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Abstract-We study plane strain dynamic thermomechanical deformations of an fcc single crys- 
tal compressed along the crystallographic direction [010] at an average strain rate of 1000 sec -~ . 
Two cases are studied; one in which the plane of deformation is parallel to the plane (001) of 
the single crystal, and another one with deformation occurring in the plane (10i) of the single 
crystal. In each case, the 12 slip systems are aligned symmetrically about the two centroidal axes. 
We assume that the elastic and plastic deformations of the crystal are symmetrical about these 
two axes. The crystal material is presumed to exhibit strain hardening, strain-rate hardening, 
and thermal softening. A simple combined isotropic-kinematic hardening expression for the crit- 
ical resolved shear stress, proposed by Weng, is modified to account for the affine thermal soft- 
ening of the material. When the deformation is in the plane (001) of the single crystal, four slip 
systems (111)[1 i0], (11 i)[l i0], (1 i i)[1101, and (111)[110] are active in the sense that significant 
plastic deformations occur along these slip systems. However, when the plane of deformation 
is parallel to the plane (10i) of the single crystal, slip systems (1 ll)[110], (111)[011], (111)[110], 
and (11 l)[0i 1] are more active than the other eight slip systems. At an average strain of 0.108, 
the maximum angle of rotation of a slip system within a shear band, about an axis perpendic- 
ular to the plane of deformation, is found to be 20.3 ° in the former case, and 22.9 ° in the latter. 

!. INTRODUCTION 

One way to unders tand the micromechanics  o f  shear band  format ion  in polycrystalline 
materials is to study their initiation and growth in a single crystal. Several investigators, 
e.g. SAWKILL and HONEYCOMBE [1954], PRICE and KELLY [1964], SA~OTO et  al. [1965], 
and Ct-LAr~C and ASARO [1981], have observed regions o f  localized shearing in fcc sin- 
gle crystals de formed  quasistatically. ZmRY and NEMAT-NASSER [1990] have recently 
studied numerically the phenomenon  o f  shear banding in an fcc single crystal undergo-  
ing plane-s t ra in  tensile deformat ions  at high strain rates. We refer the reader to their 
article for  a list o f  references and a brief  outline o f  the historical development  o f  the 
subject.  They  used the double  cross-slip model  proposed  by KOEHLER [1952] and later 
by  OROWAN [1954] during the entire loading history. Here  we study a similar problem 
with the crystal deformed in compression rather then tension, assume that all 12 slip sys- 
tems are potentially active at any instant o f  loading, use constitutive relation for the crit- 
ical shear stress that  is different f rom the one employed by ZIKRY and NEMAT-NASSER 
[1990], employ a different technique to integrate the system o f  equations,  and consider 
two loadings. With the axis o f  compression aligned along the crystallographic direction 
[010], the plane o f  de fo rmat ion  is taken to be either parallel to the plane (001) or  (10i) 
o f  the single crystal.  

W h e n  the plane o f  de fo rmat ion  is parallel to  the plane (001) o f  the single crystal, a 
single shear band  making  an angle o f  45 ° with the horizontal  line ensues f rom the cen- 
t roid  o f  the cross-section and is reflected back f r o m  the top  loading surface, the angle 
o f  reflection being essentially equal to the angle o f  incidence. The slip strains on the slip 
systems (111)[1 i0], (111)[110], (1H)[110],  and (111)[110] are high, and these constitute 
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the primary slip systems. At a nominal strain of  0.108, the maximum angle of rotation 
of  the crystal lattice in the central and reflected bands equal 18.54 ° counterclockwise 
and 20.29 ° clockwise, respectively. When the plane of  deformation is parallel to the 
plane (10i) of the single crystal, the shear band originating from the center of the cross- 
section makes an angle of 39.5 ° with the horizontal, and eventually splits into two bands. 
Slip systems (111)[1 i0] and (111)[0i 1] in both the central and the reflected bands, and 
slip systems (1 il)[110] and (1 il)[011] in the reflected band are found to be more active 
than other slip systems. 

