
www.elsevier.com/locate/ijplas

International Journal of Plasticity 22 (2006) 1026–1061
Determination of effective thermomechanical
parameters of a mixture of two

elastothermoviscoplastic constituents

B.M. Love *, R.C. Batra

Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and

State University, MC 0219, Blacksburg, VA 24061, USA

Received 4 May 2005
Available online 28 September 2005
Abstract

We analyze plane strain deformations of a representative volume element (RVE) to evalu-
ate effective thermophysical parameters of a particulate composite comprised of two perfectly
bonded heat conducting elasto-thermo-visco-plastic constituents. It is assumed that the com-
posite is also isotropic and its response elasto-thermo-visco-plastic. Effective values of material
parameters so computed are compared with those obtained from either existing micromechan-
ics models or the rule of mixtures or both. It is found that values computed from the rule of
mixtures differ at most by 10% from those obtained by using the RVE. Effective stress versus
effective strain curves obtained by analyzing simple shearing and axisymmetric deformations
of the RVE and of the homogenized material, and also those obtained in plane strain defor-
mations involving loading/unloading/reloading are found to be very close to each other. Time
histories of the effective plastic strain at two neighboring points, one in each constituent, are
quite different. The effective stress computed by the rule of mixtures from the average effective
stress in each constituent and its volume fraction is very close to that obtained from surface
tractions acting on the specimen boundaries. The average effective stress in a constituent is
computed from the effective plastic strain averaged over that constituent. This also holds
for a composite comprised of three constituents.
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1. Introduction

Composites have become common engineering materials. The prospect of pro-
ducing ‘‘designer’’ materials for specific applications is of great interest to many
engineers. However, the thermomechanical behavior of these composites is more
complex than that of homogeneous materials. Whereas continuous fiber-reinforced
composites exhibit anisotropic material response, particulate reinforced composites
are usually modeled as isotropic. Here, we are interested in particulate composites
comprised of metallic particulates embedded in a metal matrix. Experimental test-
ing to determine the thermophysical material parameters of a composite is tedious
due to the increased number of material constants and the likelihood of unexpected
nonlinearities and failure modes. Numerical simulation provides the ability to
‘‘test’’ a variety of composites under various loading conditions and help better
understand the behavior of heterogeneous materials at both the micro- and the
macro-scales. Since the micro-scale of many composites is far below reasonable
length scales for macro-scale simulations, an accurate determination of bulk or
‘‘effective’’ properties that capture the overall behavior of the composite is highly
desirable. Furthermore, failure modes and instabilities are not guaranteed to be-
have in the same way as in homogeneous materials – the heterogeneity of the mate-
rial may cause interesting effects. Bridging the length scales between the macro-scale
(at a length scale comparable to the material�s application) and the micro-scale (at a
length scale comparable to the microstructure of the material) allows one to inves-
tigate the effectiveness of the bulk properties to capture heterogeneity-driven phe-
nomena. A better understanding of these phenomena is needed for critical uses
of these materials.

Even though the techniques discussed and employed herein are applicable to any
particulate composite, we focus on tungsten-heavy alloys (WHAs). WHAs are high
density, high strength materials that are of interest in high strain-rate loading scenar-
ios, most particularly, armor and armor-penetration applications. Due to the brittle-
ness of pure tungsten, WHAs were developed to prevent brittle fracture/shattering
under high stress; a typical WHA consists of tungsten particulates suspended in a
nickel–iron matrix. The particulate is usually spherical and is randomly distributed;
thus the overall response of the composite is isotropic. Unlike most composites, both
constituents are capable of thermoelastoviscoplastic deformations – the tangent
moduli of tungsten and nickel–iron are of the same order of magnitude, but their
overall response when considering strain and strain-rate hardening, as well as ther-
mal softening, are decidedly different.

Determination of effective properties of a composite from those of its constituents
has been a topic of research for several decades. Much of the past work has been de-
voted to the determination of elastic and thermal constants of composites. Hashin
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and Shtrikman (1963) established upper and lower bounds for the shear and the bulk
modulus of a composite composed of several linear elastic phases. Mori and Tanaka
(1973) developed the concept of average stress to account for the interaction among
a finite concentration of linear elastic ellipsoidal particles embedded in a linear elastic
matrix; Weng (1984) implemented this technique for isotropic constituents, giving
closed form expressions for the shear modulus and the bulk modulus of the compos-
ite. Christensen and Lo (1979) built upon the three-phase model of Fröhlich and
Sack (1946) and determined the effective shear modulus of a two constituent com-
posite by examining the shear deformation of concentric spheres. Equating the strain
energy of the composite sphere to the strain energy of the sphere comprised of the
equivalent homogenized material with unknown properties allows for the analytical
determination of the shear modulus; however, this method does not account for
interaction among particulates. Nemat-Nasser and Hori (1993) have summarized
different methods for the determination of elastic parameters of a composite. Jiang
and Batra (2001a) used the mean-field theory and the Mori–Tanaka method to de-
rive effective moduli of a three-phase composite comprised of a polymer matrix, and
likewise oriented spherical and cylindrical shape memory alloy and piezoceramic
inclusions. They (Jiang and Batra, 2001b) exploited the correspondence principle
of linear viscoelasticity to evaluate effective moduli of a piezocomposite made of
piezoceramic inclusions and a viscoelastic matrix. Subsequently, Jiang and Batra
(2002) used the energy-equivalence principle and the Mori–Tanaka method to de-
duce effective thermo-electro-mechanical parameters of a 4-material composite con-
sisting of an elastic matrix and shape memory alloy, piezoelectric and inert
inclusions. It was shown that the shapes and the volume fractions of inert (e.g.,
air) inclusions significantly influenced the effective properties of the composite.

