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ANALYSIS OF DYNAMIC SHEAR BANDS
IN AN FCC SINGLE CRYSTAL

Z.G. Zuu and R.C. BatrAa

University of Missouri-Rolla

Abstract— We study plane strain dynamic thermomechanical deformations of an fcc single crys-
tal compressed along the crystallographic direction [010] at an average strain rate of 1000 sec™!.
Two cases are studied; one in which the plane of deformation is paralle! to the plane (001) of
the single crystal, and another one with deformation occurring in the plane (101) of the single
crystal. In each case, the 12 slip systems are aligned symmetrically about the two centroidal axes.
We assume that the elastic and plastic deformations of the crystal are symmetrical about these
two axes. The crystal material is presumed to exhibit strain hardening, strain-rate hardening,
and thermal softening. A simple combined isotropic-kinematic hardening expression for the crit-
ical resolved shear stress, proposed by Weng, is modified to account for the affine thermal soft-
ening of the material. When the deformation is in the plane (001) of the single crystal, four slip
systems (111)[110], (111)[110], (111){110], and (111)[110] are active in the sense that significant
plastic deformations occur along these slip systems. However, when the plane of deformation
is parallel to the plane (101) of the single crystal, slip systems (111)[110], (111)[011], (111)[110],
and (111)[011] are more active than the other eight slip systems. At an average strain of 0.108,
the maximum angle of rotation of a slip system within a shear band, about an axis perpendic-
ular to the plane of deformation, is found to be 20.3° in the former case, and 22.9° in the latter.

1. INTRODUCTION

One way to understand the micromechanics of shear band formation in polycrystalline
materials is to study their initiation and growth in a single crystal. Several investigators,
e.g. SAwkiLL and HONEYcoMBE [1954], Price and KELLY [1964], SAiMOTO ef al. [1965],
and CHANG and Asaro [1981], have observed regions of localized shearing in fcc sin-
gle crystals deformed quasistatically. ZIkRYy and NEMAT-NASSER [1990] have recently
studied numerically the phenomenon of shear banding in an fcc single crystal undergo-
ing plane-strain tensile deformations at high strain rates. We refer the reader to their
article for a list of references and a brief outline of the historical development of the
subject. They used the double cross-slip model proposed by KoeHLER [1952] and later
by OrowaN [1954] during the entire loading history. Here we study a similar problem
with the crystal deformed in compression rather then tension, assume that all 12 slip sys-
tems are potentially active at any instant of loading, use constitutive relation for the crit-
ical shear stress that is different from the one employed by Z1kRY and NEMAT-NASSER
[1990], employ a different technique to integrate the system of equations, and consider
two loadings. With the axis of compression aligned along the crystallographic direction
[010], the plane of deformation is taken to be either parallel to the plane (001) or (101)
of the single crystal.

When the plane of deformation is parallel to the plane (001) of the single crystal, a
single shear band making an angle of 45° with the horizontal line ensues from the cen-
troid of the cross-section and is reflected back from the top loading surface, the angle
of reflection being essentially equal to the angle of incidence. The slip strains on the slip
systems (111)[110], (111)[110), (111)[110], and (111)[110] are high, and these constitute
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the primary slip systems. At a nominal strain of 0.108, the maximum angle of rotation
of the crystal lattice in the central and reflected bands equal 18.54° counterclockwise
and 20.29° clockwise, respectively. When the plane of deformation is parallel to the
plane (101) of the single crystal, the shear band originating from the center of the cross-
section makes an angle of 39.5° with the horizontal, and eventually splits into two bands.
Slip systems (111)[110] and (111)[011] in both the central and the reflected bands, and
slip systems (111){110] and (111)[011] in the reflected band are found to be more active
than other slip systems.

fl. FORMULATION OF*THE PROBLEM

We use a set of fixed rectangular Cartesian coordinates to describe the thermomechan-
ical deformations of an fcc single crystal of square cross-section and compressed along
the crystallographic direction [010] which is taken to coincide with the x;-axis. We
assume that the x;-x, plane of deformation is either parallel to the plane (001) or (101)
of the single crystal. In each case, the 12 slip systems are aligned symmetrically about
the two centroidal axes. We presume that both elastic and plastic deformations of the
single crystal are symmetric about the two centroidal axes, even after the band has
formed, and accordingly study deformations of the material in the first quadrant only.
In Eulerian description, equations governing the deformations of the single crystal are:

