of infinitesimal peri- 
odic perturbations superimposed on a body deformed by a finite amount in simple 
shear. BURNS [1985] used a dual asymptotic expansion to account for the time depen- 
dence of  the homogeneous solution in the analysis of the growth of superimposed pe- 
riodic perturbations. Other works include those of MEgZER [1983], WU and FREUND 
[1984], CLrFTON et al. [1984], COLEMA~ and HODGDON [1985], WRIGHT and B^TL~ 
[1985], WgmRT and WALTER [1987], BATg,J, [1987a,1987b], Znm and An:~TIs [1988], 
and BATgX and IOM [1990]. We note that ROGERS [1979,1983] and T~Moxmc [1987] have 
reviewed various aspects of  shear banding, and AN,~gD et  al. [1988] have generalized 
one-dimensional stability analysis of CLmrON [1980] tO three-dimensional problems. 

Recently LEMONDS and NEEDI~MAJ~r [1986a,1986b], AN,~rD et  al. [1988], NEEDLE- 
MAN [1989], BATgA and Ln~ [1989], and Sm.rrrLE and SMIXR [1988] have studied the 
initiation and growth of  shear bands in plane strain deformations of  a softening mate- 
rial. Except for Needleman, and Batra and Liu, these works neglected the effect of 
inertia forces. Batra and Liu studied the coupled thermomechanical deformations of 
a thermally softening viscoplastic solid and modeled the material inhomogeneity by 
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introducing a temperature bump at the center of the block whose boundaries were taken 
to be perfectly insulated. Two different loadings, namely, those corresponding to sim- 
ple shearing and simple compression of  the block, were considered. Here, we examine 
the effect of (a) modeling the material inhomogeneity in two different ways, namely, 
introducing a temperature perturbation and assuming the existence of  a weak mate- 
rial, (b) introducing two defects placed symmetrically on the vertical axis of  the block, 
(c) varying the reduction in the flow stress of the weak material, and (d) two different 
sets of initial conditions. 

11. F O R M U L A T I O N  OF THE PROBLEM 

We use an updated Lagrangian description (e.g., see BATHE [1982]) to analyze the 
plane strain thermomechanical deformations of  the viscoplastic body. That is, in or- 
der to solve for the deformations of  the body at time (t  + At) ,  the configuration at 
time t is taken as the reference configuration. However, it is not assumed that the defor- 
mations of the body from time t to time (t + ,at) are infinitesimal. With respect to 
a fixed set of  rectangular Cartesian coordinate axes, we denote the position of a mate- 
rial particle in the configuration at time t by X,, and in the configuration at time 
(t + ,at) by x~. In terms of  the referential description the governing equations are 

(p J)" = 0, (2.1) 

poV~ = T~,~, (2.2) 

pop = -Q~ .~  + T,-~v~,,. (2.3) 

supplemented by appropriate constitutive relations, and initial and boundary condi- 
tions. Equations (2.1), (2.2), and (2.3) express, respectively, the balance of  mass, the 
balance of  linear momentum, and the balance of  internal energy. Here p is the mass 
density of a material particle in the current configuration at time t + At ,  Po its mass 
density in the reference configuration; a superimposed dot indicates a material time 
derivative; J = po/p equals the determinant of  the deformation gradient F,~ -~ xi.,~; 
vi is the velocity of  a material particle in the xrdirection, T~ is the first Piola-Kirchoff 
stress tensor; a comma followed by oe(i) implies partial differentiation with respect 
to X~(xi);  a repeated index signifies summation over the range of  the index; e is the 
internal energy per unit mass; and Q~ is the heat flux. We assume that plane strain 
deformations occur in the X~ - X2 plane, so that x3 = X3 and the indices i and oL range 
over 1,2. 