Estimation of the viscoplastic parameters of a composite is much more challeng-
ing. Suquet (1993) determined the upper and the lower bounds of the yield stress of a
particulate composite composed of multiple incompressible power law materials. For
a random dispersion of isotropic spherical particulates in an isotropic matrix, Suquet
assumed that the compsite�s response is also isotropic and derived an expression for
the effective yield stress of the composite in terms of the yield stresses of the constit-
uents and the effective shear modulus of the composite. Willis (1993) and Talbot and
Willis (1985) established bounds for the stress–strain curve of a multi-phase nonlin-
ear composite by using a variational technique similar to that of Hashin and Shtrik-
man (1963). Ponte Castañeda (1996) developed a second-order technique for
homogenization of multi-phase materials into a nonlinear homogeneous material, gi-
ven prior knowledge of the stress concentrations within the composite and an admis-
sible constitutive relation. Many researchers have focused on composites with a
viscoplastic matrix and an elastic particulate/inclusion (e.g. see Ponte Castañeda,
2002; Doghri and Friebel, 2005; Dvorak and Srinivas, 1999), as this is more common
with epoxy/carbon systems and metal matrix systems such as aluminum/silicon car-
bide (see Dai et al. (2004)). As discussed by Pindera and Aboudi (1988) the mean-
field approach applied to metal-matrix composites does not predict yielding along
certain directions in the stress space. Dvorak (2000) has summarized several ap-
proaches of different complexity to model inelastic response of multiphase materials.
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The inelastic response of the matrix phase is usually considered through the average
values of the inelastic strain field either in the entire matrix phase or in the subvo-
lumes into which the matrix phase is partitioned. Methods that employ sub-volume
discretization of the unit cell include the generalized method of cells due to Paley and
Aboudi (1992). In the transformation field analysis of Dvorak (1992) the strain field
is assumed to be piecewise uniform. This approach has been generalized by Chab-
oche et al. (2001) to better capture the local stress and the inelastic strain fields.
Walker et al. (1994) and Fotiu and Nemat-Nasser (1996) have developed techniques
that employ more accurate field representations within the repeating unit cell. More
recently, Aboudi et al. (2001), Chaboche et al. (2005), Pierard and Doghri (2006),
Kachanov and Sevostianov (2005), Liu and Hu (2005), Ohno et al. (2001), Sun
and Ju (2004), Pindera et al. (1993) and Wilkinson et al. (2001) have proposed tech-
niques to account for elastoplastic deformations of constituents of a metal-matrix
composite. However, these techniques do not generally apply to a system where both
the matrix and the particulates experience large plastic deformations.

Here, we seek to determine the effective thermoelastoviscoplastic properties for
WHA particulate composites. These composites consist of nearly spherical tungsten
(W) particulates, between 30 and 70 lm in diameter, embedded in a nickel–iron
(NiFe) matrix. For a random distribution of W particulates in the NiFe matrix
the overall response of the composite will be isotropic. Ideally one should analyze
a three-dimensional problem and consider particulate size and distribution represen-
tative of that used in practical applications. However, we simplify the problem con-
siderably and study plane strain thermomechanical deformations of a WHA. Thus
tungsten particulates are circular cylinders rather than spherical particulates. The re-
sponse of a structure reinforced with unidirectional fibers is not isotropic. However,
WHAs are generally modeled as isotropic, and our approximation of studying their
plane strain deformations is to determine quickly their effective material properties
with reasonable computational resources. We note that Young�s modulus for W is
very close to that for NiFe, and Poisson�s ratio for them has the same value. Thus
Young�s modulus and Poisson�s ratio of the composite can be easily determined from
one of the micromechanical models or the rule of mixtures. However, values of their
quasistatic yield stresses and material parameters characterizing strain hardening,
strain-rate hardening and thermal softening are quite different. Micromechanical
models for evaluating effective values of these parameters are non-existent.

We utilize a representative volume element (RVE) indicative of the microstructure
of the composite; this RVE is subjected to a variety of thermomechanical deforma-
tions in order to find stress–strain curves. These curves are used to estimate strain
and strain-rate hardening and thermal softening parameters for the composite.
The effects of RVE size, particulate distribution, particulate diameter, and volume
fraction of the particulates are considered. Values of the elastic and the thermal
parameters are also computed from an analysis of deformations of a RVE so as
to compute values of all parameters from numerical tests.