The balance of mass:

p+pv; =0, 4y
The balance of linear momentum:
pU; = 0y, 2
The balance of internal energy:
pch = —q;; + a;Df, 3

where p is the present mass density, v; the velocity of a material particle, a comma fol-
lowed by i indicates partial differentiation with respect to the present position x; of a
material particle, o;; is the Cauchy stress tensor, a superimposed dot indicates the mate-
rial time derivative, a repeated index implies summation over the range of the index,
¢ is the constant specific heat, 6 the temperature rise, g; the heat flux per unit deformed
area, and DJ is the plastic part of the strain-rate tensor D;;, defined as

Dy =4i(v; + v;)). 1))

D/ is determined by the local plastic slip rate of all active slip systems at a material par-
ticle, and will be defined later. For plane strain deformations in the x,-x, plane, vari-
ous quantities are functions of x;, x, and time ¢, and subscripts /, j range over 1 and 2.
However, in the second term on the right-hand side of eqn (3), indices i and j extend
to 3, since in plane strain deformations o33 # 0 in general, and D13 need not equal zero
during the plastic deformation. In eqn (3) we have assumed that all of the plastic work-
ing is converted into heating.
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We now describe the constitutive relations for high strain-rate finite deformations of
rate-dependent single crystals. We postulate Fourier’s law of heat conduction, viz.

q; = —koai’ (5)

where k is the thermal conductivity, and is assumed to be independent of the deforma-
tion and temperature of the single crystal. We assume that the strain-rate tensor D;; and
the spin tensor W); defined as

Wy = 5(vi; — vi) 6)
have additive decompositions into elastic and plastic parts, viz.
D, =D§ + Df, W,=W:,+ W[ @)

The Cauchy stress rate corotational with the elastic distortion of the single crystal is
assumed to be related to the elastic distortion rate by Hooke’s law. That is,

&i‘;’ = Lijlelgly (8)
where
of = oy + oy W§; — Wiay, &)

and L, is the fourth order tensor of the elasticities of the single crystal. Here we take
the crystal lattice to be elastically isotropic. Thus,

Lijy = A8;i04; + p (i bjs + 640k )

where A and u are Lamé’s constants for the crystal material. Recall that the Jaumann
stress rate 6;; given by

6, = 0; + 0y Wiy — Wiy, (10)
is corotational with the material element. Equations (7), (8), (9), and (10) result in
6;j = Lijpy(Diy — D)) + Uikapj — Wioy. (11

The Schmid stress or the resolved shear stress (-L;)of the ath slip system is assumed to
be related to the local Cauchy stress o;; through

(@) ()
T = V,‘/'O','j, (12)

. @ . .
where the Schmid factor »;; is defined as
@ @) ()
Vi = % b,‘ nj + bj n;), (13)

@ @, . s .
b and n being the unit slip direction and the unit normal to the slip-plane of the ath
slip system.
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For a strain rate-dependent material of the single crystal, the slip rate of the «th slip
system is assumed to be related to the resolved shear stress by the power law.

() (o), | 1/m—1
@] 7 [ @ (@
@ Yol & @ y, T = Te (14a)
¥F = Te T¢
(@) (o)
0, T < 10 (14b)

. T (@), .
where m is the rate sensitivity parameter, and v, is a reference shear strain rate such

. . . (o) () o o
that if the crystal is to be deformed with each ¥” set equal to ¥,, then (T)=(TZ (PAN &
RicE [1983]). When the resolved shear stress of the ath slip system is below the critical

resolved shear stress (?Z required to cause plastic deformation on that slip system, the
acth slip system is taken to be inactive. The critical resolved shear stress is assumed to
be a function of the initial flow stress 74, work hardening, and the temperature ¢. A
simple combined isotropic-kinematic hardening expression for 7., proposed by WENG
[1980], is modified as follows

(?Z = Iro + > [g+ (- g)cos((:f)cos((f)]h((f/)p)"] (1 — 1) (15)
8

()
to include thermal softening. In eqn (15), ¥ is the angle between the slip directions of

the ath and Sth slip systems,(if)the angle between their slip normals, (5)” the plastic
strain of the Bth slip system, 4 the strength coefficient, n the work hardening exponent,
g the degree of isotropy in work hardening, and » the thermal softening coefficient. The
quantity in the square bracket represents the latent hardening coefficient, and the sum-
mation index 3 ranges over all slip systems. TAYLOR’s [1938] isotropic hardening law fol-
lows from (15) by setting g = 1, and g = 0 corresponds to kinematic hardening.

