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Abstract

We study thermomechanical deformations of a viscoplastic body deformed in simple shear.
The e�ect of material elasticity is neglected but that of work hardening, strain-rate hardening,
thermal softening, and strain-rate gradients is considered. The consideration of strain-rate
gradients introduces a material characteristic length into the problem. A homogeneous solu-

tion of the governing equations is perturbed at di�erent values t0 of time t, and the growth
rate at time t0 of perturbations of di�erent wavelengths is computed. Following Wright and
Ockendon's postulate that the wavelength of the dominant instability mode with the max-

imum growth rate at time t0 determines the minimum spacing between shear bands, the shear
band spacing is computed. It is found that for the shear band spacing to be positive, either the
thermal conductivity or the material characteristic length must be positive. Approximate

analytical expressions for locally adiabatic deformations of dipolar (strain-rate gradient-
dependent) materials indicate that the shear band spacing is proportional to the square-root
of the material charateristic length, and the fourth root of the strain-rate hardening exponent.

The shear band spacing increases with an increase in the strain hardening exponent and the
thermal conductivity of the material. # 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Strain-rate gradient-dependent plasticity; Dominant growth rate; Material characteristic length;

Stability

1. Introduction

Nesterenko et al. (1995) investigated the initiation and propagation of shear bands
during the radial collapse of a thick-walled cylinder deformed at a strain-rate of
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approximately 104/s. They found that twenty shear bands spaced about 1 and
0.85mm apart formed respectively in titanium and stainless steel cylinders; the esti-
mated values of the maximum shear strain were 0.22 and 0.4, respectively, in tita-
nium and stainless steel. Grady and Kipp (1987) studied simple shearing
deformations of a thermally softening rigid plastic material and determined the
shear band spacing by accounting for the momentum di�usion due to unloading
within a shear band. Wright and Ockendon (1996) also accounted for strain-rate
hardening of the material, perturbed the time-dependent homogeneous solution of
the governing equations, derived equations linear in the amplitude of the perturba-
tions, and studied the stability of the homogeneous solution. Linear perturbation
analysis has been used to study the initiation of material instability by Clifton
(1980), Bai (1982), Burns (1985), Molinari (1985) and Anand et al. (1987) amongst
others (e.g. see Bai and Dodd, 1992). Wright and Ockendon (1996) postulated that,
in an in®nite body, perturbations growing at di�erent sites will never merge and
result in multiple shear bands. Thus the wavelength of the dominant instability
mode with the maximum initial growth rate will determine the shear band spacing.
Molinari (1997) has extended Wright and Ockendon's (1996) work to strain-hard-
ening materials and has estimated the error in the shear band spacing due to the
®nite thickness of the block deformed in simple shear. Batra and Chen (1999) have
considered the e�ects of strain-rate gradients, corresponding higher-order stresses in
both the balance laws and the material models, and three constitutive relations, viz,
the power law, the Wright±Batra (1987) relation and the Johnson±Cook (1983)
relation. They followed Molinari's (1997) approach and de®ned the shear band
spacing as the minimum of 2�=�m�t0� for t050 where t0 is the time when the
homogeneous solution is perturbed and �m equals the wave number corresponding
to the maximum growth rate at time t0 of the perturbation. They considered gen-
eralizations to gradient-dependent materials of three constitutive relations, viz. the
power law studied by Molinari (1997), the Wright±Batra (1987) relation and the
Johnson±Cook (1983) relation. In each case the e�ective stress is maximum at time
t � 0. It was found that for the power law, perturbations introduced just after the
e�ective stress becomes maximum determine the shear band spacing. However, for
the other two relations in which thermal softening is modeled by an a�ne function
of temperature, perturbations introduced at a rather large value of t0 determine the
shear band spacing. Molinari (1997) has shown that the strain-hardening of the
material can signi®cantly in¯uence the shear band spacing in simple materials. Here
we investigate the e�ect of work hardening in gradient-dependent thermoviscoplastic
materials modeled by a power law. As in the previous work of Batra and Chen
(1999) we include the e�ect of strain-rate gradients, and the corresponding higher-
order stresses in both the balance laws and the constitutive relations. Molinari's
(1997) hardening of the material caused by plastic deformations depended upon the
plastic strain, in the present model it depends upon the plastic work done. Kwon
and Batra (1988) also considered the e�ect of material elasticity, perturbed a solu-
tion of the nonlinear coupled partial di�erential equations by introducing a tem-
perature perturbation represented by a cosine wave with twenty cusps, and
numerically solved the resulting nonlinear initial-boundary-value problem. They
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found that for a typical hard steel modeled as a nonpolar (no strain-rate gradient
e�ects) material, a shear band formed at each trough in the cosine wave in a speci-
men deformed at an overall strain-rate of 500/s but at each crest when the nominal
strain-rate equalled 50,000/s. For dipolar materials with material characteristic
length equal to 0.5% of the specimen thickness, at a nominal strain-rate of 500/s a
shear band formed only at the two bounding surfaces where the velocity was pre-
scribed and at each crest when the nominal strain-rate equalled 50,000/s. Both for
dipolar and nonpolar materials deformed at an average strain-rate of 50,000/s, the
distance between adjacent shear bands was found to be 0.258mm. They did not
attempt to ®nd the minimum spacing between adjacent shear bands.
We note that the consideration of strain-rate gradients introduces a material