1I. FORMULATION OF~THE PROBLEM 

We use a set of fixed rectangular Cartesian coordinates to describe the thermomechan- 
ical deformations of  an fcc single crystal of  square cross-section and compressed along 
the crystallographic direction [010] which is taken to coincide with the x3-axis. We 
assume that the x r x 2  plane of deformation is either parallel to the plane (001) or (10i) 
of  the single crystal. In each case, the 12 slip systems are aligned symmetrically about 
the two centroidal axes. We presume that both elastic and plastic deformations of  the 
single crystal are symmetric about the two centroidal axes, even after the band has 
formed, and accordingly study deformations of the material in the first quadrant only. 
In Eulerian description, equations governing the deformations of  the single crystal are: 

The balance of  mass: 

+ pvi, i = O, (1) 

The balance of  linear momentum: 

P~)i '~- O i j , j ,  (2) 

The balance of  internal energy: 

pcO = -q i . i  + trijDi p, (3) 

where p is the present mass density, v i the velocity of a material particle, a comma fol- 
lowed by i indicates partial differentiation with respect to the present position xi of  a 
material particle, aij is the Cauchy stress tensor, a superimposed dot indicates the mate- 
rial time derivative, a repeated index implies summation over the range of  the index, 
c is the constant specific heat, 0 the temperature rise, qi the heat flux per unit deformed 
area, and D p is the plastic part of the strain-rate tensor Dij, defined as 

Dij = l ( u i , j  '~ uj, i ) .  (4) 

Di p is determined by the local plastic slip rate of all active slip systems at a material par- 
ticle, and will be defined later. For plane strain deformations in the Xl-X2 plane, vari- 
ous quantities are functions of  x~, x2 and time t, and subscripts i , j  range over 1 and 2. 
However, in the second term on the right-hand side of  eqn (3), indices i and j extend 
to 3, since in plane strain deformations a33 :~ 0 in general, and Dff3 need not equal zero 
during the plastic deformation. In eqn (3) we have assumed that all of  the plastic work- 
ing is converted into heating. 
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We now describe the constitutive relations for high strain-rate finite deformations of  
rate-dependent single crystals. We postulate Fourier's law of  heat conduction, viz. 

qi = - - t O , i ,  (5) 

where k is the thermal conductivity, and is assumed to be independent of  the deforma- 
tion and temperature of  the single crystal. We assume that the strain-rate tensor Dij and 
the spin tensor W~j defined as 

Wij  : l (ui,  j - -  uj, i)  (6) 

have additive decompositions into elastic and plastic parts, viz. 

Dij = Di S + Di~, Wij = W~j + W•. (7) 

The Cauchy stress rate corotational with the elastic distortion of  the single crystal is 
assumed to be related to the elastic distortion rate by Hooke's  law. That is, 

6~j = Li jk iDkel ,  (8) 

where 

e • ffik Wf, j ~ (9) Oij -~" aij  "t- - -  W ] k  akj  , 

and Lijkt is the fourth order tensor of  the elasticities of  the single crystal. Here we take 
the crystal lattice to be elastically isotropic. Thus, 

Li jk l  = A6i j•kl  + IX(6ik6jl  + 6i162k), 

where A and # are LamCs constants for the crystal material. Recall that the Jaumann 
stress rate 6 6 given by 

6ij ~" 6ij + aik W k j  --  Wik  akj  , (1 O) 

is corotational with the material element. Equations (7), (8), (9), and (10) result in 

6ij = Lijkl(Dkt - D p )  + aikW~ - WP okj. (11) 

(,~) 
The Schmid stress or the resolved shear stress z of  the a th slip system is assumed to 

be related to the local Cauchy stress oij through 

(~) (~) 
7" = VijOij , (12) 

(~) 
where the Schmid Iactor vii is defined as 

(c0 (~) (~) (~) (~) 
iPij = 1 ( bi  Elj .+ b j  Eli) , (13) 

(b) and (~) being the unit slip direction and the unit normal to the slip-plane of  the ~ th 
slip system. 
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For a strain rate-dependent material of  the single crystal, the slip rate of  the a th slip 
system is assumed to be related to the resolved shear stress by the power law. 

(~) ~ 0  , ~- - ~ ,  ( 1 4 a )  

= k 7c d 

(,~) (e,) 
0, T < ~'~, (14b) 

(a) 
where m is the rate sensitivity parameter,  and % is a reference shear strain rate such 

(~) . (~) (~) 
that if the crystal is to be deformed with each )P set equal to %,  tlaen r = r~ (PAy 8, 
RICE [1983]). When the resolved shear stress of  the a th slip system is below the critical 

(~,) 
resolved shear stress r~ required to cause plastic deformation on that slip system, the 
a t h  slip system is taken to be inactive. The critical resolved shear stress is assumed to 
be a function of  the initial flow stress To, work hardening, and the temperature 0. A 
simple combined isotropic-kinematic hardening expression for re, proposed by WENt 
[1980], is modified as follows 

r , .=  r o + ~ _ a [ g + ( l - g ) c o s ~ c o s 4 ~  Jh )p)n ( l - v 0 )  
f3 

(15) 

to include thermal softening. In eqn (15), ~b is the angle between the slip directions of  
(c~t3) (~) 

the ctth and/3 th  slip systems, ~ the angle between their slip normals,  7 p the plastic 
strain of  the/3th slip system, h the strength coefficient, n the work hardening exponent, 
g the degree of isotropy in work hardening, and u the thermal softening coefficient. The 
quantity in the square bracket represents the latent hardening coefficient, and the sum- 
mation index/3 ranges over all slip systems. TAYLOR'S [1938] isotropic hardening law fol- 
lows f rom (15) by setting g = 1, and g = 0 corresponds to kinematic hardening. 