We assume that the plastic slip rates 5” of all active slip systems at a material point
contribute linearly to the plastic parts of the strain rate and spin tensors there through

. (o . . o)
the Schmid factor v,?j and the antisymmetric part (w,j of the dyad bn. Thus,

() (@) (@) (@)
D L A
Dj; = 2 viv?, W5— 21wy (16)
(24 [e4
where

(@ (@ () (o) {(e)
wi = 3(bin; — b;n;). a7

The slip direction b and the unit normal n to the slip plane are orthogonal unit vectors,
and are assumed to rotate with the elastic spin of the lattice. Thus, their rates of change
are given by

b= Wgb;, n,=Wgn,. (18)
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In plane strain deformations of the crystal, the rotation of a slip system can be charac-
terized by the angle change ¢ of the projective direction of the slip vector in the x,-x,
plane. Using eqns (7), and (16), we obtain

. (@) (o)
¢ = W5 =Wy — 2 wnvy?, 19

and rewrite egns (18) in the form

by =1 — b3 cos ¢, b, = V1 — b?sin ¢y, Qo
n,=vV1 —nfcos¢,, n,=v1—nising,, @1

where ¢, and ¢, are, respectively, the current angles between the x;-axis and the projec-
tive directions of the slip vector and the slip plane normal to the x;-x, plane. They
equal the sum of their initial values and their changes with respect to the rotated lattice.

Scaling stress-like quantities by 74, mass density by p,, length by H, time by H/v,,
and the temperature by 6,, we rewrite the above equations in terms of nondimensional
variables, and obtain the following.

p+pv;,; =0, (22)
6[)0,' = O'I'j,j, (23)

. (@) (@) (o) (@)
p0 = B0 ;i + 0y D5 vii¥P + 033 D) vz L, (24)

6’,’j = (K - %G)Dkkéu + ZGD,'J‘

(o) (@) ()

()
- 2 (2G v + wikog; — ouwi;) VP — ou Wiy + Wioy;, (25)
033=—(0”+022)—3K1np, (26)
H (@) (qt)p
¢ =Wy — D wonvy?, 27)
s
@ (i) |(i)| bm=t @ _ @
@ Yol || @ > T =Te
'yp ER Te Te (28)
Lo, PP
@ ( @B)  («p)
Te={1+2[g+ (1 —g)cosycos¢ ]h(‘—?”)"}(l — vf) 29)
\ B8

where the nondimensional variables have been denoted by the same symbols as before.
Henceforth we will use nondimensional variables only. We note that 2H equals the
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height of the block, v, the steady value of the vertical component of velocity imposed
on the top and bottom surfaces, p, is the mass density in the undeformed and unstressed
configuration of the single crystal, and

2
g, = 10 5= R0% (30)

b
PoC To

Furthermore, K and G equal, respectively, the bulk and shear moduli of the single
crystal.

As pointed out earlier, because of the presumed symmetry of deformations about the
horizontal and vertical centroidal axes, we study deformations of the material in the first
quadrant. Hence, boundary conditions that follow from the symmetry of deformations
are applied on the left and bottom surfaces. Both the top and the right surfaces are taken
to be thermally insulated, the right surface is taken to be traction free, and on the top
surface zero tangential tractions and a vertical component v, of velocity given by

1/0.005, 0 =1 =< 0.005,
1, t = 0.005, 31

—0y(2) =

are prescribed. For the initial conditions, we take

p(x,0) = 1.0, v(x,0) =0, d(x,0) =0,

e(l = r¥)exp(=5r%), r=l,
é(x,0) =0, 6(x,0) = (32)
0, r>1,

where r2 = x? + x#. The initially nonuniform temperature field represents a possible
imperfection in the single crystal and serves as a triggering mechanism for the localiza-
tion of the deformation.