We note that even when the applied overall strain-rate is kept fixed, different mate- 
rial particles undergo deformations at varying strain-rates. During the course of  a loading 
process in which a shear band forms, the temperature of  a material particle may also 
increase considerably. A constitutive relation that can model the material response over 
changes in plastic strain-rate and temperature of  several orders of  magnitude is needed 
to properly analyze the shear band problem. HARTLEY et al. [1987], and M A R C ~ D  
and D t ~ r t  [1988], have proposed a power law that seems to describe adequately the 
simple shearing deformations of the steels tested. However, a constitutive relation ap- 
plicable to more general deformations is not readily available in the open literature. 
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Here we assume that the following constitutive relations describe adequately the mate- 
rial response: 

a e = --p(p)5ij + 2I~D~j, 

Ti,~ = ( po /p )X~ , , j o i j ,  (2.4) 

2#  = [ O o / ( , ' 3 1 ) ]  (1 -- J,O)(l + bl) m, 

2Di j  = vi.j + uj.i, (2.5) 

2 /2  = [)ijC)j,,  D v  = D~j - (1 /3)DkkSi . i ,  (2.6) 

p ( p )  = B ( p / p r  - -  1), (2.7) 

Q,, = - k ( p o / p ) X , , . i O , i ,  (2.8) 

Poe = poCO + p o p p ( p ) / p  2. (2.9) 

Here, ai.i is the Cauchy stress tensor, ao is the yield stress in a quasi-static simple ten- 
sion or compression test, v is the coefficient of  thermal softening,/Sij is the deviatoric 
strain-rate tensor, Di2 is the strain-rate tensor, 6 0 is the Kronecker delta, B may be 
interpreted as the bulk modulus, Pr is the mass density in the stress free reference con- 
figurations, c is the specific heat, k is the thermal conductivity, and parameters b and 
m describe the strain-rate sensitivity of  the material. The material parameters b, m, 
B, k, and c are taken to be independent of  the temperature. Equation (2.8) is the Fou- 
rier law of heat conduction, and eqn (2.4)1 may be interpreted as a constitutive rela- 
tion for a non-Newtonian fluid whose viscosity t~ depends upon the temperature and 
the strain-rate. Alternatively, defining s u by 

s V = o V + [ p  --  ( 2 / 3 ) / ~ D k , ] 6 i j  (2.10) 

= 2/~bij, (2.11) 

we can write eqns (2.4) and (2.5) as 

[ (1 /2 ) (s~ js j , ) ]  ' /2 = [oo /x ,~ ]  (1 --  =,0)(1 + b / )  m (2.12) 

which can be viewed as a generalized von Mises yield surface when the flow stress (given 
by the right-hand side of  (2.12)) at a material panicle depends upon its straLmrate and 
temperature. That the flow stress decreases linearly with the temperature rise has been 
observed by BEu. [1968], Ltl, rOnOtM and Jo~so lq  [1983], and Ln~ and W^c_,o~R [1986]. 
The range of  temperatures examined by these investigators is not as large as that ex- 
pected to occur in the shear band problem. However, constitutive relations akin to 
eqn (2.4) have been used by Zmlqicmwicz et  al. [1981] for analyzing the extrusion prob- 
lem, by BATRA [1988] in studying the steady-state penetration of  a viscoplastic target 
by a rigid cylindrical penetrator, and by BATRA and L ~  [1989] for studying the shear 
band problem. 
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In terms of the nondimensional variables 

# =  aloo,  p = p / % ,  g = s / % ,  ~ = V/Vo, 

i =  tvo/H, T = T /%,  

£ = x / H ,  0 = 0 / 0 o ,  b = b ( v o / H ) ,  ~ = ~0o, 

= P/Pr,  P "~ Po/Pr, X = X / H ,  

(2.13) 

m arl)2o/(7o, ~ = k/(PrCVoH), 

Oo = a o / ( a r c ) ,  B = B/ao, 

the governing equations can be written as 

+ av~,i = O, (2.14) 

6at)i = T, . . . .  (2.15) 

PO ----" ~O,ii -{- (P/Pr) [ 1 / ( x / 3 l ) ]  (1 + b t ) m ( l  - vO)ff)Off)O, (2.16) 

o o = - B ( p  - 1)~ o + [ l / x / 3 I ) ]  (1 + b I ) " ( 1  - ~O)D o, (2.17) 

where we have dropped the superimposed bars. In eqns (2.13) 2H is the height of the 
block and vo the imposed velocity on the top and bottom surfaces. In eqns (2.14)- 
(2.16) all of the differentiations are with respect to nondimensional variables. We note 
that in eqn (2.16) all, rather than 90-95% as stated by TAYLOR and QtrISSEY [1934], 
of the plastic working is assumed to be converted into heat. 