We assume that the plastic slip rates of  all active slip systems at a material point 
contribute linearly to the plastic parts of  the strain rate and spin tensors there through 

_ ( c 0  
the Schmid lactor u,j and the antisymmetric part  (4) wij of  the dyad bn. Thus, 

~,~) c.~)p xT, ~)i ~)p, (16) D / I =  ~ uij'y , Wi  p =  . . ,  j 

where 

1 (~)(~) (=) (~) (~) ~ ( b i n j  - b j n i )  O) i j  = 07) 

The slip direction h and the unit normal n to the slip plane are orthogonal unit vectors, 
and are assumed to rotate with the elastic spin of  the lattice. Thus, their rates of  change 
are given by 

b, = W S b j ,  ni = W,~nj. (18) 
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In plane strain deformations of the crystal, the rotation of  a slip system can be charac- 
terized by the angle change ¢ of  the projective direction of the slip vector in the x~-x2 
plane. Using eqns (7)2 and (16)2 we obtain 

~ ( ~ )  (~) 
¢~ = W~I = W21 - ~ (.o21-Y p ,  ( 1 9 )  

and rewrite eqns (18) in the form 

bl = 4 1  - b ]  COSSb, 

nl = 41 -- n~cosSn, 

b2 = ~/1 - b 2 sin $0, 

n2 = 41 -- n 2 sin $,,, 

(20) 

(21) 

where Cb and ¢,  are, respectively, the current angles between the xx-axis and the projec- 
tive directions of the slip vector and the slip plane normal to the Xl-X2 plane. They 
equal the sum of their initial values and their changes with respect to the rotated lattice. 

Scaling stress-like quantities by 7.0, mass density by po, length by H, time by H / v o ,  
and the temperature by 0 ,  we rewrite the above equations in terms of nondimensional 
variables, and obtain the following. 

+ pVi, i = O, (22) 

t~POi = 0"ij, j ,  (23) 

( ~ )  (cO _ _  (,~) (a) 
pO = ~O,i i + Oij ~_d Pij'~ p + 0"33 ~. j  P33g[ p, 

o t  o t  

(24) 

6u = ( K -  ~ G)Dkk6sj  + 2GDi j  

. (~) (,x) (cO .(o0 
-- ~_~ ( 2 G  vij + @kakj -- aikWkj)"Y p -- eikWkj + Wikekj,  

Ot 

(25) 

0"33 = - - ( a l l  + 0"22 ) - -  3Klnp, (26) 

(,x) (,x) 
$ = ~ - 25 °~2~r p, (27) 

r - , (cx) (~) (cO 

tL  J % , , _ 

,.i,.<, = L rc d (28) 

I~ O, (~) (~) 7" ~ 7" o 

r~=  l +  ~ _ a [ g + ( 1 - g ) c o s C v c o s c k  J h ( ~ ) P )  " ( 1 - v S )  (29) 
B 

where the nondimensional variables have been denoted by the same symbols as before. 
Henceforth we will use nondimensional variables only. We note that 2 H  equals the 
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height of the block, Vo the steady value of the vertical component of velocity imposed 
on the top and bottom surfaces, Po is the mass density in the undeformed and unstressed 
configuration of the single crystal, and 

Or -  ro 6 =  poV~ (30) 
/9 0 C ' 7" 0 

Furthermore, K and G equal, respectively, the bulk and shear moduli of the single 
crystal. 

