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Abstract

We analyze the initiation and development of a shear band in a thermo-elasto-viscoplastic

body deformed in simple shear by tangential velocity and heat flux prescribed at the outer

bounding surfaces. Unlike previous studies no defect is introduced to initiate a shear band.

The prescribed heat flux acts as a defect, and the shear band initiation time depends upon it.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This work is motivated by high speed manufacturing processes such as extrusion,

punching, machining and friction stir welding. Aukrust and Lazghab (2000) found
that during extrusion of aluminum alloy AA6082 at 0.175 m/s deformations local-

ized into a thin layer 250 lm wide adjacent to the die wall. Frictional forces between
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the work-piece and the die wall generate considerable heat. A similar situation occurs

during the punching of a hole in a plate where frictional forces between the work-

piece and the die and the accompanying high strain rates can generate significant

heat flux; e.g. see Moss (1981), Zener and Hollomon (1944). In friction stir welding

(e.g. see Seidel and Reynolds (2001), Schneider and Nunes (2004)) the tool rotating
at a very high speed has a small diameter entry probe and a concentric large diameter

shoulder to compress the two plates to be welded. The tool translates at a uniform

speed. Heat due to friction generates a column of molten material undergoing essen-

tially Couette flow that upon solidification forms a good weld between the plates.

Typical values of different parameters for welding 1100 aluminum are: tool diame-

ter = 6.25 mm, shoulder diameter = 19 mm, rotational speed = 700 rpm and transla-

tional speed = 3 mm/s. Alternatively, rotational speed of 1200 rpm coupled with

translational speed of �10 mm/s could be used. It was found that the weld process
introduced extensive localized deformation near the boundaries of the molten mate-

rial. Considerable heat is very likely produced during high speed machining wherein

shear bands have been observed.

We note that deformations in all these processes are shear dominated with signif-

icant heat flux at the boundaries. Accordingly, we study simple shearing deforma-

tions of a thermo-elasto-viscoplastic material with both the tangential velocity and

the heat flux prescribed at the boundaries to analyze localization of deformation near

the boundaries. The prescribed heat flux at the boundaries makes the deformation
inhomogeneous and introduces a nucleation site for the deformation to localize.

The present work differs from the earlier ones in two respects: there is no artificial

defect (such as a weak material, inhomogeneous initial temperature/porosity, non-

uniform thickness of specimen) introduced to nucleate a shear band, and thermal en-

ergy is being continuously input into the body through the boundaries rather than

the boundaries being thermally insulated. Thus heat conduction plays a noticeable

role. The narrow region of intense plastic deformation, usually a few microns

(lm) wide, is called a shear band.
It is generally believed that shear bands (SBs) were first observed by Tresca (1878)

and subsequently by Massey (1928) during the hot forging of a bar. However, the

research activity in this area picked up following their observation by Zener and

Hollomon (1944) during the punching of a hole in a low-carbon steel plate. They also

postulated that a material becomes unstable when its softening due to heating caused

by plastic working overcomes its hardening due to strain and strain-rate effects. The

SBs have been termed adiabatic since they form in a few micro-seconds after initia-

tion and there is not enough time for the heat to be conducted away from them.
Numerical simulations of problems with thermally insulated boundaries (e.g. see Ba-

tra and Kim (1991)) have revealed that heat conduction plays a negligible role till

they initiate but plays a dominant role during their development and in the post-

localization process. Marchand and Duffy (1988) tested thin-walled tubes in torsion

and observed that the SB initiation was accompanied by a rapid drop in the torque

required to deform the tube and hence in the shear stress in the shear-banded region.

This occurred at a nominal shear strain much higher than that at which the shear

stress peaked. These and other works on adiabatic SBs are summarized in two books
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(Bai and Dodd (1992), Wright (2002)), special issues of three journals (e.g. see