characteristic length, `, in the problem. Batra (1987) and Batra and Kim (1990) have
investigated the e�ect of ` on the initiation, growth and band-width of shear bands
in heat-conducting thermoviscoplastic materials deformed in simple shear. Batra
and Hwang (1994) have studied the same problem for plane strain deformations of
thermoviscoplastic materials. Whereas we consider the e�ect of higher-order stresses
in both the balance laws and the constitutive relations, other approaches (e.g. see
Aifantis, 1984) have been proposed in which strain gradients are included in the
yield function only. Faciu and Molinari (1996, 1998) have incorporated higher-order
strain gradients in the relaxation function of Maxwell's rate-type constitutive equa-
tion and determined critical wave lengths for the onset of instability and pattern
formation. Batra (1975) considered higher-order gradients of temperature and for
rigid heat conductors found constitutive relations compatible with the Clausius±
Duhem inequality. He showed that thermal disturbances can propagate with ®nite
speed in such materials.
The present work indicates that when the value of the material characteristic

length is increased from 0 to 0.025mm, the shear band spacing in an in®nite block of
1018CR steel deformed in simple shear increases from 1.05 to 3.4mm. Molinari's
estimate for the e�ect of the ®nite thickness of the block suggests that these values
could deviate by about 21%Ðthus bringing them closer to the observed value of
approximately 1mm.

2. Formulation of the problem

Neglecting the e�ects of material elasticity, equations governing the thermo-
mechanical deformations of a strain-hardening, gradient-dependent, homogeneous
and isotropic thermoviscoplastic layer deformed in simple shear are (e.g. see Wright
and Batra (1987))

� _v � �sÿ `�;y�;y; �1�

_� � k�;yy � sv;y � `�v;yy; �2�

�v;y � `sv;yy; �3�
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_ � �sv;y � `�v;yy�= 1�  

 0

� �n

; �4�

I � �v2;y � `2v2;yy�1=2 � f�s; �; �;  �: �5�

These equations are written in nondimensional variables for a layer bounded by the
planes y � �1 and being sheared in the x-direction. Here v is the present velocity of
a material particle in the direction of shearing, a superimposed dot indicates the
material time derivative, and a comma followed by y signi®es partial di�erentiation
with respect to y. Variables �; s; �; �; k;  and ` denote, respectively, the mass den-
sity, the shear stress, the dipolar stress corresponding to the kinematic variable v;yy,
the temperature, thermal conductivity, work-hardening parameter and the material
characteristic length. Eqs. (1) and (2) are respectively the balance of linear momen-
tum, and the balance of internal energy, and Eqs. (3)±(5) are the constitutive rela-
tions when elastic deformations are neglected. Eq. (4) signi®es that the rate of work
hardening is proportional to plastic working, and in Eq. (2) all of the plastic work-
ing is assumed to be converted into heating. If  is interpreted as the e�ective plastic

strain, and �e � �s2 � �2�1=2 as the e�ective stress, then �e � 1�  
 0

� �n
represents the

e�ective stress vs the e�ective plastic strain curve in quasistatic deformations of the
body. Eq. (5) describes the thermoviscoplastic response of the material. The gov-
erning equations for nonpolar materials are obtained from Eqs. (1)±(5) by setting
` � 0. The non-dimensional variables are related to their dimensional counterparts
(denoted below by a superimposed hat) as follows.