As pointed out earlier, because of the presumed symmetry of deformations about the 
horizontal and vertical centroidal axes, we study deformations of the material in the first 
quadrant. Hence, boundary conditions that follow from the symmetry of deformations 
are applied on the left and bottom surfaces. Both the top and the right surfaces are taken 
to be thermally insulated, the right surface is taken to be traction free, and on the top 
surface zero tangential tractions and a vertical component 02 of velocity given by 

= ~ t/O.O05, 0 _< t __ 0.005, 

-Vz(t)  ~. 1, t ___ 0.005, 

are prescribed. For the initial conditions, we take 

(31) 

p(x,0) = 1.0, v(x,0) = 0, a(x,0) = 0, 

= ~ e ( 1  - r Z ) 9 e x p ( - 5 r 2 ) ,  r <  1, (32) 
¢h(x,O) = O, O(x,O) I~ O' r > 1, 

where r 2 = x~ + x~. The initially nonuniform temperature field represents a possible 
imperfection in the single crystal and serves as a triggering mechanism for the localiza- 
tion of the deformation. 

i l i .  N U M E R I C A L  S O L U T I O N  A N D  R E S U L T S  

The problem as formulated above is highly nonlinear and almost impossible to solve 
analytically. We seek its approximate solution by the finite element method. Equa- 
tions (22) through (25) and (27) are reduced to a set of coupled nonlinear ordinary dif- 
ferential equations by using the Galerkin approximation (e.g., see HUGHES [1987]) and 
the lumped mass matrix obtained by assigning one-fourth of the mass of each element 
to each one of its four nodes. At each node, the mass density, two components of the 
velocity, temperature, three components 011, ozz, and o12 of the Cauchy stress, and 
the angle q~ characterizing the rotation of the slip system are taken as unknowns. Thus, 
the number of nonlinear ordinary differential equations equals eight times the number 
of nodes. The coordinates of nodes are updated after each time increment. Therefore, 
the spatial domain occupied by the body and the shapes of these elements varies with 
time. The coupled nonlinear ordinary differential equations are integrated by using the 
backward-difference Adams method included in the subroutine LSODE taken from the 
package ODEPACK developed by H i r c o ~ s r i  [1983], and set ATOL = 10 -3, RTOL = 
10 -3. The subroutine adjusts the time step adaptively until a solution of the coupled 
nonlinear ordinary differential equations has been computed to the specified accuracy. 
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~) {~) W, t.p) at each quadrature From the computed solution we evaluated r, 5/p, D~ p), and v 
point, and found the plastic slip strain of  the active slip system by using 

~)P(t + At)=('~)P(t)-1- Att(~'P(t) (cO -I- ~P(t -t- At)]~2. 

The finite element code developed earlier by BATRA and Lru [1989] to analyze the initi- 
ation and growth of  shear bands in plane strain compression of  the viscoplastic mate- 
rial was modified to study the present problem. 

We assigned the following values to various material and geometric parameters in 
order to compute numerical results. 

k = 2 3 7 W m - ~ o c  -~, c = 9 6 0 J k g - ~ o c  -1, p 0 = 2 7 0 0 k g m  -3, 

G = 27.6 GPa,  K = 81.48 GPa, r0 = 55 MPa, n = 0.52, 

h = l l . 0 2 M P a ,  m = 0 . 0 2 ,  u=0 .0 2 2 2 ° C  -I ,  H = 5 m m ,  
(33) 

g = 0.28, Vo = 5 m s -1, c = 1.0. 

Thus, the average applied strain rate equals 1000 s - l ,  and 0o = 21.2°C. The aforestated 
values are for a typical single crystal of  aluminum, except that a rather large value of  
the thermal softening coefficient u is used to reduce the CPU time required to initiate 
a shear band. 

An aluminum single crystal has a face-centered-cubic lattice structure, which is char- 
acterized by four octahedral slip planes 11111 and three slip directions (110) on each 
plane to give 12 slip systems. Herein all slip systems are assumed to be equally active, 
and the crystal is compressed along the [010] direction. We study two different cases, 
namely, when the plane of  deformation is parallel to the plane (001) or the plane (10i) 
of  the single crystal. 

We use the maximum principal logarithmic strain ep, defined as 

ep = lnAl = - l nA 2  (34) 

to find the deformation at a point. Here A 2, A 2, and 1 are eigenvalues of  the right 
Cauchy-Green tensor C~o = xi,~xi,~, or the left Cauchy-Green tensor B o. = xi,~xj,~, 
where xi,~ - Oxi/OX~,X~ being the coordinates of  a material point in the stress-free 
undeformed configuration. The second equality in eqn (34) holds because plastic defor- 
mations of  the crystal are isochoric, and within the band elastic deformations are 
minuscule. 

We employed a finite element mesh consisting of  32 x 32 uniform elements in the 
undeformed configuration, and used 2 x 2 Gaussian quadrature rule to evaluate vari- 
ous integrals numerically. 