The paper is organized as follows. Equations governing thermomechanical defor-
mations of an isotropic elasto-thermo-viscoplastic material are summarized in Section
2.1. Initial and boundary conditions, and continuity conditions at a particulate/matrix
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interface are then stated. Section 2.4 gives a weak formulation of the problem used to
develop a computer code for solving numerically the set of coupled nonlinear partial
differential equations. The rule of mixtures is described in Section 2.6. Values assigned
to thermophysical parameters for tungsten and nickel–iron are tabulated in Section
2.7. The technique developed and the numerical experiments performed to extract val-
ues of effectivematerial parameters for the composite from results of deformations of a
RVE are given in Section 3. The technique is applied in Section 4 first to ensure that it
correctly predicts values of a known homogeneous material and then to ascertain the
appropriate size of a RVE, finite element mesh, and particulate size and arrangement.
Values of material parameters of a WHA as a function of the volume fraction of con-
stituents are also given in Section 4. These values are then used to compute the response
of aWHA employing a RVE and an equivalent homogenized body to simple shearing
deformations, plane strain deformations involving loading, unloading and reloading,
and axisymmetric deformations. Section 5 describes a semi-inverse technique used ear-
lier by Batra and Kim (1990) for identifying values of material parameters from a
known experimental stress–strain curve but it is not used here to find values of effective
material parameters. Time histories of the effective plastic strain at a point in each con-
stituent and of the effective plastic strain averaged over each constituent are given in
Section 6. The latter are used in the stress–strain relation for each constituent to find
a pseudo-effective stress in a constituent. The rule of mixture is applied to these pseu-
do-effective stresses andvolume fractions of constituents to ascertain the effective stress
for the composite. Principal findings of the present work are summarized in Section 7
entitled conclusions.
2. Formulation of the problem

2.1. Governing equations

We use rectangular Cartesian coordinates and the referential description of motion
to describe transient coupled thermomechanical deformations of an isotropic elasto-
thermo-viscoplastic body deformed at a high strain-rate in plane strain tension.Defor-
mations of each constituent and the composite body are governed by the following
equations expressing, respectively, the balance of mass, the balance of linear momen-
tum, the balance of moment of momentum, and the balance of internal energy. Except
when explicitly mentioned otherwise the indices take values 1 and 2

qJ ¼ q0; ð1Þ
q0 _vi ¼ T ia;a; ð2Þ
T iaF ja ¼ T jaF ia; ð3Þ
q0 _e ¼ �Qa;a þ T ia

_F ia. ð4Þ

Here, q is the present mass density, J = detF, Fia = xi,a = oxi/oXa the deformation
gradient, x the present position at time t of a material particle located at the place
X in the reference configuration, T the first Piola–Kirchhoff stress tensor, e the
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specific internal energy, Q the present heat flux measured per unit reference area, v
the velocity of a material particle, a superimposed dot indicates the material time
derivative, and a repeated index implies summation over the range of the index.
Greek indices refer to coordinates in the reference configuration, and Latin indices
to coordinates in the present configuration.

We assume that the strain-rate tensor D defined by Dij = (vi,j + vj,i)/2, vi,j = ovi/
oxj, has the additive decomposition into an elastic part De, a plastic part Dp and a
thermal part â _h1, viz.,

D ¼ De þDp þ â _h1; ð5Þ
where â is the coefficient of thermal expansion, 1 is the identity matrix, and h the
temperature rise. Eqs. (1)–(5) are supplemented with the following constitutive
relations:

_rij þ rikW kj � rjkW ik ¼
E

1þ m
De

ij þ
Em

ð1þ mÞð1� 2mÞD
e
kkdij; ð6Þ

_e ¼ cs€hþ c _hþ 1

q
rijDe

ij; ð7Þ

T ia ¼ JrijðF �1Þaj; ð8Þ
qi ¼ �jh;i; Qa ¼ JqiðF �1Þai; ð9Þ

/ � r2
e

r2
y

� 1 ¼ 0; r2
e ¼

3

2
r0
ijr

0
ij; i; j ¼ 1; 2; 3; ð10Þ

Dp
ij ¼ _k

o/
orij

¼ _k
3r0

ij

r2
y

; r0
ij ¼ rij þ pdij; ð11Þ

p ¼ �ðr11 þ r22 þ r33Þ=3; ð12Þ

_k ¼
ry _e

p
e

rij
o/
orij

if / ¼ 0 and _/ P 0;

0 when either / < 0 or / ¼ 0 and _/ < 0;

8<
: ð13Þ

ry ¼ ðAþ Bðepe Þ
nÞ 1þ C ln

_epe
_e0

� �� �
1� h� hr

hm � hr

� �m� �
. ð14Þ

The left-hand side of Eq. (6) equals the Jaumann derivative of the Cauchy stress ten-
sor r, Wij = (vi,j � vj,i)/2 is the spin tensor, E Young�s modulus, m Poisson�s ratio, dij
the Kronecker delta, c the specific heat, s the thermal relaxation time, and j the ther-
mal conductivity of the material. Constitutive relation (6) implies that each constit-
uent is being modeled as an isotropic hypoelastic material. Replacing the Jaumann
derivative of r by another objective stress rate will change the constitutive descrip-
tion of the material. Eq. (10)1, i.e., / = 0 describes the von Mises yield surface, p
is the hydrostatic pressure, and r 0 the deviatoric Cauchy stress. Eq. (11)1 is the asso-
ciated flow rule and _k is the factor of proportionality defined by Eq. (13); _k > 0 only
when the material point is deforming plastically. ry is the current yield stress of the
material whose dependence upon the effective plastic strain epe , the effective plastic
strain rate _epe and the temperature h is described by the Johnson–Cook (1983)
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relation (14) in which A, B, C, _e0, and m are material parameters, hr the room tem-
perature and hm the melting temperature of the material. Parameters B and n char-
acterize the strain hardening of the material, C and _ep0 the strain-rate hardening and
the last factor on the right-hand side of Eq. (14) its thermal softening.