II. NUMERICAL SOLUTION AND RESULTS

The problem as formulated above is highly nonlinear and almost impossible to solve
analytically. We seek its approximate solution by the finite element method. Equa-
tions (22) through (25) and (27) are reduced to a set of coupled nonlinear ordinary dif-
ferential equations by using the Galerkin approximation (e.g., see HuGHEs [1987]) and
the lumped mass matrix obtained by assigning one-fourth of the mass of each element
to each one of its four nodes. At each node, the mass density, two components of the
velocity, temperature, three components ¢,;, 65, and g, of the Cauchy stress, and
the angle ¢ characterizing the rotation of the slip system are taken as unknowns. Thus,
the number of nonlinear ordinary differential equations equals eight times the number
of nodes. The coordinates of nodes are updated after each time increment. Therefore,
the spatial domain occupied by the body and the shapes of these elements varies with
time. The coupled nonlinear ordinary differential equations are integrated by using the
backward-difference Adams method included in the subroutine LSODE taken from the
package ODEPACK developed by HINDMARSH [1983], and set ATOL = 1073, RTOL =
1073, The subroutine adjusts the time step adaptively until a solution of the coupled
nonlinear ordinary differential equations has been computed to the specified accuracy.
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(o) ()
From the computed solution we evaluated :, ';1’, D,-(}’ ), and Wi}" ) at each quadrature
point, and found the plastic slip strain of the active slip system by using

o a () ()
('y)”(t + Ap) =('y)”(t) + At[¥P(1) + Y7t + 4] /2.

The finite element code developed earlier by BATRA and Liu [1989] to analyze the initi-
ation and growth of shear bands in plane strain compression of the viscoplastic mate-
rial was modified to study the present problem.

We assigned the following values to various material and geometric parameters in
order to compute numerical results.

k=237 Wm™'°C} ¢ =960 Jkg~'°C™!, po = 2700 kg m~3,

G = 27.6 GPa, K = 81.48 GPa, 70 = 55 MPa, n=10.52,

(33)
h=11.02MPa, m=0.02, »=0.0222°C™!, H=5mm,

g =0.28, vo=5ms}, e=1.0.

Thus, the average applied strain rate equals 1000 s~!, and 6, = 21.2°C. The aforestated
values are for a typical single crystal of aluminum, except that a rather large value of
the thermal softening coefficient » is used to reduce the CPU time required to initiate
a shear band.

An aluminum single crystal has a face-centered-cubic lattice structure, which is char-
acterized by four octahedral slip planes {111} and three slip directions (110) on each
plane to give 12 slip systems. Herein all slip systems are assumed to be equally active,
and the crystal is compressed along the [010] direction. We study two different cases,
namely, when the plane of deformation is parallel to the plane (001) or the plane (101)
of the single crystal.

We use the maximum principal logarithmic strain ¢,, defined as

e, =InA; = —-InA, 34)

to find the deformation at a point. Here A%, A%, and 1 are eigenvalues of the right
Cauchy-Green tensor C,g = X; ,X; 3, Or the left Cauchy-Green tensor B;; = x; . X; .,
where x; , = dx;/dX,, X, being the coordinates of a material point in the stress-free
undeformed configuration. The second equality in eqn (34) holds because plastic defor-
mations of the crystal are isochoric, and within the band elastic deformations are
minuscule.

We employed a finite element mesh consisting of 32 x 32 uniform elements in the
undeformed configuration, and used 2 X 2 Gaussian quadrature rule to evaluate vari-
ous integrals numerically.

II1.1. Results when the plane of deformation is parallel
to the plane (001) of the single crystal

Figure 1 depicts contours of the maximum principal logarithmic strain ¢, for four
different values of the average strain, i.e., v,,, = 0.00355, 0.02755, 0.07755, and
0.10755. These suggest that a shear band, indicated by higher values of the contours of
the maximum principal logarithmic strain near the center, originates at the center and
propagates along +45° directions and is reflected back from the top surface, with the
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angle of reflection being nearly equal to the angle of incidence. The severely deform-
ing region narrows down initially, but then widens, probably because of a change in the
locations of the active slip systems. A closer look at the computed results suggests the
following. In the beginning, the block is uniformly deformed elastically and all slip sys-
tems are inactive in the entire body. As the block continues to be deformed at the high
strain rate, the top part of the square cross-section yields first, and the plastic defor-
mation spreads into the body to make four slip systems, namely, (111)[110], (11D[110],
(11D)[110}, and (111)[110] active. It will be evidenced by results given below. The mate-
rial surrounding the origin where the temperature perturbation is applied also yields early
due to the lower value of the critical shear stress of slip systems at relatively higher tem-
perature. The material adjoining the centroid of the cross-section undergoes more severe
plastic deformations than the rest of the material. With further straining of the block,
the plastic deformation spreads throughout the body.