For the viscoplastic block being deformed in simple compression we study only those 
deformations that remain symmetric about the horizontal and vertical planes passing 
through the center of the block. Thus we analyze the deformations of the material in 
the first quadrant. With the origin of the coordinate axes situated at the center of the 
undeformed block (cf. Fig. 1), we can write the pertinent boundary conditions as follows 

z['- t xz, . . . . . . . . . . .  . . . . . . . . . .  
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Fig. 1. (a) The problem studied, (b) Stress-strain curve in simple compression for the material studied. 
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vl = O, T 2 t = 0 ,  Qt = O at xt  = X l  = O, 

U 2 = 0  , TI2 ~- 0, Q 2 = O a t x 2 = X 2 = O ,  

Ti~N~ = O, Q~N~ = 0 on the right face, 
(2.18) 

v2 = - U ( t ) ,  T~2 = 0, Q2 = 0 on the top surface. 

That  is, boundary  conditions resulting f rom the assumed symmetry of  deformations 
are applied to the left and bo t tom faces, the right face of  the block is taken to be trac- 
tion free, and a prescribed normal  velocity and zero tangential tractions are applied 
on the top face. Note that the initially flat top surface is assumed to stay flat through- 
out the deformations of  the block. All four  sides of  the block are assumed to be per- 
fectly insulated. 

We consider two different sets of  initial conditions. First we take 

p(X,O) = 1.0, vt(X,O) = O, vz(X,O) = O, O(X,O) = O, (2.19) 

and model a material  inhomogenei ty/ f law by assuming that 

t~ = [1 - ¢(1 - r2 )9exp( -5 r2 ) ]  1[(1 + bl)m/(x /3I )]  (1 - ~0)1 (2.20) 

r 2 = ( X I  - Xl° )  2 + (X2 - X ° )  2. (2:21) 

That  is, the material around the point X ° is weaker than the surrounding material.  
In this case we took 

U ( t )  = t/0.005, 0 < t -< 0.005 (2.22) 

= I t -_- 0.005. 

Another  set of  initial conditions studied involved perturbing the steady state solution 
corresponding to 

vl = 0.37xl,  v2 = - x 2  (2.23) 

for an average applied strain-rate of  5,000 sec - I  by superposing on it a temperature  
perturbat ion given by 

AO = ~(1 - r 2 ) 9 e x p ( - 5 r 2 ) .  (2.24) 

The velocity field (2.23) and the temperature  distribution (2.24) were taken as the ini- 
tial conditions, and U ( t )  was set equal to 1.0 for t _ 0. We note that the value of  

in eqns (2.20) and (2.24) models,  in some sense, the strength of  the defect. 
We refer the reader to B A T ~  and L ~  [1989] for details of  seeking an approximate  

solution of  the problem numerically. 
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IIl. C O M P U T A T I O N  AND DISCUSSION OF RESULTS 

In order to compute numerical results we assigned following values to various mate- 
rial and geometric parameters. 

b = 10,000 sec, v = 0.0222°C - l ,  oo = 333 MPa, 

k = 4 9 . 2 2 W m  -l °C- t ,  c = 4 7 3 J k g  -I °C - l ,  

Po = 7,800 kg m -3, B = 128 GPa, H =  5 mm, 
(3.1) 

Vo = 2 5  m sec - l ,  m =0 .025 .  

Except for the value of  the thermal softening coefficient u, these values are for a typical 
hard steel. We assigned a rather large value to ~, to reduce the CPU time required to 
solve the problem. For the values given in (3. I), 0o = 89.6°C, the nondimensional melt- 
ing temperature equals 0.5027, and the average applied strain-rate equals 5,000 sec -I . 
Figure Ib depicts the effective stress se, defined as the left-hand side of  eqn (2.12), 
versus the average strain. The presumed high value of  the thermal softening coeffi- 
cient results in material softening due to the heating of  the material overcoming the 
material hardening due to strain-rate effects right from the beginning. 

III. 1. Results with initial temperature perturbation 

Figure 2a depicts the isotherms for the initial temperature distribution (2.24) with 
e = 0.2 centered around the point (0.0, 0.375). In this case the initial velocity field is 
assumed to be given by (2.23) and U(t)  = 1.0 for t _> 0. The peak temperature 0ma x 