Armstrong et al. (1994), Zbib et al. (1992), Batra et al. (2000)), two volumes edited

by Perzyna (1998), and Batra and Zbib (1994), review article of Tomita (1994) and

the summary paper by Batra (1998). Furthermore, Batra (1987a) has characterized

the effect of different material parameters on the initiation and development of
SBs; Batra and Kim (1992), and Batra and Lear (2005) have ranked different mate-

rials according to their susceptibility to shear banding. Batra and Love (2004, 2005a)

and Charalambakis and Baxevanis (2004) have analyzed the development of shear

bands in non-homogeneous materials, and Batra and Zhu (1991) and Zhu and Batra

(1991) have studied their initiation and propagation in a laminated body. For plane

strain deformations of functionally graded materials comprised of tungsten particu-

lates in nickel-iron matrix, Batra and Love (2005b) have delineated the initiation and

propagation of a crack due to either a brittle or a ductile failure.
The paper is organized as follows. Section 2 describes the problem formula-

tion. The computational procedure used to find a numerical solution of the prob-

lem and computed results are given in Section 3. Conclusions are summarized in

Section 4.
2. Formulation of the problem

We study simple shearing deformations of a homogeneous and isotropic thermo-

elasto-viscoplastic body occupying the domain �H 6 y 6 H and sheared by equal

and opposite tangential velocity V0 prescribed on surfaces y = ±H. Here, in addition

to the velocity prescribed on y = ±H, heat flux is also prescribed. Thus both mechan-

ical and thermal energies are input into the body through the boundaries. Let the

spatial coordinate be normalized by H, the shear stress by s0, time by H/V0, and

the temperature by h0. In terms of non-dimensional variables, the body occupies

the domain bounded by the planes y = ±1. Henceforth, unless otherwise specified,
we use non-dimensional variables. Equations governing dynamic finite thermome-

chanical deformations of the body are (e.g. see Batra (1987a,b))

q _v ¼ s;y ;

_h ¼ kh;yy þ s _cp;

_c ¼ v;y ¼ _ce þ _cp;

_s ¼ l _ce;

_cp ¼ _c� exp
s

ðAþ BcnpÞð1� hm� Þ
� 1

 !
=C

" #
;

h� ¼
h� hr
hm � hr

:

ð1Þ

For boundary conditions we take

vð�1; tÞ ¼ �1; �kh;yð�1; tÞ ¼ qðtÞ; ð2Þ
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and for initial conditions,
hðy; 0Þ ¼ hr; cpðy; 0Þ ¼ 0; cðy; 0Þ ¼ 0; vðy; 0Þ ¼ y; sðy; 0Þ ¼ 1: ð3Þ

Here a superimposed dot indicates the material time derivative, a comma fol-

lowed by y signifies partial differentiation with respect to y, q is the mass density,

v the velocity, s the shear stress, c the shear strain, _c the shear strain rate, t the

time, q the heat flux and h the present temperature of a material particle. Further-
more, k is the thermal diffusivity, and l the shear modulus of the material. Eq. (1)1
and (1)2 express, respectively, the balance of linear momentum and the balance of

internal energy. All of plastic working, given by the second term on the right-hand-

side of Eq. (1)2, is assumed to be converted into heating. Eq. (1)3 is the definition

of strain rate, and Eq. (1)4 implies that the strain-rate has additive decomposition

into elastic and plastic parts. Eq. (1)5 is Hooke�s law written in the rate form, and

Eq. (1)6 is the thermo-viscoplastic relation due to Johnson and Cook (1983). In it,
_c� is the reference strain rate, and hm and hr are the melting temperature and the
reference temperature, respectively. The parameters m, n and C characterize,

respectively, the thermal softening, strain hardening, and strain rate hardening

characteristics of the material. All material parameters are presumed to be con-

stants for the range of strains, strain-rates and temperatures anticipated to occur

in this problem. We note that Johnson and Cook (1983) determined material

parameters from torsional test data over a limited (low) range of strains, strain-

rates, and temperatures. The range of strain rates and temperatures anticipated

to occur within a shear band is considerably more than that used by Johnson
and Cook. Also, for some materials, phase transitions and damage may occur

within a SB. Thus, results presented herein are approximate, and help establish

general trends.

The non-dimensional parameters are related to their dimensional (barred) coun-

terparts as follows:
y ¼ �y=H ; t ¼ �t _c0; h ¼ �h�q�c=�A; k ¼ �k=�q�c _c0H
2; q ¼ �qH 2 _c20=s0;

q ¼ �q=_c0Hs0: ð4Þ
Here c is the specific heat, k the thermal conductivity and _c0 ¼ V 0=H the nominal

strain rate.