Substitution from Eqs. (5) (), (7)–(9) into Eq. (4) gives the following hyperbolic
heat equation:

q0cðs€hþ _hÞ ¼ ðjh;aÞ;a þ JrijD
p
ij. ð15Þ

The term JrijD
p
ij equals the heating due to plastic working per unit volume in the ref-

erence configuration; thus the Taylor–Quinney parameter has been taken as 1. That
is, all of the plastic working is assumed to be converted into heating. The form (15)
of the hyperbolic heat equation is due to Cattaneo (1958) and Vernotte (1958). The
thermal relaxation time s in it represents the time required to establish a steady state
of heat conduction in an element suddenly exposed to heat flux. According to Ches-
ter (1963) s equals 3j=qcV 2

0 where V0 is the speed of an elastic wave. Thus for a typ-
ical steel, s = 1 · 10�12 s, and s . 25 · 10�12 s for copper. Batra (1975) considered
higher-order spatial and temporal gradients of temperature and derived a heat equa-
tion that admits finite speeds of thermal waves. However, in such a material either a
thermal wave propagates with a finite speed or the linearized problem has a unique
solution. Ideally, one will like to have both.

The decision to use the Johnson–Cook relation (14) here is based on the availabil-
ity of values of thermomechanical parameters for tungsten and nickel–iron.

Numerical experiments to evaluate values of the particulate composite are per-
formed at a uniform temperature. Thus the precise value of the Taylor–Quinney
parameter is Eq. (15) plays very little role.
2.2. Initial and boundary conditions

The body is initially taken to be at rest, at a uniform temperature and has no ini-
tial stress. Thus,

xðX; 0Þ ¼ X; vðX; 0Þ ¼ 0; hðX; 0Þ ¼ h0; _hðX; 0Þ ¼ 0;

qðX; 0Þ ¼ q0ðXÞ; rðX; 0Þ ¼ 0; epe ðX; 0Þ ¼ 0; X 2 X; ð16Þ

where X is the region occupied by the body in the reference configuration.
A square RVE with side lengthH is subjected to a ‘‘constant area plane strain ten-

sion test’’. The upper surface of the body is given a constant velocity v0 in the X2-
direction after a short ramp time of 1 ls. The lower surface of the body is held fixed
in the X2-direction and is allowed to slide smoothly in the X1-direction. The lateral
smooth surfaces are prescribed a velocity in the X1-direction such that the area of the
rectangle remains a constant H2, as shown in Fig. 1(a). This choice of deformation is
somewhat arbitrary; however, it does guarantee that the shape of the boundary
remains well-defined, despite the inhomogeneous material of the RVE. Also, the
area-preserving deformation of the RVE is consistent with the incompressibility
assumption made in the flow rule associated with the von Mises yield surface,



Fig. 1. (a) Sketch of constant-area plane-strain deformation used for finding effective properties of a
composite. (b) Effective stress versus effective plastic strain curve for plane strain extensional deformations
of tungsten and nickel–iron.
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making this deformation admissible for large plastic deformations. All bounding sur-
faces of the RVE are taken to be thermally insulated.

2.3. Interface conditions

It is assumed that, during the entire deformation process, the W particulates are
both mechanically and thermally perfectly bonded to the NiFe matrix. Thus

½u� ¼ 0; ½h� ¼ 0; ½T iaN a� ¼ 0; ½QaN a� ¼ 0 on C; ð17Þ
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where N is an outward unit normal, in the reference configuration, to the interface C
between a particulate and the matrix, u is the displacement of a point, and the square
bracket indicates the jump of a quantity across the interface C between a particulate
and the matrix.

2.4. Semi-discrete formulation of the problem

Eqs. (6), (8) and (3) imply that the balance of moment of momentum (3) is iden-
tically satisfied. The present mass density can be computed from Eq. (1) if the defor-
mation gradient is known. Thus, the dependent variables to be solved for are x and h
and the independent variables are X and t. Eqs. (2) and (15) are second-order cou-
pled non-linear hyperbolic partial differential equations for x and h. These cannot be
written explicitly in terms of x and h since T is given by (8) and _r by (6) which in-
volves Dp and h because of Eq. (5). In order to solve the problem numerically by
the FE method, we first derive its weak or variational formulation.

Let w(X) be a smooth function that is an analog of virtual velocity, and it vanish
at the boundary points wherever v is prescribed. We take the inner product of Eq. (2)
with w, integrate the resulting equation over the region X occupied by the body in the
reference configuration, and use the divergence theorem to arrive atZ

X
q0 _viwi dX ¼ �

Z
X
wi;aT ia dXþ

Z
Ct

wi�ti dC; ð18Þ

where �ti is the surface traction prescribed at boundary points. For the present prob-
lem, �t ¼ 0. Let w1,w2, . . .,wn be the FE basis functions defined on X. We write

vi ¼
Xnodes
A¼1

wAðXÞ~vAiðtÞ; wi ¼
Xnodes
A¼1

wAðXÞcAi. ð19Þ

Here, ~v is the vector of velocities of nodes, and cAi�s are constants. Substituting for v
and w from Eq. (19) into Eq. (18) and exploiting the fact that the resulting equation
must hold for all choices of c�s (e.g., see Hughes, 1987) we get

M _~v ¼ �Fint þ Fext;

MAB ¼
Z

X
q0wAwB dX; F

int
Ai ¼

Z
X
wA;aT ia dX; F ext

Ai ¼
Z
Ct

wA
�ti dC.