of  0.2 occurs at the center of  perturbation. The isotherms look elliptical because of  
the different scales along the horizontal and vertical axes. Since the boundaries of  the 
block are taken to be perfectly insulated the heat generated due to plastic working raises 
the temperature of  every material point. The isotherms at five different values of  the 
average strain are plotted in Figs. 2b through 2e. These suggest that material points 
along lines passing through the center of  perturbation and inclined at ___45 ° with the 
horizontal axis are heated more than other particles. Also contours of  successively higher 
temperatures seem to originate from (0.0, 0.375) and propagate in the direction of  max- 
imum shearing stress. They get arrested temporarily at the boundaries of  the block 
and when the material at the boundary where these contours meet it gets heated up, 
these start propagating into the material as if the incident contours were reflected back 
into the body, the angle of  reflection being almost equal to the angle of  incidence. 
This phenomenon becomes more evident from the plots in Fig. 3 of  the contours of  
the second invariant I of  the deviatoric strain-rate tensor. In Figs. 3a through 3f the 
contours of  I are plotted at successively higher values of  the average strain "tavg. In 
each case the peak value/max of  I occurs at the point (0.0, 0.375) where the tempera- 
ture is maximum. At an average strain of  0.04,/max = 11.44 implying thereby that the 
material surrounding it is deforming at a strain-rate greater than 50,000 sec -~. For 
3'avs = 0.04, 0rex = 0.341 occurs at (0.0, 0.375) and equals 68.2% of  the presumed 
melting temperature of  the material. We note that when the temperature perturbation 
was introduced at (0.0, 0.0) (BATRA • Lrv [1989]),/max and 0max at 3'avg = 0.04 equalled 
8.73 and 0.313, respectively. For the problem being currently analyzed, the contours 
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Fig. 2. Isotherms plotted in the reference configuration at different values of the average strain when the mate- 
rial defect is modeled by introducing a temperature perturbation, 

(a) ray8 = 0.0, 0ma~ = 0.2; __ 0.I0 ..... 0.125 ....... 0.150. 
(b) "l.vs = 0.03,  0max = 0.28; _ _  0.10 . . . . .  0.15 . . . . . . .  0 .20 . . . . .  0 .25,  
(c) Yavg = 0.035,  #max = 0.304; _ _  0.10 . . . . .  0.15 . . . . . . .  0 .20  . . . . .  0 .25.  
(d) ")'ave = 0.0375,  0, , , , , ,  = 0.3213; _ _  O.10 . . . . .  0.15 . . . . . . .  0 .20  . . . . .  0.25 . . . .  0 .30.  
(e) "lave = 0.04,  0m~x = 0.341; _ _  0.10 . . . . .  0.15 . . . . . . .  0 .20 . . . . .  0.25 . . . .  0 .30.  

of I originate at (0.0, 0.375) and then fan out along the direction of maximum shear- 
ing. There appear to be sources of energy building up at (0.0, 0.375) and three other 
points on the boundary where the parallelogram through (0.0, 0.375) with adjacent 
sides making angles of  ±45 ° with the horizontal axis intersect it. When there is suffi- 
cient energy built up at these points contours of  successively higher values of I origi- 
nate from these points and propagate along the direction of maximum shearing stress. 
Also as the deformation of the block progresses, these contours become narrower im- 
plying thereby that severe deformations are localizing into thin bands. 

Figures 4a through 4c depict the velocity field in the Xt and X2 direction for 
"Yavg = 0.0, 0.035 and 0.040. The velocity field at "Yug = 0.0 is a graphical representa- 
tion of eqns (2.23) and corresponds to a homogeneous deformation of the block. Once 
the deformation localizes the velocity field within the material adjoining the sides of  
the parallelogram stated above varies sharply, and it varies almost linearly within the 
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Fig. 3. Contours  of  the second invariant  I of  the deviatoric strain-rate tensor at different values of  the average 
s t ra in  when  the mater ia l  defect  is mode l e d  by a t e m p e r a t u r e  pe r tu rba t ion .  

(a) 7avg = 0.02, /max = 3.5; _ _  i .50  . . . . .  1.75 . . . . . . .  2.0. 
(b) "/a~8 = 0.025,  /max = 4.51; _ _  1.50 . . . . .  2 .0 . . . . . . .  2.5. 
(C))'a~g = 0.030,  /max = 4.83; _ _  1.50 . . . . .  2 .0 . . . . . . .  2.5. 
(d) ? ~ g  = 0.035, /max = 7.91; _ _  2.50 . . . . .  3.75 . . . . . . .  5.0. 
(e) ~'~vs = 0.0375, /max = 10.51; _ _  2.50 . . . . .  5.0 . . . . . . .  7.5. 
( f )  7~vg = 0.040,  lma~ = 11.44; _ _  2.50 . . . .  5.0 . . . . . . .  7.5. 

remainder of  the material. This contrast between the velocity field in separate regions 
becomes sharper (e.g. see Fig. 4c) as the deformation becomes more localized. 