ŷ � Hy; ^̀ � H`;  ̂ �  ; ŝ � �0s; �̂ � �0 ^̀�;

t̂ � t= _
0; �̂ � �r�; � � �̂H2 _
20=�0; k � k̂=��̂ĉ _
0H
2�; �r � �0

�̂ĉ
:

�6�

Here 2H equals the thickness of the layer, �0 is the yield stress of the material in a
quasistatic simple shear test, _
0 is the average strain-rate, and ĉ is the speci®c heat.
We postulate the following form for the function f in Eq. (5).

f�s; �; �;  � � �ÿ1
m

0 �ÿ
�
m 1�  

 0

� �ÿn
m

�s2 � �2� 12m: �7�

Here �0 is a strength parameter, m describes the strain-rate hardening of the mate-
rial, and � its thermal softening. The relation between nondimensional �0 and
dimensional �̂0 is

�0 � _
m0 �
�ÿ1
0

��̂ĉ�� �̂0: �8�
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A homogeneous solution of Eqs. (1)±(5) and (7) under the boundary conditions

�;yjy��1 � 0; vjy��1 � 1; �9�

is

�s �

�v
�s
��
��
� 

8>>>><>>>>:

9>>>>=>>>>; �
y

�0� ~ 0� ~n� ����� ~n

0
��n̂ÿ�i � t�n̂ÿ ���0� ~ 0� ~n�1=�n̂ÿ��

 0�� ~ 0�n̂� ���n̂ ÿ 1�

8>>>><>>>>:

9>>>>=>>>>;; �10�

where

~ 0 � �1� n�
 0

; ~n � n

1� n
; n̂ � 1

1� n
� 1ÿ ~n; �i � ���0� � 1�

� �0�
 0

� �1�n
= ~ 0;

�11�

�i and � �0� are respectively the values of the homogeneous solutions �� and � at time
t � 0. When �i and � �0� are not related by (11)4, which is generally the case, then a
homogeneous solution of Eqs. (1)±(5), (7) and (9) is

�s �

�v
�s
��
��
� 

8>>>><>>>>:

9>>>>=>>>>; �
y

�0
��� 1� � 

 0

� �n

0

�i � 1� � 
 0

� �n�1
ÿ 1� � �0�

 0

� �n�1" #
= ~ 0

� 

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
�12�

and � is found numerically by simultaneously solving _�� � _� 1� � 
 0

� �n
; _� � �0

_��
�
.

Henceforth we work with the homogeneous solution given by Eq. (12).

3. Perturbation analysis

Consider an in®nitesimal perturbation of the homogeneous solution at time t � t0.
That is, let

�s�y; t; t0� � e��tÿt0�ei�y�s0; t5t0; �13a�

where

�s0 � ��v0; �s0; ��0; ��0; � 0�T; �13b�
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is a small disturbance in the homogeneous solution. Here � is the wave number and
� its initial growth rate. Re��� < 0 implies that the homogeneous solution is stable at
time t0, and Re��� > 0 means that it is unstable.
Substitution of

s�y; t; t0� � �s�y; t� � �s�y; t; t0� �14�

into Eqs. (1)±(5), and linearization in �s0 gives

A�t0; �; ���s0 � 0 �15�

where

A�t0; �; �� �

�� ÿi� ÿ`�2 0 0
ÿis0� ÿ1 0 �� k�2 0
ÿ`s0�2 0 ÿ1 0 0

ÿis0� ÿ1 0 0 1�  
0

 0

� �n

�

i� ÿf 0;s ÿf 0;� ÿf 0;� ÿf 0; 

26666664

37777775; �16�

f 0;s � @f 0=@s js�s0 etc., and superscript zero on a variable signi®es its value for the
homogeneous solution at time t0. The condition det A=0 yields the cubic equation

a�3 � b�2 � c�� d � 0 �17�

for the growth rate �, where

a�t0� � �

ms0
1�  

0

 0

� �n

;

b��; t0� � `2

m
�4 � 1� �k

ms0

� �
�2 ÿ ��

m�0

� �
1�  

0

 0

� �n

� �n

m 0
1�  

0

 0

� �ÿ1
;

c��; t0� � `2k

m
�6 � kÿ `

2�s0

m�0

� �
�4 � �s0

m�0
�2

� �
1�  

0

 0

� �n

ÿ n

m 0
1�  

0

 0

� �ÿ1
`2s0�4 � ��kÿ s0��2ÿ �

;

d��; t0� � ÿn
m 0

1�  
0

 0

� �ÿ1
s0k�`2�6 ÿ �4�:

�18�

For given values of t0 and �, Eq. (17) will have one real and two complex roots,
�i��; t0�; i � 1; 2; 3. The root with the largest positive real part will govern the
instability of the homogeneous solution, and is hereafter referred to as the dominant
instability mode. For ®xed t0, one can compute the dominant instability mode as a
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function of the wave number � and ®nd the supremum, �m, of the real parts of the
roots of Eq. (17); henceforth we denote the wave number corresponding to �m by �m.
Clearly, �m and �m are functions of t0.
Using Wright and Ockendon's (1996) postulate that the wavelength of the domi-

nant instability mode with the maximum growth rate at time t0 determines the shear
band spacing Ls, we have

Ls � 2�=�m�tm0 �; �19�

where tm0 corresponds to the time when �m�t0� is maximum. Molinari studied power-
law type strain-hardening materials and found that

Ls � inf
t050

2�

�m�t0�
�20�

gives essentially the same value as Eq. (19). Batra and Chen (1999) found that Eqs.
(19) and (20) give quite di�erent results when thermal softening of the material is
described by an a�ne function of the temperature rise.
For locally adiabatic deformations of a nonpolar thermoviscoplastic material,

` � 0, k � 0. In this case d � 0, and Eq. (17) reduces to a quadratic equation in �
whose both solutions are real and the positive solution is a monotonically increasing
function of �. Thus for ` � 0 and k � 0, we have Ls � 0. A similar result was
obtained by Batra and Chen (1999) for non-strain-hardening �n � 0� thermo-
viscoplastic materials.

3.1. Results for CRS 1018 steel

We assigned the following values in SI units to the material parameters for the
CRS 1018 steel studied by Molinari (1997).

�̂ � 7800 kg=m3;m � 0:019; � � ÿ0:38; �̂0 � 334� 107;

ĉ � 500 J=kgK; k̂ � 50 W=mK; �̂0 � 405 MPa; ` � 0:001; n � 0:015;

 0 � 0:01; _
0t � 104=s; � �0� � 0; �̂i � 300 K; H � 2:5 mm:

�21�

Values of material parameters except for ` are the same as those used by Molinari
(1997); that for ` is somewhat arbitrarily chosen,  0 is set equal to his prestrain 
i,
and �̂0 � �̂0molinari� 0�n. The e�ect of ` on the shear band spacing is discussed
below. Results presented herein are for a layer of in®nite thickness, thus the e�ect of
boundary conditions is not considered. The value of H is used to nondimensionalize
the variables, and the homogeneous solution (12) is used to compute numerical
results. When conducting parametric studies, values used of all parameters except
the one being varied are those given in (21).
Fig. 1 depicts for homogeneous deformations of the body the shear stress s vs the

work hardening parameter  , for n � 0, 0.015 and 0.1. When there is no work
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hardening, i.e. n � 0, the stress decreases monotonically. However, when work
hardening e�ects are considered, the value of  when the stress attains its maximum
value increases with an increase in the value of the work hardening exponent n. Fig. 2
shows the growth rate � at time t0 or average strain 
0 vs the wave number � for six
di�erent values of the average strain 
0 when the initial perturbation is introduced.
For each value of 
0, the initial growth rate � ®rst increases with �, attains a max-
imum value and then decreases; henceforth we call the maximum value �m of � the
dominant or the critical growth rate, and denote the corresponding wave number by
�m. As noted earlier, �m and �m depend upon 
0 or equivalently t0, and �m is not a
monotonically increasing function of t0. Figs. 3a and b exhibit, for four di�erent
values of the material characteristic length `, the dependence of �m and the corre-
sponding wavelength Lm � 2�=�m upon the nominal strain 
0 when the perturbation
is introduced. For each value of `, �m is maximum at 
0 ' 0:5, but Lm is minimum
for a little smaller value of 
0. Molinari studied nonpolar �` � 0� materials only and
assumed that these two values of 
0 are the same. Whereas the hardening of the
material due to its plastic deformations depends upon the plastic work done in our
constitutive hypothesis (7), it depends on the plastic strain in the constitutive rela-
tion used by Molinari (1997). The values 
m0 of 
0 corresponding to the maximum of
�m or the minimum of Lm equal about twice of that � ~
0� where the stress attains its
maximum value (cf. Fig. 1b) in the homogeneous solution. Note that the curves of
Lm vs 
0 near the in®mum of Lm are nearly ¯at. When thermal softening is modeled
by an a�ne function of temperature, the in®mum of Lm�t0� occurs for a rather large
value of t0 (e.g. see Batra and Chen (1999)). The values of the shear band spacing