ð20Þ

In order to derive a weak form of Eq. (15) we first introduce an auxiliary variable

n ¼ _h; ð21Þ
and adopt the same procedure as that used to derive Eq. (20) with the following
result:

_h ¼ ~n;

sH _~nþH~n ¼ Fh þ ~Q;
ð22Þ

where
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HAB ¼
Z
X
q0cwAwB dX; F h

A ¼
Z
X
jh;awA;a dX; QA ¼

Z
X
wAJ trðrDpÞ dX.

ð23Þ
Note that the natural boundary condition of zero heat flux on all bounding surfaces
has been embedded in Eq. (22). Solving Eq. (14) for _epe in terms of ry, epe and h we get

_epe ¼ _e0 exp
ry

ðAþ Bðepe ÞnÞð1� hm� Þ
� 1

� �
;

h� ¼ ðh� hrÞ=ðhm � hrÞ.
ð24Þ

Similar to the approximation (19)1 for the velocity field we assume that

_epe ðX; tÞ ¼
Xnodes
A¼1

wAðXÞ_e
p
eAðtÞ; ~xðXÞ ¼

Xnodes
A¼1

wAðXÞcA; ð25Þ

Multiplication of both sides of Eq. (24)1 with the test function ~x, integration of the
resulting equation over the domain X, substitution in it for _epe and ~x from Eq. (25)
and exploiting the arbitrariness of constants c1,c2, . . ., we obtain

~M_eep ¼ ~F; ð26Þ

where

~MAB ¼
Z
X
wAwB dX; ~F A ¼ _e0

Z
X
exp

ry

ðAþ Bðepe ÞnÞð1� hm� Þ
� 1

� �
wA dX. ð27Þ

We note that the integrand in the integral on the right-hand side of Eq. (27) is zero at
the integration or the quadrature point that is either deforming elastically or is
unloading.

The weak form of

_x ¼ vðX; tÞ ð28Þ
is also derived in the same way as that for _epe given by Eq. (24). We thus get coupled
nonlinear ordinary differential equations

_d ¼ F; ð29Þ
where d is the vector of unknowns and F is the force vector that depends upon time t
and d(t). The unknowns at a node are fx1; x2; v1; v2; h; n; epeg.

The constitutive relation (6) is integrated at the quadrature points in an element.
Thus for a FE mesh comprised of 4-node quadrilateral elements with 2 · 2 integra-
tion rule, the total number of unknowns equals 7 (number of nodes) + 4 (number of
elements).

2.5. Verification of the computer code

A computer code based on the semi-discrete formulation has been developed using
4-node quadrilateral elements. Spatial integration is accomplished over each element
using 2 · 2 Gaussian quadrature rule. Spatial variation in material properties is
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considered in the integration by using local values at each quadrature point. Natural
boundary conditions of null tangential tractions are already included in Eq. (29). Suit-
able modifications to the equations are made to enforce velocity components pre-
scribed at boundary points. Eqs. (29) and (6) evaluated at the Gauss integration
points are then integrated using the Livermore solver for ordinary differential equa-
tions (LSODE); parameter MF in LSODE is set equal to 10, which implies an
Adams–Moulton method. The absolute and relative tolerances in LSODE are set to
10�7. LSODE adaptively adjusts the timestep in order to compute the solution to with-
in the desired accuracy, and is freely available on the internet in both Fortran andC++
variants.

The computer code was validated by comparing computed results for several
problems with their published analytical and/or numerical solutions and was also
validated by the method of ficticious body forces (sometimes also called the method
of manufactured solutions). In this method, body forces and sources of internal en-
ergy density are found for any assumed deformation and temperature fields so that
the governing equations are satisfied. These fields are input into the code. The com-
puted solution should match the presumed analytical solution to a high degree of
accuracy; see the material following Eq. (30) in Batra and Liang�s (1997) paper for
an example. Furthermore, the solution for finite plastic deformations of a homoge-
neous body with inhomogeneous initial and boundary conditions coincided with Ba-
tra and Lear�s (2005) solution obtained with triangular elements.

2.6. Rule of mixtures

According to this rule, the value P of a material parameter for a mixture com-
prised of two constituents with volume fractions V f

1 and V f
2 and values P1 and P2

of the material parameter is given by

P ¼ V f
1P 1 þ V f

2P 2 ¼ ð1� V f
2ÞP 1 þ V f

2P 2. ð30Þ
It gives exact values of the mass density and the heat capacity and often gives an
upper bound for values of other elastic parameters for the composite.

2.7. Values of material parameters

Values of thermophysical parameters for tungsten (W) and nickel–iron (NiFe) are
listed in Tables 1 and 2.

Thus the acoustic impedances,
ffiffiffiffiffiffi
Eq

p
, of W and NiFe equal 87.86 · 106 and

48.44 · 106 kg/(m2 s), respectively, and differ by a factor of 1.8. The bar wave speeds,ffiffiffiffiffiffiffiffiffiffiffiffi
ðE=qÞ

p
, in W and NiFe are 4552 and 5265 m/s and differ by a factor of 0.86.