III. 1. Results when the plane o f  deformation is parallel 
to the plane (001) o f  the single crystal 

Figure 1 depicts contours of  the maximum principal logarithmic strain % for four 
different values of  the average strain, i.e., 3'avg = 0.00355, 0.02755, 0.07755, and 
0.10755. These suggest that a shear band, indicated by higher values of  the contours of  
the maximum principal logarithmic strain near the center, originates at the center and 
propagates along _+45 ° directions and is reflected back from the top surface, with the 
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angle of reflection being nearly equal to the angle of incidence. The severely deform- 
ing region narrows down initially, but then widens, probably because of a change in the 
locations of the active slip systems. A closer look at the computed results suggests the 
following. In the beginning, the block is uniformly deformed elastically and all slip sys- 
tems are inactive in the entire body. As the block continues to be deformed at the high 
strain rate, the top part of the square cross-section yields first, and the plastic defor- 
mation spreads into the body to make four slip systems, namely, (111)[110], (111)[110], 
(1 fl)[110], and (1 il)[110l active. It will be evidenced by results given below. The mate- 
rial surrounding the origin where the temperature perturbation is applied also yields early 
due to the lower value of the critical shear stress of slip systems at relatively higher tem- 
perature. The material adjoining the centroid of the cross-section undergoes more severe 
plastic deformations than the rest of the material. With further straining of the block, 
the plastic deformation spreads throughout the body. 

The accumulated plastic strain of each active slip system is plotted in Fig. 2 at an aver- 
age strain of 0.10755. It is clear that four primary slip systems (111)[110], ( l l i ) [ l l0 ] ,  
(11 l) [ 110], and (11 l) [ 110] contribute significantly to plastic deformations, that the max- 
imum slip strain equals 0.4262, and the average slip strain within the band is approxi- 
mately 0.175. These slip systems are more favorable to plastic deformation than the slip 
systems O1D[0i l ] ,  (Ill)J011], (11[)[101], and (lil)[101] in the central band, and 
( l l  1)[0il], (1 il)[011], (111)[10i], and (11 i)[101] in the reflected band. Note that the 
average slip strain of the four secondary slip systems in the central band equals 0.025, 
and that of the slip systems in the reflected band equals 0.01. During the early stages 
of the shear band formation, only the primary slip systems are active and contribute to 
the intense plastic deformation within the band. For simple compression in the crystal- 
lographic direction [010] and plane of deformation parallel to the crystallographic plane 
(001), the four primary slip systems are equally favorable to slip throughout the load- 
ing history. However, in a double-slip model for a single crystal employed by ZIKRY and 
NEMAT-NASSER [1990], the slip system (111)[i01], corresponding to (111)[1 i0] in our 
coordinate system, is chosen as the primary slip system, and (111)[011] ((111)[101] in 
our model) as the conjugate one. These two slip systems are not equally active, with the 
result that the primary slip system dominates the slip deformation. In our model, all 
potentially active slip systems are employed, and the slip system becomes active if its 
resolved shear stress reaches the critical value. The computed results show that all four 
primary slip systems, namely, ( l l l ) [ l iO],  ( l l i ) [ l l0 ] ,  ( l i i ) [ l lO] ,  and (111)[110] are 
equally active. As the single crystal is deformed and the crystal lattice is reoriented by 
the deformation, other slip systems become active as conjugate slip systems resulting in 
multiple gliding. The slip systems (111)[011], (111)[011], (1H)[101], and (111)[101] in 
the central band, and (111)[10i], (11 i)[101], (i 11)[031], and (111)[011] in the reflected 
band are the conjugate slip systems. 

Figure 3 shows the contours of the slip-rate of the slip system (111)[110] at four dif- 
ferent values of the average strain; similar results hold for the other three primary slip 
systems. At an average strain of 0.00355, the slip rate is nearly uniform throughout most 
of the single crystal, the only exception being near the block center where temperature 
perturbation is applied, and near the top right corner where the deformation is singu- 
lar. With the continuous compression of the block, the region with an intensive slip rate 
of this system narrows down sharply and the band width equals nearly the smallest dis- 
tance between two adjacent Gauss points. When compared with the contours of the sec- 
ond invariant of the strain rate and the plastic strain rate tensors given in Fig. 5 below, 
the slip-rate band of the primary slip systems is aligned in the same direction as the 
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Fig. 2. (e) Slip systems: (il 1)[0il] and (1 il)[011]. 

global strain-rate band. Note that the double slip model gives a misorientation between 
the bands of the primary slip system and the global one due to the heterogeneous slip 
deformations of the primary and the secondary slip systems. An examination of the slip- 
rate band of  the primary slip system at four different values of the average strain sug- 
gests that the slip-rate bands broaden as the crystal is deformed. One reason for this 
widening of  the slip-rate band is that once plastic deformation occurs within the slip 
bands, the work hardening raises the critical shear stress, and further slip deformation 
in the center of the band may become more difficult than that in the adjacent regions. 
This facilitates plastic deformation of the material adjacent to the centerline of the slip- 
rate band. Another reason is that the lattice of the single crystal is reoriented by the 
deformation, and the widening of the slip-rate band ensures that the centerline of  the 
global band makes an angle of  _+45 ° with the direction of  the compression loading. 