The variation of  the effective stress se, defined as being equal to the left-hand 
side of  eqn (2.12), within the block at "Yavg = 0.0, 0.035, 0.0375 and 0.040 is plotted 
in Figs. 5a through 5d. Initially the effective stress is lower within the material sur- 
rounding the center o f  temperature perturbation because it is computed from the pre- 
scribed velocity and temperature fields. Since se satisfies eqn (2.12), the initially higher 
temperature around (0.0, 0.375) reduces the flow stress needed there to deform the 
material plastically. Even though the values o f  both the temperature and I are higher 
within the band as compared to those in the surrounding material, the effect of  ther- 
mal softening exceeds the material hardening due to strain-rate effects, and the effec- 
tive stress within the band is lower than that in the rest of  the material. The plots of  
se and the velocity field suggest that the band first forms along the shorter side of  the 
parallelogram that passes through the center of  the temperature bump. Also the mag- 
nitude of  the deformation within the band along the four sides of  the parallelogram 
is not the same. 
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Fig. 4. Velocity field within the block at different values of  the average strain with the material defect modeled 
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I I I . 2  Results with material inhomogeneity modeled by a weak material 

We n o w  a s s u m e  t h a t  the  in i t ia l  ve loc i t y  f ie ld  is g iven  by  (2.23),  O(X,O) = 0, a n d  

the  m a t e r i a l  p a r a m e t e r / ~  is r e p r e s e n t e d  by  e q n  (2.20)  wi th  e = 0.1. T h a t  is, the  m a t e r i a l  

s u r r o u n d i n g  the  p o i n t  (0.0,  0 .375)  is w e a k e r  t h a n  the  rest  o f  t he  m a t e r i a l .  In  Fig.  6 

we h a v e  p lo t t ed  the  c o n t o u r s  o f  I a n d  0 at  d i f f e r e n t  va lues  o f  3'avs- A c o m p a r i s o n  o f  

these  resul t s  w i th  t h o s e  in Figs .  2 a n d  3 r evea l s  t ha t  the  p a t t e r n  o f  the  shea r  b a n d  de-  

v e l o p m e n t  is i den t i ca l  to  t ha t  w h e n  the  m a t e r i a l  de fec t  was  m o d e l e d  by a t e m p e r a t u r e  

p e r t u r b a t i o n .  In  th is  case  it t akes  a l i t t le  l o n g e r  f o r  the  shea r  b a n d  to  f o r m  a n d  the  

m a x i m u m  v a l u e  10.76 c o m p u t e d  fo r  I is c o m p a r a b l e  to  tha t  (11.44) o b t a i n e d  fo r  the  

t e m p e r a t u r e  p e r t u r b a t i o n .  H o w e v e r ,  t he  m a x i m u m  t e m p e r a t u r e  r ise o f  0.141 c o m p u t e d  

wi th  the  t e m p e r a t u r e  p e r t u r b a t i o n  is l o w e r  t h a n  the  m a x i m u m  t e m p e r a t u r e  c h a n g e  o f  

0.2435 o b t a i n e d  in this case. This  is to  be  expec ted  since with  the mate r ia l  defec t  m o d e l e d  

by  a w e a k  m a t e r i a l  a b a n d  f o r m s  at  a h i g h e r  v a l u e  o f  the  a v e r a g e  s t ra in .  
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Fig. 6. Contours of the second invariant I of the deviatoric strain-rate tensor and the temperature change 0 
at different values of the average strain when the material defect is modeled by lowering the flow stress of 
the material at (0.0, 0.375) by 10%. 

(a) 3'avs = 0.02,/max -- 1.938; w 1.2 . . . . .  1.5 . . . . . . .  1.8. 
(b) ~'avs = 0.035,/max = 3.297; _ _  1.5 . . . . .  2.0 . . . . . . .  2.5. 
(c) 7avs = 0.0545, lm~ x = 10.757; ~ 2.5 . . . . .  5.0 . . . . . . .  7.5 . . . . . .  10.0. 
(d) "rays ---- 0.035, Ore,,,, ----" 0.0943, _ _  0.06 . . . . .  0.07 . . . . . . .  0.08. 
(e) 3'ava = 0.045, 0ma~ = 0.154; _ _  0.10 . . . . .  0.125 . . . . . . .  0.150. 
(f) 3"a~g = 0.0545, 0ma~ = 0.2435; _ _  0.10 . . . .  0.15 . . . . . . .  0.20. 
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The plots of the velocity field and the effective stress look similar to those shown 
in Figs. 4 and 5, and are therefore omitted. 