Fig. 1(b) shows the effective stress versus the effective plastic strain curve for homo-
geneousWandNiFebodiesdeformed inoverall adiabaticplane strain tensionatanom-
inal axial strain rate of 5000/s with traction free lateral edges. It is clear that the yield
stress for W is considerably higher than that for NiFe, the peak value of the effective
stress in W is reached at a considerably lower value of the effective plastic strain than
that in NiFe and the thermal softening in W is significantly higher than that in NiFe.



Table 2
Values of viscoplastic parameters for W, NiFe and steel

Material A (MPa) B (MPa) n C _e0 (1/s) hm (K) m

W 730 562 0.0751 0.0290 1.4 · 10�13 1700 1
NiFe 150 546 0.2080 0.0838 6.7 · 10�14 1225 1
Steel 1100 510 0.26 0.04 7 · 10�14 1793 1

Table 1
Values of elastic and thermal parameters for W, NiFe and steel

Material E (GPa) m q (kg/m3) j (W/m K) â (·10�6/K) c (J/kg K)

W 400 0.29 19,300 160 5.3 138
NiFe 255 0.29 9200 100 15.0 382
Steel 210 0.27 7840 38 12.6 477
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Whereas values of E, m, B and m for the two constituents are nearly the same,
those of other thermal and viscoplastic parameters are quite different.
3. Determination of values of effective material parameters

Determination of elastic and viscoplastic parameters from a series of thermome-
chanical deformations of an RVE is a non-trivial task. In a macro-scale analysis, the
RVE itself is small enough to be considered a material point; that is, one could re-
gard it having uniform material properties, stresses and strains. Thus, an effective
stress and an effective strain tensor for the deformation of the RVE should be
defined.

For the constant-area plane-strain biaxial tension deformation described in Sec-
tion 2, we define the Cauchy stress tensor as follows. Recall that the length in the
x3-direction equals one, and it stays unchanged during plane strain deformations
in the x1x2-plane, r22 equals the total normal load divided by the present length
of the top or the bottom edges (e.g., see Fig. 1(a)), r11 is the normal load on a lateral
edge divided by its present length, r12 is the tangential load on an edge divided by its
present length (which is, not surprisingly, nearly zero for this deformation), and r33
is the total load in the x3-direction divided by the current area perpendicular to the
x3-axis.

Large deformations require the definition of a suitable strain tensor. The defor-
mation described in Section 2 results in the initial square being deformed into a rect-
angle. For a homogeneous material, this would be a homogeneous deformation; so,
we assume that F11 = H/a, F22 = a/H, and F33 = 1, where a is the current x2-coordi-
nate of the top surface (as shown in Fig. 1), and the Almansi–Hamel strain tensor is
then defined as:

eij ¼ ðdij � B�1
ij Þ=2. ð31Þ
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Here, Bij = FiaFja is the left Cauchy-Green tensor. The von Mises effective stress can

be computed from Eq. (10)2, and the effective strain from ee ¼
ffiffiffiffiffiffiffiffiffiffi
3
2
eijeij

q
. Initial numer-

ical analyses are conducted with the heat generated during plastic working set equal
to zero (i.e., neglected) resulting in _h ¼ 0. Therefore, the thermal and the mechanical
properties are divorced from each other and are treated separately.

3.1. Mass density and specific heat

The rule of mixtures (30) gives exact values of the effective mass density and the
effective heat capacity of the composite. The effective specific heat can be computed
from the latter.

3.2. Elastic parameters

Determination of Young�s modulus and Poisson�s ratio is relatively simple using
the stress and the strain tensors defined in the previous section. For metals, deforma-
tions in the elastic regime are relatively small (strains [ 0.3%). For infinitesimal
deformations, rik Wkj in Eq. (6) is negligible as compared to other terms, and the
resulting equation is integrated to obtain Hooke�s law written as Eqs. (32)–(34).
Quasistatic elastic deformations can be produced by assigning a very small value
to the mass density q0 and a rather large value to the quasistatic yield stress A.
For plane strain deformations of an isotropic linear elastic material:

e11 ¼
1

E
½r11 � mðr22 þ r33Þ�; ð32Þ

e22 ¼
1

E
½r22 � mðr11 þ r33Þ�; ð33Þ

e33 ¼ 0 ¼ 1

E
½r33 � mðr11 þ r22Þ�. ð34Þ

With results from a constant-area plane strain tension test, Eq. (34) can be solved for
Poisson�s ratio, m. Using this result, one can compute Young�s modulus from either
Eq. (32) or Eq. (33) with the other equation offering a check on the isotropy of the
particulate arrangement.

3.3. Quasistatic yield stress, and strain and strain-rate hardening parameters

Determination of the quasi-static yield stress A and the strain hardening param-
eters B and n in the Johnson–Cook relation is difficult from an examination of an
effective stress versus effective strain curve. For a given material, there are several dif-
ferent combinations of values of A, B and n that produce essentially the same stress–
strain curve. The onset of yielding (corresponding to an effective stress of A in a
quasi-static test) is not readily apparent when examining the stress–strain curve or
its derivative because the strain-rate hardening term in the Johnson–Cook relation
prevents a noticeable change in the slope of the curve at the yield strain; e.g., see
Fig. 1(b). Fig. 2 compares values of A computed from the rule of mixtures with those
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obtained from Suquet�s (1993) relation, with the effective shear modulus computed
from the Mori and Tanaka (1973) relation and values of A for W and NiFe taken
from Table 2 given in Section 2.7. We have chosen to estimate A of the composite
from the rule of mixtures.