In Fig. 4 we have plotted contours of the slip-rate of  slip systems 01D[0 i l ]  and 
(11 i)[0Ti] at average strains of  0.02755, 0.05755, and 0.07755, and that of  (i 11)[0i 1] 
and (1 il)[011] at average strains of 0.05755 and 0.07755. The slip deformations of slip 
systems (lii)[101] and ( l i l ) [10i]  are similar to that of  ( l lD[0 i l ] .  At early stages of 
deformation, these conjugate slip systems are inactive. Even when the primary slip sys- 
tems give a severe slip deformation at an average strain of  0.02755, slip systems 
( i l  1)[0il] and (1 il)[0111 remain inactive. When the shear bands are fully formed, the 
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rotation of the crystal lattice relative to the axis of  compression results in the movement 
of  the orientation of  the stress axis out of  its original stereographic triangle into the one 
adjoining it on the stereographic projection, and the conjugate slip systems become the 
preferred slip systems. 

The contours of  the angle of  rotation $ of  the crystal lattice are given in Fig. 5. Within 
the shear band passing through the block center, the average angle of  rotation of  slip 
systems at a nominal strain of  0.00755 is 0.6 ° counterclockwise, the maximum angle of  
rotation is 0.726 ° counterclockwise, and the angle of  rotation in the reflected shear band 
near the top right corner of  the block is 0.034 ° clockwise. However,  at a nominal strain 
of  0.10755, the values of  the average and maximum angle of  rotat ion within the cen- 
tral shear band equal, respectively, 14.5 ° and 18.54 ° counterclockwise, and those within 
the reflected band equal 14.3 ° and 20.3 ° clockwise. 

The contours of  the second invariant / of  the deviatoric strain-rate tensor / ) i j ,  and 
of  the second invariant Ip of  the plastic strain-rate tensor Dff are exhibited in Fig. 6. 
The invariants I and lp are defined as 

212 = • i j • i j  ' 2 i  2 = D i j D i j  p Di j  = Di j  - ~DkkCSij. 

Recall that D~' k = 0, therefore LSi~ - P - D e. Whereas contours of  I or Ip illustrate how rap- 
idly material particles are deforming at present, those of  the principal logarithmic strain 
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Fig. 7. (a) Distribution of vx in the cross-section at an average strain of 0.07755. (Figure continues) 

given in Fig. 2 correspond to the accumulated deformation of  a material element. The 
values of  Di~. are derived from the plastic straining of  the slip systems. At an average 
strain of  0.02755, the maximum values of ! and Ip equal 14.23 and 14.14, respectively, 
suggesting that the mesh used to calculate nodal values of  various variables can delin- 
eate the micromechanisms of the slip deformation of active slip systems everywhere. The 
minimum value 0.00425 of  It, indicates that all of  the material particles throughout the 
cross-section are deforming plastically at %vg = 0.02755. However, at an average strain 
of  0.05755, the maximum values of  Ip and I equal 281.84 and 15.43, respectively, and 
the minimum value of  Ip is zero. The contours of  Ip in Fig. 6d reveal that the material 
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Fig. 7. (b) Distribution of vy in the cross-section at an average strain of 0.07755. 

near the top left and right corners and that near the bottom right corner of  the block 
is deforming elastically, and all slip systems there are inactive. This unloading of  the 
material and possibly the rather coarse mesh used, could cause the significant difference 
between the maximum values of  I and lp. 

Figure 7 depicts the distribution, within the deforming region, of  the x- and y-com- 
ponents of  the velocity field at an average strain of  0.07755. It is clear that the velocity 
field increases sharply across the shear band. Note that in our formulation the velocity 
field is forced to stay continuous throughout the deforming region. Thus, this sharp 
change in the values of  Vx and v~ may be construed as supporting assertions made by 
TRESCA [1878] and MAssEx, [1921] that the tangential component of  the velocity field 
is discontinuous across a shear band. 

The deformed mesh at an average strain of  0.11555 is shown in Fig. 8 and confirms 
the aforestated observations that a shear band forms along a line passing through the 
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Fig. 8. The deformed mesh at an average strain of 0.11555. 

center of  the cross-section and making an angle of  45 ° with the horizontal. The band 
is reflected f rom the top surface, and the angle of  reflection essentially equals the angle 
of  incidence. The severely deformed region is wider than that obtained in previous com- 
putations involving plane strain compression of  a homogeneous and isotropic polycrys- 
talline body. 