Fig. 1. Shear stress vs the work hardening parameter  for homogeneous simple shearing deformations of

a thermoviscoplastic block.
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found by using Eqs. (19) and (20) and the plots in Figs. 3a and b are essentially
equal to each other; values of the shear band spacing given below have been com-
puted by using Eq. (20).
We have plotted in Fig. 4 the shear band spacing and the maximum initial growth

rate as a function of the material characteristic length `. With an increase in the
value of `, the maximum initial growth rate decreases gradually but the shear band
spacing increases from 1.05mm for ` � 0 to 3.4mm for ` � 0:01. The higher values
of ` increase the stabilizing e�ect of the dipolar theory, and increase the shear band
spacing. Batra and Kim (1988) numerically studied the initiation and development
of shear bands in dipolar thermoviscoplastic materials and found that the band
width and the average strain at which a shear band initiated increase with an
increase in the value of `. Nesterenko et al. (1995) observed L̂s � 0:85 mm during
the radial collapse of a thick-walled austenitic stainless steel cylinder deformed at a
strain-rate of about 104/s, and values obtained from Wright and Ockendon's (1996)
and Grady and Kipp's (1987) models are (see Nesterenko et al., 1995)

L̂WO � 0:33 mm; L̂GK � 1:8 mm: �22�

For the CRS 1018 steel with material properties given in (21), Molinari (1997)
computed L̂s � 1:4 mm. The di�erence between the presently computed value of ~Ls

and that obtained by Molinari (1997) is due to the di�erent way of modeling the
hardening of the material caused by plastic deformations. Wright and Ockendon

Fig. 2. Initial growth rate � vs the wave number � for six di�erent values of the average strain, 
.
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(1996) did not consider strain hardening of the material, and Grady and Kipp (1987)
considered only thermal softening. It is not clear which microstructural parameters
(e.g. grain size) determine the value of the material characteristic length. The present
results suggest that the consideration of the microstructural e�ects signi®cantly
in¯uences macroscopic phenomenon.

Fig. 3. Dependence of the maximum initial growth rate �m and the corresponding wavelength

Lm � 2�=�m upon the nominal strain 
0 when the perturbation is introduced.
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For a layer of ®nite thickness 2H, the only admissible modes that satisfy the
boundary conditions at y � �H are �n � n�=H; n � 1; 2; . . .. Molinari (1997) has
estimated the error caused by neglecting the e�ect of boundary conditions to be
L̂s=2H. For the problem studied herein with ` � 0, L̂s=2H � 0:21, the shear band
spacing can vary from 0.84 to 1.26mm. In the dipolar theory, one can determine `
by matching the computed shear band spacing with the observed one. The validity
of the dipolar theory then depends upon a favorable comparison of the computed
and test results for other loadings.
Figure 5a evinces the e�ect of the work hardening exponent n upon the shear band

spacing and the maximum initial growth rate. The shear band spacing increases and
the maximum initial growth rate decreases monotonically with an increase in the
value of n. The latter trend signi®es the stabilizing e�ect of work hardening upon
thermomechanical deformations of the viscoplastic body. Results plotted in Fig. 5b
reveal that the average strain corresponding to the shear band spacing increases
signi®cantly as n is increased. Figures 6±9 exhibit the dependence of the shear band
spacing, the maximum initial growth rate, and the nominal strain corresponding to
the shear band spacing upon strain-rate hardening exponent m, thermal-softening
exponent �, thermal conductivity k, and the nominal strain-rate _
0. The shear band
spacing increases monotonically with an increase in the values of m and k, but Ls