Because of symmetry/antisymmetry of deformations about y = 0, deformations of

the material in the region 0 6 y 6 1 are analyzed. On the surface y = 0, boundary

conditions v(0, t) = 0, h,y(0,t) = 0 are imposed. Thus the surface y = 0 is stationary

and thermally insulated. On the surface y = 1, the tangential velocity and the heat

flux are prescribed.
Initially the body is at a uniform temperature hr, and the time is reckoned from

the instant when transients have died out and steady state has been reached. Thus

at t = 0, we set the total strain and the plastic strain equal to zero and the shear stress

equal to the quasistatic yield stress of the material.
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3. Computation and discussion of results

In order to compute results, we set H = 3.18 mm, V0 = 4.77 m/s. Hence, the block

is sheared at a nominal strain-rate of 1500/s. Values of other parameters, taken either

from Johnson and Cook (1983) or Batra and Kim (1992), are listed in Table 1. Thus
the reference temperature h0 ¼ �A=ð�q�cÞ equals 122 K. That is, values of temperature

rise in K equal 122 times the non-dimensional values reported below. The room tem-

perature hr is set equal to 300 K.

The aforestated problem is solved numerically by the finite element method

(FEM); e.g., see Batra and Kim (1990a). A weak form of governing equations is de-

rived by the Galerkin approximation. The result is a system of coupled non-linear

ordinary differential equations which are integrated by using the subroutine LSODE

(Livermore Solver for Ordinary Differential Equations) that can be downloaded
from the internet. It adjusts the time step adaptively to compute the solution within

the prescribed accuracy. While using LSODE we set MF = 10, ATOL = 10�6,

RTOL = 10�6, where ATOL and RTOL control, respectively, the absolute and the

relative tolerances in the solution.

The FE code of Batra and Kim (1990a) has been modified to incorporate the non-

zero heat flux boundary condition at y = 1. The modification of the code was vali-

dated by finding the transient temperature field in a semi-infinite body y 6 1 with

the heat flux prescribed at y = 1, the semi-infinite body is modeled by assigning a
very large value to H. The computed solution at points near y = 1 was found to

match within 0.01% with the analytical solution of the problem given in Carlsaw

and Jaeger (1986).

We used two FE meshes with coordinates of nodes given by either

yn ¼ 8
n� 1

300

� �� �0:6

; 1 6 n 6 31;

yn ¼
n� 1

300

� �0:05

; 31 6 n 6 301; or

yn ¼ 1� 301� n
300

� �4

; n ¼ 1; 2; . . . 301:

ð5Þ

In each case, more nodes are concentrated near the boundary y = 1 where heat flux is

prescribed. Numerical solutions computed with these two meshes were virtually

identical with each other and their plots overlapped. Results given below are with

the FE mesh obtained by using (5)1.
Table 1

Material parameters used for 4340 steel

�q
ðkg=m3Þ

�c
ðJ=kgKÞ

�l
ðGPaÞ

�k
ðW=mKÞ

hm
(�C)

�A
ðMPaÞ

�B
ðMPaÞ

C n m _c� ð1=sÞ

7840 477 76 38 1520 455 237 0.006 0.37 1.03 1
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Fig. 1. For six values of the heat flux prescribed at y = 1, time histories of the evolution at y = 1 of (a) the

temperature rise, (b) the shear stress, (c) the shear strain, and (d) the shear strain rate.
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For six different values of the heat flux, Fig. 1(a)–(d) exhibits time histories of the

non-dimensional temperature rise, the normalized shear stress, the shear strain and

the non-dimensional plastic shear strain-rate at the point y = 1. Recalling that the

temperature rise at a point on the top surface of a half space with prescribed heat

flux �q equals 2�q�c�q
�k1=2

ð�tp Þ
1=2

(e.g. see Carlsaw and Jaeger (1986)), it will take some time

for the temperature to rise at the surface y = 1 and diffuse into rest of the specimen.

With a rise in temperature of material points near y = 1, the shear stress needed to

deform them plastically decreases and they deform more rapidly resulting in higher
energy dissipation rate due to the internal shear stress. This further increases the tem-

perature and in a way the process is self energizing. For thermally insulated bound-

aries, a state is reached when energy input through the working of externally applied

traction at y = 1 equals that diffused through the boundary of a SB via heat conduc-

tion. Batra and Chen (2001) found that nearly 85% of the working of the tangential

traction applied at y = 1 is conducted out of the boundary of the almost fully devel-

oped SB.