The determination of the equivalent amplitudes of the temperature perturbation and 
the weakness in the material parameter/~ in the sense that the two will result in the 
formation of the shear band at the same value of the average strain is laborious and 
has not been attempted here. 

III.3 Effect o f  the reduction in the strength of  the weak material 

For the one-dimensional problem Baa't~, [1988] found that the temperature pertur- 
bation with the higher amplitude hastened the initiation of the shear band. Here we 
examine the effect of  introducing near the center of the block a weak material with 
flow stress reduced by either 5070 or 10°70. In each case the initial velocity field given 
by eqn (2.23) was assumed. Figures 7 and 8 show, respectively, the contours of I and 
0 for the two cases at various values of the average strain. As expected, the existence 
of a stronger defect enhances the initiation and development of the shear band. In each 
case the band forms essentially along the main diagonal, the slight offset is possibly 
due to the singular nature of the deformations near the top right corner. When the 
reduction in the flow stress of the material near the center is small the singularity in 
the deformations near the top right corner may cause a shear band to initiate from 
this point. With the 5a70 reduction in the flow stress,/max at "tavB = 0.06 equals 5.32; 
and it equals 17.79 for the same value of "Yavg but with a 10°70 reduction in the flow 
stress. The higher value of I increases the temperature of the material within the band 
faster which, in turn, reduces the effective stress required to deform the material plasti- 
cally. The cumulative effect builds upon itself and enhances the growth of the shear 
band. Whereas a shear band has practically formed at -yavg = 0.06 for the 1007o reduc- 
tion in the flow stress, it forms at ~a~g = 0.0825 when the flow stress for the material 
near the center is reduced by 507o. The maximum temperature computed in the two 
cases equals 0.343 and 0.398, respectively. We note that, except for the delay in the 
formation of the shear band with the 5070 reduction in strength, the results for I and 
0, as well as those for the velocity field and the effective stress field, are similar in 
the two cases. 

A comparison of  these results with those reported by BATRA and Ln: [1989] who 
introduced the temperature perturbation (2.24) with ~ = 0.2 at the center of the speci- 
men reveals that the results agree qualitatively with each other. With the temperature 
perturbation the maximum values of I and the temperature rise 40 at 3'a~s = 0.059 were 
computed to be 20.7 and 0.249, respectively. At "Ya~s = 0.06 and with a 1007o reduc- 
tion in the flow stress at the center of the block,/max and AOmax equal 17.79 and 0.308, 
respectively. And these equal 5.324 and 0.167, respectively, with a 507o reduction in 
the flow stress. 

III.4 Results with zero initial conditions 

The results presented above were obtained by perturbing a steady state solution. We 
now examine the effect of initial conditions, if any, on the initiation and growth of  
a shear band. Figure 9 depicts the contours of the second invariant I of  the deviatoric 
strain-rate tensor and the temperature rise when zero initial conditions (i.e., those given 
by eqn (2.19)), and the boundary velocity field U(t) defined by (2.22) were applied. 
Also, in this case the thermal conductivity was set equal to zero. The material defect 
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Fig. 7. Contours  of  the second invar iant  I o f  the deviatoric strain-rate tensor at  different values of  the average 
s t ra in  when  the ma te r i a l  defect  is mode l ed  by reduc ing  the f low stress o f  the mate r ia l  near  the center  o f  the 
b lock  by e i ther  10% (Figs.  7a -7c)  or 5 %  (Figs. 7d -7 f ) .  