The accumulated plastic strain of each active slip system is plotted in Fig. 2 at an aver-
age strain of 0.10755. It is clear that four primary slip systems (111)[110], (111)[110],
(111)[110}, and (111)[110] contribute significantly to plastic deformations, that the max-
imum slip strain equals 0.4262, and the average slip strain within the band is approxi-
mately 0.175. These slip systems are more favorable to plastic deformation than the slip
systems (111)[011], (111)[011], (111){101], and (111)[101] in the central band, and
d1D[011}, (111)[011], (111)[101], and (111)[101] in the reflected band. Note that the
average slip strain of the four secondary slip systems in the central band equals 0.025,
and that of the slip systems in the reflected band equals 0.01. During the early stages
of the shear band formation, only the primary slip systems are active and contribute to
the intense plastic deformation within the band. For simple compression in the crystal-
lographic direction [010} and plane of deformation parallel to the crystallographic plane
(001), the four primary slip systems are equally favorable to slip throughout the load-
ing history. However, in a double-slip model for a single crystal employed by Zikry and
NEMAT-NASSER [1990], the slip system (111)[I01], corresponding to (111)[110] in our
coordinate system, is chosen as the primary slip system, and (111)[011] ((111)[101] in
our model) as the conjugate one. These two slip systems are not equally active, with the
result that the primary slip system dominates the slip deformation. In our model, all
potentially active slip systems are employed, and the slip system becomes active if its
resolved shear stress reaches the critical value. The computed results show that all four
primary slip systems, namely, (111)[110], (111)[110], (111){110], and (111)[110] are
equally active. As the single crystal is deformed and the crystal lattice is reoriented by
the deformation, other slip systems become active as conjugate slip systems resulting in
multiple gliding. The slip systems (111)[011], (111)[011], (1TD)[101}, and (111)[101] in
the central band, and (111)[101], (111){101], (111)[011], and (111)[011] in the reflected
band are the conjugate slip systems.

Figure 3 shows the contours of the slip-rate of the slip system (111){110] at four dif-
ferent values of the average strain; similar results hold for the other three primary slip
systems. At an average strain of 0.00355, the slip rate is nearly uniform throughout most
of the single crystal, the only exception being near the block center where temperature
perturbation is applied, and near the top right corner where the deformation is singu-
lar. With the continuous compression of the block, the region with an intensive slip rate
of this system narrows down sharply and the band width equals nearly the smallest dis-
tance between two adjacent Gauss points. When compared with the contours of the sec-
ond invariant of the strain rate and the plastic strain rate tensors given in Fig. 5 below,
the slip-rate band of the primary slip systems is aligned in the same direction as the
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Fig. 2. (e) Slip systems: (111)[011] and (111)[011].

global strain-rate band. Note that the double slip model gives a misorientation between
the bands of the primary slip system and the global one due to the heterogeneous slip
deformations of the primary and the secondary slip systems. An examination of the slip-
rate band of the primary slip system at four different values of the average strain sug-
gests that the slip-rate bands broaden as the crystal is deformed. One reason for this
widening of the slip-rate band is that once plastic deformation occurs within the slip
bands, the work hardening raises the critical shear stress, and further slip deformation
in the center of the band may become more difficult than that in the adjacent regions.
This facilitates plastic deformation of the material adjacent to the centerline of the slip-
rate band. Another reason is that the lattice of the single crystal is reoriented by the
deformation, and the widening of the slip-rate band ensures that the centerline of the
global band makes an angle of +45° with the direction of the compression loading.
In Fig. 4 we have plotted contours of the slip-rate of slip systems (111)[011] and
(11DJ011] at average strains of 0.02755, 0.05755, and 0.07755, and that of (111)[011]
and (111)[011] at average strains of 0.05755 and 0.07755. The slip deformations of slip
systems (111)[101] and (111)[101] are similar to that of (111)[011]. At early stages of
deformation, these conjugate slip systems are inactive. Even when the primary slip sys-
tems give a severe slip deformation at an average strain of 0.02755, slip systems
(I111){011] and (111)[011] remain inactive. When the shear bands are fully formed, the
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Fig. 4. (€) yavg = 0.07755.

rotation of the crystal lattice relative to the axis of compression results in the movement
of the orientation of the stress axis out of its original stereographic triangle into the one
adjoining it on the stereographic projection, and the conjugate slip systems become the
preferred slip systems.