Conducting a plane-strain tension test (as described in Section 2) at an effective
strain-rate close to the reference strain rate _e0 then allows the determination of the
yield strain from the estimated value of A; the effective plastic strain epe is then defined
as the total effective strain minus the effective strain at yield. The approximate value
of the effective plastic strain epe so obtained is reasonably good since the effective plas-
tic strain at yield is miniscule. Plotting log(ry � A) versus logðepe Þ allows the determi-
nation of B and n from a simple linear least squares fit; n equals the slope of the line
and logB the y-intercept. Through numerical tests it was shown that the use of a dif-
ferent technique for determining A, such as the method proposed by Suquet (1993),
produces quantitatively different values for B and n, but the resulting stress–strain
curve is effectively the same.

The effective strain-rate hardening coefficient C can be determined by examining
two tests performed at different effective strain-rates on the same RVE. We have ta-
ken the reference strain-rate _e0 to be the same for the two constituents and the com-
posite. Given the stress–strain curve for the two different tests, the value of C can be
calculated from

C ¼
1� ry1

ry2

ry1
ry2

ln _e2
_e0

� �
� ln _e1

_e0

� � . ð35Þ
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Here, ry1 and ry2 are the flow stresses at the same effective plastic strain during
deformations at nominal strain-rates of _e1 and _e2, respectively.
3.4. Thermal softening parameters

Thermal softening in the Johnson–Cook relation is governed by hm, the ‘‘melting’’
temperature of the material, and m, a thermal exponent. Note that as the tempera-
ture approaches hm, the yield stress of the material approaches zero. Here, we assume
that the thermal exponent m equals 1 for both constituents and the composite, as it is
nearly equal to 1 for most materials.

To determine the effective melting temperature of the composite, we conduct
plane strain tension tests at different uniform temperatures. As in the other tests,
plastic working is neglected; initial attempts at relaxing this assumption resulted in
transient, non-constant temperature fields in the RVE which were dependent on
the effective strain-rate of the test, making it difficult to assign an effective tempera-
ture to the RVE. Given the uniform temperature, the ratio of stresses at a given effec-
tive plastic strain for two tests with different temperatures allows one to simply
determine the effective melting temperature for the composite from

hm ¼
ry1
ry2

h2 þ h1

1� ry1
ry2

. ð36Þ

Here, ry1 and ry2 are the flow stresses at the same effective plastic strain strain during
tests at temperatures of h1 and h2, respectively.

It is important to note that the ‘‘melting temperature’’ of the composite governs its
thermal softening, but has no physical significance. The actual melting temperature of
the composite would equal the lowest of the melting temperatures of its constituents.
3.5. Thermal conductivity

The effective thermal conductivity of the composite is determined by applying a
constant temperature differential across two opposite edges of the RVE. The average
heat flux on those edges is divided by the applied temperature gradient, giving an
effective thermal conductivity. Ideally, one would have a microstructure that gives
the same thermal conductivity in the X1- and the X2-directions. In practice, this is
difficult. The average of the computed thermal conductivities in the X1- and the
X2-directions is taken as the effective thermal conductivity.
3.6. Coefficient of thermal expansion

The effective coefficient of thermal expansion of the composite is computed by
constraining all edges of the RVE from moving in the normal directions (as well
as the plane strain constraint) and applying a uniform temperature rise over the en-
tire RVE. Given that the resulting stresses are significantly below the yield stress, we
set Dp = 0 in Eq. (5), take the trace of Eq. (6), integrate the resulting equations with
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respect to time and obtain Eq. (37). The effective coefficient of thermal expansion is
computed from:

â ¼ �rkk

9KDT
. ð37Þ

Here, K is the effective bulk modulus of the material and DT is the temperature rise;
K is computed from E and m. Note that it is assumed that the coefficient of thermal
expansion is a scalar, tacitly assuming an isotropic material.
4. Application of the method of Section 3

4.1. Verification

In an attempt to verify the plausibility and the accuracy of the methods described
above, we examined mechanical deformations of a pure tungsten specimen of square
cross-section of length H = 0.25 mm. The reference strain-rates listed in Table 2 are
far too slow to allow numerical tests without significant strain-rate effects, so the ref-
erence strain-rate needs to be altered. For two reference strain-rates of _e0 and _e1, the
Johnson–Cook viscoplastic relation (14), without thermal effects, gives

ry ¼

ðAþ Bðepe Þ
nÞ 1þ C ln _epe

_e0

� �� �
;

ðAþ Bðepe Þ
nÞ 1þ C ln _epe

_e1

_e1
_e0

� �� �
;

ðAþ Bðepe Þ
nÞ 1þ C ln _epe

_e1

� �� �
1þ C ln _e1

_e0

� �� �
� C2 ln _epe

_e1

� �
ln _e1

_e0

� �� �
.