III .2.  The plane o f  deformation is parallel to the plane (lOD of  the single crystal 

Like the previous case when the plane of  deformation is parallel to the plane (001), 
the initial plastic deformations of  the block are essentially uniformly distributed through- 
out the cross-section, except near the center where a temperature perturbation is applied. 
With continuous compression of  the block, a shear band initiates f rom the center and 
propagates into the body. This is evidenced by the plots, given in Fig. 9, of  the contours 
of  the maximum principal logarithmic strain at several values of  the average strain. 
Results plotted in Fig. 9a show that the block is nearly uniformly deformed at an aver- 
age strain of  0.00255. However,  at an average strain of  0.02755, a shear band passing 
through the center and inclined at an angle of  approximately 39.5 ° with the horizontal 
has developed. A comparison of  this with the results plotted in Fig. 1 suggests that the 
direction of  the shear band in a single crystal depends upon the orientation of  the crys- 
tal relative to the axis of  loading. The contours of  the maximum principal logarithmic 
strain plotted in Figs. 9c and 9d at average strains of  0.07755 and 0.10755 suggest that 
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the band widens as the body continues to be compressed, and the width of the severely 
deformed region is more than that in the previous case discussed in section III . l .  

The contours of  the second invariant I of  the deviatoric strain-rate tensor and of  the 
second invariant Ip of  the plastic strain-rate tensor are given in Figs. 10 and 11, respec- 
tively. The results plotted in Fig. 10 suggest that initially the band initiating from the 
centroid of  the cross-section meets the right traction free surface. As the band widens, 
another band reflected from the top surface also forms. With further loading of  the 
body, the band through the center of  the cross-section splits into two parallel bands of  
unequal intensity as measured by the maximum values of  I in them; the upper stain-rate 
band has higher intensity of deformation than the lower one, and is reflected back into 
the body from the top loading surface. The lower band meets the reflected band and 
does not go through it, possibly because of the higher values of I in the reflected band. 
The contours of  Ip in Fig. 1 ld reveal that a large region near the upper left and lower 
right corners of  the cross-section is deforming elastically at an average strain of  0.10755. 
Since the body continues to be compressed at the prescribed rate, the unloading in 
regions near the upper left and lower right corners should intensify the rate of  plastic 
deformation elsewhere. 

We have plotted in Fig. 12 the angle of rotation of the crystal lattice at several dif- 
ferent values of  the average strain. At a nominal strain of  0.00755, the maximum and 
minimum values of  the angle of  rotation equal 1.47 ° counterclockwise and 0.08 ° clock- 
wise. However, at a nominal strain of  0.10755, the average angle of  rotation within the 
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Fig.  12. (c) ~avg = 0 .10755 .  
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central shear band is 22.9 ° counterclockwise, and in the reflected band is 17.2 ° clock- 
wise. These values indicate that the crystal lattice undergoes significant rotations within 
the shear band. 

The distribution of  the x- and y-components of the velocity field within the cross- 
section, at an average strain of  0.0755, is plotted in Figs. 13a and 13b, respectively. It 
is clear that the deforming region is subdivided into several subregions and the veloc- 
ity field changes sharply across boundaries between these regions; the changes in Vx and 
Vy across the upper central band are more than those across the lower central band. 

The accumulated slip strains in different slip systems revealed that the slip systems 
(111)[10[] and (131)[10i] remained inactive throughout the entire loading history. Slip 
systems (111)[1 i0] and (111)[031] in both the central and the reflected band, and slip 
systems (1 ll)[110] and (1 l 1)[011] in the reflected band were found to be more active than 
other slip systems. Figures 14 and 15 depict, respectively, the contours of slip strains and 
slip strain-rates at an average strain of  0.10755. At this value of  the nominal strain, the 
average slip strain of  slip systems (111)[130] and (111)[031] in the central band equals 
0.2 and that in the reflected band is 0.5, and slip systems (111)[110] and (111)[011] have 
an average slip strain of  0.17 in the reflected band. Other active slip systems give very 
small values of  the slip strains within the bands. From contours of slip strain rates in 
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Fig. 13. (a) Distribution of Vx in the cross-section at an average strain of 0.07755. 