The contours of the angle of rotation ¢ of the crystal lattice are given in Fig. 5. Within
the shear band passing through the block center, the average angle of rotation of slip
systems at a nominal strain of 0.00755 is 0.6° counterclockwise, the maximum angle of
rotation is 0.726° counterclockwise, and the angle of rotation in the reflected shear band
near the top right corner of the block is 0.034° clockwise. However, at a nominal strain
of 0.10755, the values of the average and maximum angle of rotation within the cen-
tral shear band equal, respectively, 14.5° and 18.54° counterclockwise, and those within
the reflected band equal 14.3° and 20.3° clockwise.

The contours of the second invariant 7 of the deviatoric strain-rate tensor ﬁ,-j, and
of the second invariant I, of the plastic strain-rate tensor D/ are exhibited in Fig. 6.
The invariants I and I, are defined as

21*=D;b 212=DfDfE, D;=D

1
i i — 3Dy

ijs

Recall that Df} = 0, therefore DF = Df. Whereas contours of / or I, illustrate how rap-
idly material particles are deforming at present, those of the principal logarithmic strain
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Fig. 5. Contours of the angle of rotation of the crystal lattice at (@) Yavg = 0.00755, (b) vav; = 0.10755.
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Fig. 7. (a) Distribution of v, in the cross-section at an average strain of 0.07755. (Figure continues)

given in Fig. 2 correspond to the accumulated deformation of a material element. The
values of D are derived from the plastic straining of the slip systems. At an average
strain of 0.02755, the maximum values of I and 7, equal 14.23 and 14.14, respectively,
suggesting that the mesh used to calculate nodal values of various variables can delin-
eate the micromechanisms of the slip deformation of active slip systems everywhere. The
minimum value 0.00425 of I, indicates that all of the material particles throughout the
cross-section are deforming plastically at v,,, = 0.02755. However, at an average strain
of 0.05755, the maximum values of I, and 7 equal 281.84 and 15.43, respectively, and
the minimum value of I, is zero. The contours of 7, in Fig. 6d reveal that the material
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Fig. 7. (b) Distribution of v, in the cross-section at an average strain of 0.07755.

near the top left and right corners and that near the bottom right corner of the block
is deforming elastically, and all slip systems there are inactive. This unloading of the
material and possibly the rather coarse mesh used, could cause the significant difference
between the maximum values of 7 and I,,.

Figure 7 depicts the distribution, within the deforming region, of the x- and y-com-
ponents of the velocity field at an average strain of 0.07755. It is clear that the velocity
field increases sharply across the shear band. Note that in our formulation the velocity
field is forced to stay continuous throughout the deforming region. Thus, this sharp
change in the values of v, and v, may be construed as supporting assertions made by
TRESCA [1878] and Massey [1921] that the tangential component of the velocity field
is discontinuous across a shear band.

The deformed mesh at an average strain of 0.11555 is shown in Fig. 8 and confirms
the aforestated observations that a shear band forms along a line passing through the



676 Z. G. Znu and R. C. BATRA

Fig. 8. The deformed mesh at an average strain of 0.11555.

center of the cross-section and making an angle of 45° with the horizontal. The band
is reflected from the top surface, and the angle of reflection essentially equals the angle
of incidence. The severely deformed region is wider than that obtained in previous com-
putations involving plane strain compression of a homogeneous and isotropic polycrys-
talline body.

I11.2. The plane of deformation is parallel to the plane (101) of the single crystal

Like the previous case when the plane of deformation is parallel to the plane (001),
the initial plastic deformations of the block are essentially uniformly distributed through-
out the cross-section, except near the center where a temperature perturbation is applied.
With continuous compression of the block, a shear band initiates from the center and
propagates into the body. This is evidenced by the plots, given in Fig. 9, of the contours
of the maximum principal logarithmic strain at several values of the average strain.
Results plotted in Fig. 9a show that the block is nearly uniformly deformed at an aver-
age strain of 0.00255. However, at an average strain of 0.02755, a shear band passing
through the center and inclined at an angle of approximately 39.5° with the horizontal
has developed. A comparison of this with the results plotted in Fig. 1 suggests that the
direction of the shear band in a single crystal depends upon the orientation of the crys-
tal relative to the axis of loading. The contours of the maximum principal logarithmic
strain plotted in Figs. 9c and 9d at average strains of 0.07755 and 0.10755 suggest that
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Fig. 10. (c) Yavg = 0.10755.

the band widens as the body continues to be compressed, and the width of the severely
deformed region is more than that in the previous case discussed in section III.1.