(a) 3'avg = 0.04, lma~ = 4.21;  _ _  1.5 . . . . .  2.0 . . . . . . .  2.5. 
(b) ~'=vg = 0.06, /max = 17.79; _ _  5.0 . . . . .  7.5 . . . . . . .  10.0. 
(C) "y=vS = 0.064,  Im=~ = 22.08; _ _  5.0 . . . . .  7.5 . . . . . . .  10.0. 
(d) 2"avg = 0.04, l,,a~ = 2.0; _ _  ! .25 . . . . .  1.50 . . . . . . .  ! .75. 
(e) ")'~8 = 0.06, /max = 5.324; m 2.5 . . . . .  3 .0  . . . . . . .  3.5. 
( f )  ~,=~s = 0.0825,  l m ~  = 19.04; ~ 2.5 . . . .  5.0 . . . . . . .  7.5 . . . . .  i0 .0 .  

was modeled by eqn (2.20) with e = 0.1 and X ° = (0.0, 0.375), viz, the flow stress 
o f  the material surrounding the point (0.0, 0.375), was presumed to be lower than that 
o f  the remaining material. A comparison of  these results with those shown in Fig. 6 
shows that the precise values of  initial conditions do not affect the qualitative nature 
of  results. However, quantitatively the results are affected by the choice of  initial data. 
As expected, the values of/max computed for the same value of  Vavg is higher when 
the steady state solution is taken as the initial data as compared to that computed with 
zero initial conditions. One reason for this difference is that, in both cases, "yavg is 
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Fig. 8. Contours  o f  the temperature rise 0 at different values of  the average strain when the material defect 
is modeled by reducing the Now stress of  the material near the center of  the block by either 10% (Figs. 8a-8c) 
or  5% (Figs. 8d-8f) .  

(a) 3'avs = 0.045, 0max = 0.149; ~ 0.10 . . . . .  0.1125 . . . . . . .  0.1250. 
(b) V*vs = 0.05, 0max = 0.192; ~ 0.10 . . . . .  0.125 . . . . . . .  0.150. 
(C) "Yavg = 0.063, 0max = 0.343; ~ 0.15 . . . . .  0.20 . . . . . . .  0.25 . . . . .  0.30. 
(d) "Y,,vs = 0.045, O,,,,x = 0.099; ~ _ _ 0.08. 
(e) "y,~g = 0.065, 0,~,,~ = 0.2113; _ _  0.125 . . . . .  0.150 . . . . . . .  0.175. 
( f)  "Ya,,I = 0.0825, Om,x = 0.3984; _ _  0.15 . . . .  0.20 . . . . . . .  0.25 . . . . .  0.30. 

taken to be zero at time t - 0. The difference is reduced somewhat because of neglect= 
ing the heat transfer due to conduction. Setting k = 0 should result in a slightly higher 
temperature locally than would be obtained if k were positive. The higher temperature 
softens the material more which, in turn, results in higher values of L What effect 
the thermal conductivity has on the computed results has not yet been ascertained. For 
the one-dimensional simple shearing problem, B A ~  [1987b] used a constitutive rela- 
tion similar to eqn (2.4) and found that the thermal conductivity had very little effect 
on the initiation of the shear band. However, MmtZER [1983] used BoD~R and P,~- 
TOM'S [1975] constitutive relation and found that the thermal conductivity significantly 
affects the width of the shear band. 



244 R.C.  BATRA and D-S. LIu 

1.00 

0.7 

0.2. ~ 
0.0( 

o / -  ' oo . . . . .  ' . . . . .  ' 0.25 0.50 0.75 . v o  

(a) 

o7:  
0.5( 

0.2! 
0 . 0 ( ,  , , , 

0.00 0.25 0.50 0.75 1.00 
(e) 

' ° °  t 0 . ~ ~  
0.5 

0.2 

0.0 
0.00 0.25 0.50 0.75 1.( 

(b) 

1.00 

O. 75 I ~  
0.50 
0.25 

°'°°o.ooo~2~ '6.%"bi~"i.~ 
(e) 

1.00 

0.75. 
0.50 i 
0.25i 
O.OC 

0.00 
. . . . .  i . . . . .  s . . . . .  I . . . . .  

0.25 0.50 0.75 1.00 

x 2 
1.00 

0.75 

0.50 

0.25 

0.00 . . . . . . . . . . . . . . . . . . . .  
0.00 0.25 0.50 0.75 

(c) ( f )  

X 1 

1.00 

Fig. 9. Contours of the second invariant i of the deviatoric strain-rate tensor and the temperature change 0 
at different values of the average strain when the material defect is modeled by reducing the flow stress of 
the material by 10%, taking zero initial conditions and setting the thermal conductivity k = 0. 