1.00 

Fig. 16, we see that at an average strain of 0.00255, only four slip systems, viz., 
(111)[1 i0], (111)[0il], (1 il)[110], and (1 i1)[011] are active everywhere in the block. The 
narrow region with intensive slip-rate deformation for slip systems ( l l l ) [ l i 0 ]  and 
(111) [0 i 1 ] differs from that for slip systems (1 i 1) [ 11 O] and (1 i 1) [0111, in contrast with 
the case discussed in section III. 1 wherein all four primary slip systems are equally active 
in the same narrow region. However, the intensity of slip-rates in the two narrow regions 
seems to be nearly the same. Since, in simple compression, the slip systems (111)[1 i0] 
and (I 11)[0H] are more favorable to slip than the other two primary slip systems, these 
two slip systems eventually dominate the slip deformation of  the single crystal and the 
slip systems (1 i 1)[110] and (1 i 1)[011 ] become inactive in the central bands. 
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Fig, 13. (b) Distribution of vy in the cross-section at an average strain of 0.07755. 

Figure 17 exhibits the average axial stress versus the average axial strain for the two 
loading cases studied herein. The average axial stress is obtained by evaluating 022 at 
quadrature points closest to the top surface of  the block and taking their average. The 
average axial strain equals the vertical displacement of  the top surface divided by the 
initial height of  the specimen. In the figure compressive axial stress and compressive axial 
strain are plotted as positive. For the second loading case, the curve corresponding to 
the initial loading of the block is missing because of the loss of  a part of  the output from 
the computer code. For each loading case, the transient effects die out quickly, and the 
average axial stress decreases monotonically with an increase in the average strain 
because the softening of the material caused by its being heated up exceeds the combined 
hardening due to strain and strain-rate effects. It is due to the rather large value of  the 
thermal softening coefficient assumed in our work. 
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Fig. 14. (e) Slip systems (1 l l)[l]0] and (] 11)[0] 1]. 

0.|$; 

IV. CONCLUSIONS 

We have studied the problem of the initiation and growth of  dynamic shear bands in 
an fcc single crystal deformed in simple compression along the direction [010] of  the 
crystal at a nominal strain-rate of  1000 sec -] . The coupled nonlinear partial differen- 
tial equations governing the dynamic thermomechanical plane-strain deformations of  
the single crystal are solved numerically. Two different cases, namely, when the plane 
of  deformation is parallel to the plane (001) or (10[) of  the single crystal, are analyzed. 
In each case, the deformations are assumed to be symmetric about the horizontal and 
vertical centroidal axes, and all 12 slip systems are taken to be active. However, only 
those slip systems for which the resolved shear stress equals or exceeds the critical shear 
stress contribute to the plastic deformation. The effects of  isotropic hardening, kine- 
matic hardening, and thermal softening are incorporated in the expression for the crit- 
ical shear stress. The deformations of  the material in the first quadrant are examined 
closely. 

It is found that when the plane of  deformation is parallel to the plane (001) of  the 
single crystal, a single shear band originates from the center of  the cross-section and 
propagates along a line making an angle of  45 ° with the horizontal. The band is reflected 
back from the top loading surface, the angle of  reflection being nearly equal to the angle 
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Fig. 16. (c) Slip systems (11|)[1 i0] and (11 l)[0i 1]. 

of incidence. The slip strains on the slip systems (111)[1 i0], (11 i)[1 i0], (1 li)[1101, and 
(1 il)[110] are very high, and these four slip systems are the primary slip systems. The 
slip systems (111)[011], (11 f)[0H], (111)[101], and (111)[101] in the central band, and 
slip systems (111)[1011, (111)[101], (i 11)[0i 1], and (1 i 1)[01 l] in the reflected band are 
the conjugate slip systems. At a nominal strain of 0.10755, the average angle of rota- 
tion of the crystal lattice within the central band is 14.5 ° counterclockwise, its maximum 
value is 18.54 ° counterclockwise, the average angle of rotation in the reflected band is 
14.3 ° clockwise, and its maximum value is 20.29 ° clockwise. 

When the plane of deformation is parallel to the plane (10i) of the single crystal, the 
shear band originating from the center of the cross-section propagates along the line 
making an angle of 39.5 ° with the horizontal, and eventually splits into two bands. The 
intensity of slip-rate in the upper band is higher than that in the lower band. The upper 
band is reflected from the top surface, and this reflected band stops the lower band from 
reaching the top surface of the cross-section. Two slip systems, (111)[10i] and (1 il)[101], 
remain inactive throughout the entire loading history. Slip systems ( l l l ) [ l i 0 ]  and 
(111)[011] in both the central and the reflected band, and slip systems (111)[110] and 
(1 il)[011] in the reflected band were found to be more active than other slip systems. 
The average value of the angle of rotation of the crystal lattice, at a nominal strain of 
0.10755, equalled 22.9 ° counterclockwise in the central band, and 17.2 ° clockwise in the 
reflected band. 
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