®rst decreases and then increases with an increase in the magnitude of the thermal
softening coe�cient. A ®ve-fold change in the value of k̂ from 50 to 250W/mK
increases L̂s from 1.04 to 1.63mm. However, a ®ve-fold increase in the value of m
from 0.02 to 0.10 enhances the value of L̂s from 1.4 to 2.9mm. The average strain
corresponding to the shear band spacing decreases with an increase in the value of m
but increases with an increase in the absolute value of the thermal softening coe�-

Fig. 4. Dependence of the shear band spacing and the maximum initial growth rate upon the material

characteristic length `.
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Fig. 5. (a) Dependence of the shear band spacing and the maximum initial growth rate upon the work

hardening exponent n; (b) e�ect of the work hardening exponent on the average strain corresponding to

the shear band spacing.
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Fig. 6. (a) Dependence of the shear band spacing and the maximum initial growth rate upon the strain-

rate hardening exponent m; (b) e�ect of the strain-rate hardening exponent on the average strain corre-

sponding to the shear band spacing.
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Fig. 7. (a) Dependence of the shear band spacing and the maximum initial growth rate upon the magni-

tude of the thermal softening exponent �; (b) e�ect of the thermal-softening exponent on the average

strain corresponding to the shear band spacing.
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cient. An explanation of the results plotted in Figs. 5b, 6b and 7b can be obtained by
looking closely at the shear stress±shear strain curves for the homogeneous solution
of the problem. Figures 10a±c depict the stress±strain curves for di�erent values of
m; n and �. As j�j and n increase, the shear stress vs the average strain curves beyond
the peak in the shear stress become ¯at, jds=d
j at a ®xed value of 
 decreases, and
the stress drops rather slowly with an increase in the average strain. However, with
increasing m; jds=d
j at a ®xed value of 
 increases. Thus the average strain corre-
sponding to the shear band spacing seems to depend upon the rate of drop of the
shear stress in the homogeneous solution. For the range of values of kÃ considered,
the nominal strain corresponding to the shear band spacing was virtually una�ected
by the value of k̂. Note that k̂ and ^̀ do not appear in the homogeneous solution of
the problem. Results plotted in Fig. 9b reveal that the average strain corresponding
to the initiation of the shear band spacing ®rst decreases with an increase in the
value of the nominal strain-rate from 100/s to 2�104/s and then increases. Wright
and Walter (1987) neglected the work-hardening of the material and obtained a U
shape curve for the average strain at the initiation of an instability vs the nominal
strain-rate. Our results show that beyond a nominal strain-rate of 3�104/s, the
average strain corresponding to the shear band spacing and also to the initiation of
an instability is essentially unaltered by the nominal strain-rate. It should be noted
that the results depend upon the constitutive relation employed, and Wright and
Walter (1987) modeled thermal softening by an a�ne function of the temperature
rise.
For the material parameters used by Kwon and Batra (1988) with a�ne thermal

softening and average strain-rate of 5�104/s, de®nition (20) of the shear band spa-
cing gives L̂s=0.294, 0.32 and 0.68mm for `=0, 0.001 and 0.01, respectively;

Fig. 8. Dependence of the shear band spacing and the maximum initial growth rate upon the thermal

conductivity k.
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Fig. 9. (a) Dependence of the shear band spacing and the maximum initial growth rate upon the nominal

strain-rate; (b) e�ect of the nominal strain-rate on the average strain corresponding to the shear band

spacing.
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corresponding values obtained from de®nition (19) are 1.73, 1.94 and 6.0mm. Kwon
and Batra's (1999) numerical solution yielded the same value of L̂s40.258mm for
` � 0 and 0.01. They considered the e�ect of material elasticity and boundary con-
ditions, and solved the complete set of coupled nonlinear partial di�erential equa-
tions, and did not ®nd the minimum value of the shear band spacing.