(a) "Yavg = 0.035,/max = 2.39; ~ 1.25 . . . . .  1.50 . . . . . . .  1.75. 
(b) ray8 = 0.055, /max = 9.68; _ _  2.50 . . . . .  3.75 . . . . . . .  5.00. 
(C) "tavg = 0.065, Ima x = 12.47; ~ 5.0 . . . . .  7.5 . . . . . . .  10.0. 
(d) "Ya~g = 0.04, 0rnax = 0.1; _ _  0.075 . . . . .  0.085 . . . . . . .  0.095. 
(e) ~',vg = 0.055, 0max = 0.211; _ _  0.10 . . . . .  0.15 . . . . . . .  0.20. 
(f) ?avg = 0.065, 0m~ = 0.310; _ _  0.15 . . . .  0.20 . . . . . . .  0.25. 

I I I . 5  M a t e r i a l  d a m a g e  as  a s o f t e n i n g  m e c h a n i s m  

T h e  r e s u l t s  p r e s e n t e d  t h u s  f a r  h a v e  c o n s i d e r e d  t h e  m a t e r i a l  s o f t e n i n g  c a u s e d  b y  t h e  

r i se  in  i t s  t e m p e r a t u r e .  A n o t h e r  p o s s i b l e  s o f t e n i n g  m e c h a n i s m  is t h e  n u c l e a t i o n ,  coa l e s -  

c e n c e  a n d  g r o w t h  o f  v o i d s  a n d / o r  c r a c k s  in  t h e  b o d y .  O n e  w a y  t o  m o d e l  t h i s  is t o  

i n t r o d u c e  a n  i n t e r n a l  p a r a m e t e r  ~ w h o s e  r a t e  o f  e v o l u t i o n  d is a f u n c t i o n  o f  t h e  h i s -  

t o r y  o f  d e f o r m a t i o n  a n d / o r  p l a s t i c  w o r k i n g .  I f  w e  a s s u m e  t h a t  ~ is a f u n c t i o n  o f  t h e  

p l a s t i c  w o r k i n g  a n d  t h e  m a t e r i a l  s o f t e n i n g  c a u s e d  b y  ~ c a n  b e  a d e q u a t e l y  r e p r e s e n t e d  

b y  l o w e r i n g  t h e  f l o w  s t r e s s  b y  (1 - 0~)  w h e r e  0 is a m a t e r i a l  p a r a m e t e r ,  t h e n  w e  m a y  

w r i t e  
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= A(l --  O~p)L)iy~)ij(1 -I- bI)m/(pr~f3I),  (4.2) 

o'ij = - f l ( p  --  1)(Sij + ( l / , J - 3 I ) ( l  + b [ ) m ( l  - O$)D i j ,  (4.3) 

where A is a constant. In this case the results of section 4.4 may be thought of as repre- 
senting the dynamic development of an adiabatic shear band in plane strain compres- 
sion of a viscoplastic block when the material softening mechanism is the internal 
damage caused by plastic working. 

IV. CONCLUSIONS 

The development of a shear band in plane strain compression of a block made of 
a thermally softening viscoplastic material being deformed at an overall strain-rate 
of 5,000 sec -~ has been studied. The results computed when the material defect is 
modeled by perturbing the steady-state solution for a homogeneous body (a) with a 
superimposed temperature bump, and (b) with the introduction of a weaker material 
agree with each other qualitatively. The qualitative nature of the results remains un- 
changed even when zero initial conditions are assumed and the transient problem solved. 

When the material defect is on the vertical axis of symmetry and away from the cen- 
ter of the block, a shear band initiates from the site of the defect, it propagates along 
the direction of maximum shearing and is reflected back from the boundaries, the an- 
gle of reflection being nearly equal to the angle of incidence. The shear stress within 
the band is considerably lower than that in the surrounding material. The eventual de- 
velopment of the band along the sides of the parallelogram divides the block into five 
regions. The velocity field within each region varies linearly and sharp gradients in the 
velocity field occur at the sides of the parallelogram. 

We add that the conclusions drawn above are strictly valid for the constitutive model 
used herein. However, similar results were obtained by N~DLE~4~,~ [1989], LEMO~'DS 
and NEEDT-E~',~ [1986a,1986b] and A ~ D  et al. [1988] who used different constitu- 
tive relations and the latter two papers ignored the effect of inertia forces. Possibly 
sharper results could be obtained by using a finer mesh and/or a different space of 
trial solutions and test functions. 
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