The contours of the second invariant / of the deviatoric strain-rate tensor and of the
second invariant J, of the plastic strain-rate tensor are given in Figs. 10 and 11, respec-
tively. The results plotted in Fig. 10 suggest that initially the band initiating from the
centroid of the cross-section meets the right traction free surface. As the band widens,
another band reflected from the top surface also forms. With further loading of the
body, the band through the center of the cross-section splits into two parallel bands of
unequal intensity as measured by the maximum values of 7 in them; the upper stain-rate
band has higher intensity of deformation than the lower one, and is reflected back into
the body from the top loading surface. The lower band meets the reflected band and
does not go through it, possibly because of the higher values of 7 in the reflected band.
The contours of I, in Fig. 11d reveal that a large region near the upper left and lower
right corners of the cross-section is deforming elastically at an average strain of 0.10755.
Since the body continues to be compressed at the prescribed rate, the unloading in
regions near the upper left and lower right corners should intensify the rate of plastic
deformation elsewhere.

We have plotted in Fig. 12 the angle of rotation of the crystal lattice at several dif-
ferent values of the average strain. At a nominal strain of 0.00755, the maximum and
minimum values of the angle of rotation equal 1.47° counterclockwise and 0.08° clock-
wise. However, at a nominal strain of 0.10755, the average angle of rotation within the



(senunuods

(®)
x

an31) '$§L20°0 = A (q) ‘$$T00°0 = a2/, () ‘Ure1IS 95BISAE JY] JO SAN[EA JUIISJJIP INOJ Je JOSUS) Slel-urens ouserd oy} Jo 97 JueLIBAUI PUOSSS 3] JO SINOUOD “[] Sig

6’0

(Q)

t00°0 £66°0 o 00s"0
L I i — L o —— i A h! A
|
\.
\
\u\‘\\\\x\\ Ve
=T \\
- - \
, P Ve
’ -~
\\\ \\
-~ -~
pad \\ %
i Ve 0
L 00¢°0 b J
Ve
e
\\
) /
L oo /
/
~——— 4 /
_——
N S
\ \\ \\ T
. . / o e )
g0 £66°0
g — gl -—




“$SLOT0 = **"A (P) ‘$5150°0 = **"A (9) "1 "S1d

€66°0 (378 005°90 fst'o £00°0 660 w's 00s" 0 fst'o {00°0

Lo0°0

[ 1 48]

0050

o

£66°0

§—  U-—— § —— § === [ - 0 — 4—  n-— 5§ —— § === f - 0 —

682



-—— 019

2 oo

—— =000

—— 00

\
. \\
N \\
. \\ Jl
S \b\_/ /
\\\\ \—/ 'I
2 2 2 g
e o e e

(b)

1.00

.75

T
0.50
(a)

T

T

0.25

Fig. 12. Contours of the angle of rotation of the crystal lattice at three different values of the average strain. (a) yay, = 0.00755, (b) vay, = 0.02755. (Figure continues)

0.00



684 Z. G. Znru and R. C. BaTrA

Fig. 12. (¢) Yayg = 0.10755.

central shear band is 22.9° counterclockwise, and in the reflected band is 17.2° clock-
wise. These values indicate that the crystal lattice undergoes significant rotations within
the shear band.

The distribution of the x- and y-components of the velocity field within the cross-
section, at an average strain of 0.0755, is plotted in Figs. 13a and 13b, respectively. It
is clear that the deforming region is subdivided into several subregions and the veloc-
ity field changes sharply across boundaries between these regions; the changes in v, and
v, across the upper central band are more than those across the lower central band.

The accumulated slip strains in different slip systems revealed that the slip systems
(111)[101] and (111)[101] remained inactive throughout the entire loading history. Slip
systems (111)[110] and (111)[011] in both the central and the reflected band, and slip
systems (111){110] and (111)[011] in the reflected band were found to be more active than
other slip systems. Figures 14 and 15 depict, respectively, the contours of slip strains and
slip strain-rates at an average strain of 0.10755. At this value of the nominal strain, the
average slip strain of slip systems (111)[110] and (111)[011] in the central band equals
0.2 and that in the reflected band is 0.5, and slip systems (111)[110] and (111){011] have
an average slip strain of 0.17 in the reflected band. Other active slip systems give very
small values of the slip strains within the bands. From contours of slip strain rates in
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Fig. 13. (a) Distribution of v, in the cross-section at an average strain of 0.07755.