Fig. 10. Shear stress±shear strain curves for the homogeneous solution for di�erent values of (a) m, (b) n,

and (c) �.
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Batra and Kim (1992) conducted numerical experiments on the initiation and
development of shear bands in twelve materials and modeled the thermoviscoplastic
response of these materials by the Johnson±Cook (1983) relation which represents
thermal softening by an a�ne function of temperature rise. They concluded that a
shear band begins to grow in earnest when the shear stress has dropped to nearly
90% of its maximum value. In order to examine how this value correlates with the
average strain 
m0 or time tm0 corresponding to the in®mum of Lm�t0�, we have plot-
ted in Fig. 11 �s=smax vs m; n and �, where �s equals the value of s at an average strain
of 
m0 in the homogeneous solution. For a large range of values of m, the perturba-
tion introduced when �s=smax � 0:955 yields the shear band spacing. However, �s=smax

decreases from 0.98 to 0.92 as j�j increases from 0.09 to 0.9. The decrease in �s=smax is
quite sharp when n is increased from 0 to 0.02 but �s=smax ' 0.94 for 0.25n50.02.
As noted earlier, for the a�ne thermal softening, the shear band spacing corre-
sponds to perturbations introduced at a much larger value of 
0 or a smaller value of
�s=smax as compared to that for a power law material.

4. Approximate expressions for shear band spacing

The following analysis follows closely Molinari's (1997) work. The numerical results
presented above indicate that for given � and t0, (17) always has a root with a positive
real part. For a ®xed t0, � assumes a maximum value at the wave number �m. Therefore,

Fig. 11. Dependence of �s=smax upon various material parameters. Here �s equals the value of the shear

stress when perturbations of minimum wavelength begin to grow predominantly.
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@���; t0�
@�

����
���m
� 0: �23�

We ®rst consider locally adiabatic deformations, i.e. k � 0 and determine an
approximate expression for the shear band spacing in thermoviscoplastic materials
characterized by (7). Di�erentiating (17) with respect to �, evaluating the result at
� � �m and using (23) we obtain

b0m�m � c0m � 0 �24�

where

b0m �
@b��; t0�
@�

����
���m

; c0m �
@c��; t0�
@�

����
���m

; �25�

b and c are given by (18). Evaluating (17) at � � �m and � � �m, and eliminating �m
from it and (24), we arrive at

a�c0m�2 ÿ bmb
0
mc
0
m � cm�b0m�2 � 0; �26�

where bm � b��m; t0�; cm � c��m; t0�.
The left-hand side of Eq. (26) is a polynomial of degree 12 in �m with coe�cients

depending upon t0 since s0, �0 and  0 are functions of t0. Estimating the order of
magnitude of each term in Eq. (26), noting that `<<1, and retaining only the
dominant terms, we get

�m � �

m`2

� �1=4

ÿ �
�0
ÿ n

 0

1

1�  
0

 0

� �1�n

26664
37775

1=4

: �27�

Evaluating (12) at t � t0, substituting for  0 in terms of �0, recalling that
Lm � 2�=�m, and using (6), we obtain

L̂m�t0� � 2�
^̀

_
0

 !1=2

mĉ� �1=4 ÿ �
�̂0
ÿ n

�1� n���̂0 ÿ �̂0�

" #ÿ1=4
; �28�

where �̂0 � �̂�0� ÿ �r  0

1�n 1� � �0�
 0

� �1�n
, and a superimposed hat indicates that the

quantity is expressed in SI units. When n � 0, expression (28) reduces to Eq. (40) of
Batra and Chen (1999). For �0 � 0 and j � j> n=�1� n�, it follows from Eq. (28) that
L̂m�t0� is minimum at t0 � 0 since �̂0 is a monotonically increasing function of t0.
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Eq. (28) and dL̂m=dt0 � 0 give

�̂0�tm0 � � �̂0=�1ÿ �ÿ�= ~n�ÿ1=2� �29�

where tm0 corresponds to the time when L̂m�t0� takes on an extreme value. Equations
(12) and (29) show that tm0 is una�ected by the value of ` which also could be con-
cluded from the results plotted in Fig. 3a. Substitution from (29) into (28), and using
de®nition (20) of the shear band spacing results in the expression,