From the time history of the temperature rise plotted in Fig. 1a, we see that the
initial rate of temperature increase varies with �q but the explosive rate of temperature

increase is virtually independent of �q. For every tenfold increase in the prescribed

heat flux starting at 103 W/m2, the difference in times for two successive values of

the heat flux when the rapid drop in the shear stress and the simultaneous high
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increase in the strain-rate occur becomes larger. For heat flux of 108 W/m2 the shear

stress drops before it attains its peak value. The temperature rise at the instant of the

stress collapse decreases with an increase in �q; for �q ¼ 103 W=m2, Dh . 360 K, and

for �q ¼ 108 W=m2, Dh . 270 K. One reason for this is that the stress drops sooner

for �q ¼ 108 W=m2 than that for �q ¼ 103 W=m2. Since the tangential velocity pre-
scribed at y = 1 is kept constant, therefore working of the shear traction applied

at y = 1 is proportional to the shear stress at y = 1 and rapidly decreases once the

deformation begins to localize there. The working due to applied tangential traction

of 455 MPa equals 2.17 · 109 W/m2. Thus prior to the beginning of the localization

process, the working due to externally applied force exceeds the prescribed heat flux.

It suggests that the prescribed heat flux of �106 W/m2 serves as a very weak defect

and that of �108 W/m2 as a strong defect. However, once the deformation has begun

to localize, the applied tangential traction (or the load required to deform the body)
and hence the external working decrease. We note that the drop in the shear stress at

y = 1 is accompanied by a sharp increase in the strain rate there signifying the strong

thermal softening.
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Fig. 2. For prescribed heat flux of 106 W/m2 at y = 1, the spatial distribution at different times of: (a) the

shear strain, (b) the shear stress, (c) the shear strain rate and (d) the velocity.
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Initially the strain and strain-rate hardening effects exceed thermal softening and

the shear stress required to maintain the prescribed average strain rate increases.

As depicted in Fig. 2(a)–(b), the shear strain and the shear stress are essentially

uniformly distributed in space with the shear stress at each material point rising

in time till it peaks. Even though the temperature distribution (not shown) is
non-uniform at all times with the highest temperature occurring at y = 1 and

the lowest at y = 0, the shear stress is virtually constant throughout the region

0 6 y 6 1. Because of the continuing rise in temperature difference between mate-

rial points at y = 1 and those at y < 1 the shear stress at y = 1 peaks and subse-

quently drops rapidly. The non-dimensional time or the average shear strain

when the shear stress at y = 1 peaks decreases with an increase in the value of �q;
cf. Fig. 1(b). For �q ¼ 106 W=m2, the stress-drop at y = 1 occurs at t . 1 ms. Note

that as the shear stress at y = 1 begins to drop, the velocity field starts to deviate
from the linear variation and a boundary layer develops near y = 1; e.g., see Fig.

2(d). At t = 1.492, the total strain rate or the velocity gradient derived from Fig.

2(d) is positive in the region 0 6 y < �0.6 but negative in the region

�0.6 < y < �0.98. Since the plastic strain rate in the latter region (cf. Fig. 2(c))

has a small positive value, the elastic strain rate is negative in this region which

contributes to the drop in the shear stress. Note that the total strain rate equals

the sum of the elastic and the plastic strain rates. The positive value of the plastic

strain rate implies that the yield stress, due to the rise in temperature, is decreasing
at a rate faster than the rate of drop of the shear stress.

Batra and Kim (1992) numerically studied simple shearing deformations of

twelve materials under thermally insulated boundary conditions but a geometric

defect introduced at the block center to initiate a SB. They postulated that a

SB initiates at a point when the shear stress there has dropped to 80% of its max-

imum value at that point and the material point is deforming plastically. This cri-

terion has been successfully used in several subsequent numerical simulations of

SBs performed under thermally insulated boundaries. In order to see if such a cri-
terion can be used to delineate the initiation of a SB in the present problem, we

have plotted in Fig. 3(a) and (b) the time history of the evolution of the plastic

shear strain rate and the shear stress at y = 1 for �q ¼ 106 W=m2. Only the late time

behavior is shown in this Figure. It is clear that for t P 1.490 . 1 ms the shear

strain rate oscillates even though the shear stress continues to drop monotonically

first and then exhibits oscillations of very small amplitude. As �q is increased from

103 to 25 · 107 W/m2, the first peak in the strain rate at y = 1 has values decreas-

ing from 1899 _c0 to 1075 _c0, where _c0 is the nominal strain-rate. We note that a sim-
ilar oscillatory behavior occurs when the boundaries are thermally insulated, i.e.,
�q ¼ 0; e.g., see Batra and Zhang (2004), Bayliss et al. (1994), Batra and Kim