Fig. 16, we see that at an average strain of 0.00255, only four slip systems, viz.,
@11nf1io], (111)foi1], (11N[110}, and (111)[011] are active everywhere in the block. The
narrow region with intensive slip-rate deformation for slip systems (111)[110]} and
(111)[011] differs from that for slip systems (111){110] and (111)[011}, in contrast with
the case discussed in section II1.1 wherein all four primary slip systems are equally active
in the same narrow region. However, the intensity of slip-rates in the two narrow regions
seems to be nearly the same. Since, in simple compression, the slip systems (111)[110}
and (111)[011] are more favorable to slip than the other two primary slip systems, these
two slip systems eventually dominate the slip deformation of the single crystal and the
slip systems (111)[110] and (111)[011] become inactive in the central bands.
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(b)

Fig. 13. (b) Distribution of v, in the cross-section at an average strain of 0.07755.

Figure 17 exhibits the average axial stress versus the average axial strain for the two
loading cases studied herein. The average axial stress is obtained by evaluating g,, at
quadrature points closest to the top surface of the block and taking their average. The
average axial strain equals the vertical displacement of the top surface divided by the
initial height of the specimen. In the figure compressive axial stress and compressive axial
strain are plotted as positive. For the second loading case, the curve corresponding to
the initial loading of the block is missing because of the loss of a part of the output from
the computer code. For each loading case, the transient effects die out quickly, and the
average axial stress decreases monotonically with an increase in the average strain
because the softening of the material caused by its being heated up exceeds the combined
hardening due to strain and strain-rate effects. It is due to the rather large value of the
thermal softening coefficient assumed in our work.
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Fig. 14. () Slip systems (111)[110] and (111)[011].

IV. CONCLUSIONS

We have studied the problem of the initiation and growth of dynamic shear bands in
an fcc single crystal deformed in simple compression along the direction [010] of the
crystal at a nominal strain-rate of 1000 sec™'. The coupled nonlinear partial differen-
tial equations governing the dynamic thermomechanical plane-strain deformations of
the single crystal are solved numerically. Two different cases, namely, when the plane
of deformation is parallel to the plane (001) or (101) of the single crystal, are analyzed.
In each case, the deformations are assumed to be symmetric about the horizontal and
vertical centroidal axes, and all 12 slip systems are taken to be active. However, only
those slip systems for which the resolved shear stress equals or exceeds the critical shear
stress contribute to the plastic deformation. The effects of isotropic hardening, kine-
matic hardening, and thermal softening are incorporated in the expression for the crit-
ical shear stress. The deformations of the material in the first quadrant are examined
closely.

It is found that when the plane of deformation is parallel to the plane (001) of the
single crystal, a single shear band originates from the center of the cross-section and
propagates along a line making an angle of 45° with the horizontal. The band is reflected
back from the top loading surface, the angle of reflection being nearly equal to the angle
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Fig. 16. (c) Slip systems (111)[110] and (111)[011].

of incidence. The slip strains on the slip systems (111){110], (111){110], (111)[110], and
(111)[110] are very high, and these four slip systems are the primary slip systems. The
slip systems (111)[011], (11D)[0i1], (111)[101], and (111){101] in the central band, and
slip systems (111)[101], (111)[101], (111)[011], and (111)[011] in the reflected band are
the conjugate slip systems. At a nominal strain of 0.10755, the average angle of rota-
tion of the crystal lattice within the central band is 14.5° counterclockwise, its maximum
value is 18.54° counterclockwise, the average angle of rotation in the reflected band is
14.3° clockwise, and its maximum value is 20.29° clockwise.

When the plane of deformation is parallel to the plane (101) of the single crystal, the
shear band originating from the center of the cross-section propagates along the line
making an angle of 39.5° with the horizontal, and eventually splits into two bands. The
intensity of slip-rate in the upper band is higher than that in the lower band. The upper
band is reflected from the top surface, and this reflected band stops the lower band from
reaching the top surface of the cross-section. Two slip systems, (111)[101] and (111)[101],
remain inactive throughout the entire loading history. Slip systems (111)[110] and
(111)[011] in both the central and the reflected band, and slip systems (111)[110] and
(111)[011] in the reflected band were found to be more active than other slip systems.
The average value of the angle of rotation of the crystal lattice, at a nominal strain of
0.10755, equalled 22.9° counterclockwise in the central band, and 17.2° clockwise in the
reflected band.
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