L̂s � 2�
^̀

_
0

 !1=2
mĉ�̂0

�1ÿ �ÿ�= ~n�ÿ1=2�

 !1=4

�ÿ��ÿ1=8��ÿ��1=2 ÿ � ~n�1=2�ÿ1=4; �30�

for the minimum spacing among adiabatic shear bands. For the shear band spacing
to be positive, j�j > ~n. Thus the critical shear band spacing in locally adiabatic
deformations of a strain-hardening dipolar viscoplastic material depends upon the
square-root of the material characteristic length, fourth-root of the strain-rate
hardening exponent, and the negative square-root of the nominal strain-rate. Figure
12 shows a comparison of the shear band spacing as a function of the material
characteristic length as computed from the de®nition (20) with the numerical solu-
tion of the homogeneous problem, and the approximate relation Eq. (30). It is clear
that (30) gives very good values of the shear band spacing.
We now derive an approximate expression for the shear band spacing in heat

conducting nonpolar �` � 0� thermoviscoplastic materials. With the assumptions
m� 1; �kf;s � 1; �k� s, expressions (18) for b; c and d can be approximated as
follows.

b ' 1�  
0

 0

� �n

�2 ÿ ��

m�0

� �
ÿ �n

m 0
1�  

0

 0

� �ÿ1
;

� b0�
2 � b1;

c ' k 1�  
0

 0

� �n

�4 � �s0

m�0
1�  

0

 0

� �n

� ns0

m 0
1�  

0

 0

� �ÿ1 !
�2;

� c0�
4 � c1�

2;

d � nks0

m 0
1�  

0

 0

� �ÿ1
�4 � d0�

4

�31�

Substitution from (17), (18)1 and (31) into (23) yields

b0�
2
m � �c1 � 2c0�

2
m��m � 2d0�

2
m � 0 �32�

whose approximate solution is
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�m ' ÿ c1 � 2c0�
2
m

b0
� 2d0�

2
m

c1 � 2c0�
2
m

: �33�

Substituting from (33) into (17), estimating the order of magnitude of each term and
retaining only the dominant terms, we obtain

A�4m � B�2m � C � 0 �34�

where

A � �c0c1=b0� ÿ d0;

B � 6ac1�d0 ÿ c0c1b0�=b20;
C � ÿac31=b30:

�35�

Equation (34) can be solved for �2m and then �m can be computed from (33). Since
coe�cients a; b0; c0; d0; b1 and c1 depend upon t0; �

2
m computed from (34) is a func-

tion of t0. The expression for tm0 that makes �m maximum is very involved. However,
�m can be plotted as a function of t0 and the maximum value of �m and the shear
band spacing determined.

Fig. 12. Comparison of the shear band spacing as a function of the material characteristic length as

computed from the numerical solution of the complete set of equations and the approximate relation (30).
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Fig. 13. Comparison of the dependence of the critical wavelength of the dominant instability mode upon

the nominal strain as computed from the approximate analytic expression and the solution of the com-

plete set of equations (a) k � 0, (b) ` � 0.
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Figs. 13a and b compare the dependence of the critical wavelength of the domi-
nant instability mode upon the nominal strain as computed from (28) and (34) with
those obtained from a solution of the complete set of equations. A close agreement
between the two sets of results indicates that the assumptions made in deriving (28)
and (34) are reasonable.

5. Conclusions

We have ascertained shear band spacing in strain-rate gradient-dependent, work-
hardening, strain-rate hardening and thermally softening viscoplastic materials
undergoing simple shearing deformations. Higher-order stresses corresponding to
the strain-rate gradients are included in the governing equations and the yield func-
tion. A homogeneous solution of the governing equations is perturbed at di�erent
times t0 and the growth rate at t0 of perturbations is computed as a function of the
wave number. The wavelength of the dominant mode of instability with the max-
imum growth rate at t0 is assumed to determine the shear band spacing. The shear
band spacing rapidly increases with an increase in the work-hardening exponent and
in the material characteristic length. It also increases with a rise in the value of the
thermal conductivity and the strain-rate hardening exponent. The average strain 
0
corresponding to the shear band spacing correlates well with the rate of drop of the
shear stress in the homogeneous solution; higher values of 
0 correspond to the
slower rate of drop of the shear stress. Approximate analytic expressions for the
shear band spacing in locally adiabatic deformations of dipolar thermoviscoplastic
materials indicate that the shear band spacing varies as the square-root of the
material characteristic length, fourth-root of the strain-rate hardening exponent,
and negative square-root of the average or nominal strain-rate. The e�ects of the
thermal softening and the work-hardening exponents are inter-related. When work-
hardening of the material can be neglected, then the shear band spacing varies as the
negative fourth-root of the thermal softening exponent.
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