(1990a), and DiLellio and Olmstead (2003). These investigators employed different

techniques to integrate the governing partial differential equations and is thus a

characteristic of the governing equations and values assigned to material parame-

ters. Batra and Kim (1990a) attributed these oscillations to the interplay between

strain and strain-rate hardening and thermal softening. Once thermal softening be-

comes much larger than the hardening effects, the oscillations cease. For
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�q ¼ 106 W=m2, non-dimensional times corresponding to s/smax = 0.95 and 0.8 at

y = 1 are 1.492 and 1.496, respectively; these differ by less than 0.3%. With an in-

crease in �q from 104 W/m2 to 108 W/m2, s/smax at the first peak in strain rate at

y = 1 increases from 92.6% to 96.3%. To avoid the effect of oscillations in the

strain rate at y = 1 on the SB initiation time, we hypothesize that a SB ensues

at y = 1 when s/smax = 0.97 there. This criterion is reasonable and is supported

by experimental observations of Duffy and Chi (1992). They report that in tor-

sional tests on thin-walled steel tubes a SB initiates soon after the shear stress at-
tains its peak value.

The variations with the prescribed heat flux �q of the SB initiation time, the tem-

perature rise at the SB center and the localization ratio are depicted in Fig. 4(a)–(c);

note the logarithmic scale along the horizontal axis. The localization ratio equals the

shear strain at the band center divided by the nominal shear strain in the specimen

and is a measure of the intensity of localization of deformation. For thermally insu-

lated boundaries, Batra and Kim (1992) plotted the localization ratio for twelve

materials. It is clear that with an increase in �q the SB initiation time decreases rap-
idly, the temperature at the SB center increases monotonically, and the localization

ratio increases. The intensity of localization for �q ¼ 108 W=m2 is nearly 10 times that

for �q ¼ 102 W=m2. A least squares fit of a quadratic polynomial to the SB initiation

time, tSB, vs. log �q is

tSB ¼ 1:19þ 0:169ðlog �qÞ � 0:0344ðlog �qÞ2; ð6Þ
where tSB is in ms, and �q in W/m2. Eq. (6) is valid for 103 6 �q 6 108 W=m2. We note

that Molinari and Clifton (1987) and Duffy and Chi (1992) also predicted a logarith-

mic dependence on the defect size for the strain at localization. Neither results re-

ported in Fig. 4 nor Eq. (6) are valid for �q < 103 W=m2. For small values of �q,
tSB will increase exponentially approaching 1 as �q goes to zero. For �q ¼ 0, deforma-

tions stay homogeneous and no SB forms.
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Marchand and Duffy (1988) defined the SB width as the width of the region over

which the maximum plastic strain is constant. The band width is measured from

post-mortem pictures of grid lines drawn on the unstressed specimen�s outer surface.
The level of maximum plastic strain within a SB depends upon the applied load and

its duration. In numerical simulations, the band width computed according to this

criterion will be zero since the maximum plastic strain occurs at one point only.

Accordingly, Batra and Kim (1992) defined the band width as the width of the region
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surrounding the band center over which the plastic strain differs from its peak value

by less than 10%. Since the plastic strain at the band center continues to grow, the

band width will vary with time. For thermally insulated boundaries driven at a uni-

form velocity, the SB width is determined by the diffusion through heat conduction

of the plastic working within the shear banded region. For example, Batra and Chen
(2001) found that 85% of plastic working is conducted through the boundaries of a

nearly fully developed SB. For the present problem, with the thermal energy being

continuously input at a uniform rate through the boundary at y = 1, both the energy

input through the boundary y = 1 and that generated due to plastic working need to

be conducted out of the SB boundaries for the SB width to attain a steady value. As

vividly shown in Fig. 8 of Batra and Kim (1992) the computed band width varies

with the localization ratio, and the half band width does not equal the distance from

the center to the farthest point where the SB has initiated.
For �q ¼ 106 W=m2 and five values of t close to tSB Fig. 5 exhibits the develop-

ment of the shear strain at points near y = 1. It is evident that the intensely de-

formed region continues to shrink. If pictures of the deformed specimen were

taken at t = 1.492, then the shear band width would equal 2 · 0.001 ·
3.18 mm = 6.36 lm.

For �q ¼ 106 W=m2, Fig. 6(a)–(d) evinces at the point y = 1 the time-histories of

the evolution of the normalized shear stress, the shear strain, the non-dimensional

plastic shear strain-rate and the non-dimensional temperature for several values of
the nominal strain rate _c0. The results are qualitatively similar to those obtained

earlier (e.g. see Batra (1988)) with thermally insulated boundaries. The nominal

strain, but not the dimensional time, at which a SB initiates increases with an in-

crease in the nominal strain rate. For example, the nominal strain or the non-

dimensional times at the initiation of a SB at nominal strain rates of 102/s and

105/s equal �1.2 and 1.8, respectively. However, the corresponding dimensional

times are 12 and 0.018 ms. The localization ratio decreases with an increase in

the nominal strain rate. A least squares fit to the computed values of tSB for dif-
ferent values of _c0 is
0.995 0.996 0.997 0.998 0.999 1.000

2.1

2.4

2.7

3.0

3.3

S
tr

ai
n

y

t=
 1.488
 1.489
 1.490
 1.491
 1.4915
 1.492

Fig. 5. At different times, variation of the shear strain at points close to the boundary y = 1, where heat

flux is prescribed at 106 W/m2.
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tSB ¼ ½0:8112þ 0:00274 log _c0 þ 0:01747ðlog _c0Þ
2�; ð7Þ

where tSB is in ms, _c0 is in 1/s, and 102=s 6 _c0 6 105=s.
Here we have employed the Johnson and Cook (1983) relation to describe the

thermo-viscoplastic response of the material. Batra and Kim (1990b), Batra and Ja-

ber (2001), Batra and Chen (2001) and Batra and Jayachandran (1992) have shown

that other viscoplastic relations give qualitatively similar but quantitatively different

results. Batra and Chen (1999) and Daridon et al. (2004) have studied shear band

spacing with different constitutive relations. Recently Batra and Wei (2005) have gi-

ven a closed-form expression for shear band spacing in strain-hardening thermo-

viscoplastic solids.
The length of the smallest element for the FE meshes given by Eq. (5)1 and

(5)2 equal 0.53 lm and 4 · 10�7 lm, respectively. These and other similar FE

meshes gave virtually identical values of the SB initiation time and width. For

our problem, thermal conductivity controls the SB width; e.g. see Batra and

Kim (1991). For locally adiabatic deformations the shear band width will equal

the size of the smallest element in the FE mesh. For two- and three-dimensional

problems one can not use such fine meshes. One way to obtain mesh-independent
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results is to use a strain-rate gradient-dependent theory, e.g. see Batra (1987a,b),

Batra and Kim (1990b) and Batra and Hwang (1994). Such theories involve a

material characteristic length and third-order spatial gradients of displacements

or velocities in the problem formulation thereby necessitating the use of either

Hermitian basis functions or auxiliary variables. At present, to our knowledge,
there are no good ways of estimating the material characteristic length. Further-

more, these theories may either not give a finite speed of elastic waves or a un-

ique solution of the linear elastic problem; see Batra (1975) for the corresponding

thermal problem. Batra and Chen (1999), and Chen and Batra (1999) employed a

strain-rate-gradient dependent plasticity theory to find spacing between adjacent

SBs. Alternatively, one can use an adaptively refined mesh to delineate the width

of a SB; e.g. see Batra and Ko (1992, 1993) and Batra and Hwang (1993). Fre-

quent remeshing smoothens out the deformation fields and consequently delays
the initiation of an ASB. Another possibility is to use a meshless method such

as the modified smoothed particle hydrodynamics method (e.g. see Batra and

Zhang (2004)).
4. Conclusions

We have analyzed simple shearing deformations of a thermo-elasto-viscoplastic
body deformed at a prescribed nominal strain rate and with a constant heat flux in-

put through its boundaries. The initial state of the body corresponds to a uniform

state of deformation. The deformation localizes near the boundaries where the heat

flux is prescribed. The rate of deformation localization, i.e., the reciprocal of the time

required to form a shear band, increases rapidly with an increase in the value of the

prescribed heat flux. The time of initiation of a shear band depends upon the loga-

rithm of the heat flux and the logarithm of the nominal strain rate. The width of the

intensely deformed region continues to decrease with time because of the constant
heat input through the boundaries. Whereas for thermally insulated boundaries

the shear band initiation time is determined by when and how large a perturbation

is introduced to disturb the homogeneous solution, here it is ascertained by the heat

flux prescribed at the boundaries. The major quantitative differences in the two cases

are in the time of initiation of a SB and in its width. For thermally insulated bound-

aries, these are determined by the size and the type of the initial defect, for the pres-

ent problem they are determined by the heat flux prescribed at the boundaries which

may be viewed as a defect.
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