8>>>><
>>>>:

ð38Þ
Assuming that C � 1, neglecting the term containing C2 allows A and B to be com-
puted at the new reference strain-rate:

A� ¼ A 1þ C ln
_e1
_e0

� �� �
; B� ¼ B 1þ C ln

_e1
_e0

� �� �
. ð39Þ

This modification to the material parameters produces a slight error (due to the
omission of the C2 term); however, this error is of the order of 1–2%, far lower than
the accuracy level of the material parameters themselves. The modified values A*
and B* of A and B are listed in Table 3.

With the modified values of material parameters, the pure tungsten RVE was sub-
jected to numerical tests with nominal axial strain-rates of 2500, 5000, 25,000, and
50,000/s, and additional 50,000/s tests were conducted at temperature rises of 100,
200, 500, and 1000 K. Furthermore, uniform FE meshes of 40 · 40, 60 · 60, and
80 · 80 elements were used and they gave identical results for the pure tungsten sam-
ple. Using the data from these tests, the effective material parameters for tungsten
were computed using the techniques described above; the results are listed in Table
4, along with the percent error from the input values.

Note that the quasi-static yield stress A* was assumed to be 1536.9 MPa, which
was the input value. The accuracy of the proposed method is excellent, producing



Table 3
Modified values A* and B* of A and B for a reference strain-rate of 5000/s

Material A* (MPa) B* (MPa)

W 1536.9 1183.2
NiFe 638.4 2323.6

Table 4
Values obtained from the procedure of Section 3 for pure tungsten

E (GPa) m B* (MPa) n C hm (K) j (W/m K) â (10�6/K)

Homog. values 405.94 0.2907 1189.4 0.07813 0.02877 1708 160.0 5.27
% Error 1.49 0.24 0.52 4.03 1.03 0.47 �0 0.57
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less than 4% error for values of all parameters. Use of different strain-rate and tem-
perature tests resulted in slight differences in the computed values of C and hm; it was
found that using very different strain-rates and a large temperature rise produced
more accurate results.

4.2. Representative volume element size

The appropriate size for the RVE is dependent on the microstructure of the mate-
rial in question. Typical WHAs have W particulates with diameters of �50 lm ar-
ranged randomly, such that the bulk material is isotropic. An RVE must capture
a sufficient number of particulates to give an accurate volume fraction of material
and give a near isotropic response.

In order to investigate this effect, four RVEs were created with side lengths of
H = 0.15, 0.25, 0.35, and 0.50 mm. The FE mesh density was kept constant, with
each element measuring 5 lm · 5 lm. Each RVE consists of 50 lm diameter W par-
ticulates distributed randomly to give a volume fraction of tungsten equal to 50%.
Each of the RVEs was subjected to a plane-strain tension test and then re-tested after
a 90� rotation, to insure that the distribution gave nearly isotropic response. Shown
in Fig. 3 are the four RVEs and the deviations in effective stress versus effective strain
curves for three of them from the fourth one; the deviations in Fig. 3 are normalized
with respect to the 0.25 mm RVE�s result. All four of the curves agree pointwise to
within 1%. The 0.25 mm · 0.25 mm RVE was chosen for the remainder of the anal-
yses, and the effective stress versus the effective strain curve obtained from it is re-
ferred to as the standard stress strain curve. One reason for this choice is that a
50 lm diameter circle could be meshed better for this RVE than for the RVE with
H = 0.35 and 0.50 mm.

4.3. Finite element mesh density

To test the effects of the mesh density on the homogenization results, a
0.25 mm · 0.25 mm RVE consisting of 50% volume fraction of 50 lm diameter W



Fig. 3. 50% volume fraction tungsten RVEs with H = (a) 0.15 mm, (b) 0.25 mm, (c) 0.35 mm, and (d)
0.50 mm, and (e) the deviation in the effective stress versus effective strain curve for H = 0.15 mm,
0.35 mm, and 0.50 mm from that for H = 0.25 mm.
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particulates was tested with four different uniform meshes: 40 · 40, 50 · 50, 60 · 60
and 80 · 80 elements. Fig. 4 shows the RVE and the deviations in the effective stress
value for the other three meshes from that for the standard 50 · 50 mesh. Note that
the mesh density does not influence much the computed effective stress versus effec-
tive strain results. The 50 · 50 mesh was chosen for the remainder of the analyses.

4.4. Particulate arrangement

The arrangement of particulates in the RVE could possibly have an effect on the
values of the effective parameters. Most WHAs exhibit isotropic behavior, so the
arrangement of the particulates must be such that the overall response is independent
of direction. To examine this effect, four RVEs with 50% volume fraction of 50 lm
diameter W particulates were tested; the first with particulates centered on the ver-
tices of equilateral triangles and the remaining three with different random disper-
sions of particulates. The deviations of stress–strain curves for these three cases
are shown in Fig. 5(a), with the reference curve taken to be that for the ordered
arrangement. No effect of particulate arrangement is seen in the overall stress–strain
behavior since the maximum deviation is only 0.9%.
4.5. Particulate size

Fig. 5(b) shows the deviation in the stress–strain curves from the testing of three
RVEs with 50% volume fraction of W particulates, each test with a different diameter
of particulate: 30, 50 and 70 lm. The reference curve was taken to be that for the



Fig. 4. Finite element mesh density test: (a) 0.25 mm square 50% volume fraction tungsten RVE, (b) the
deviations in the stress–strain curves for the 40 · 40, 60 · 60, and 80 · 80 FE meshes from that for the
50 · 50 mesh.
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50 lm particulates. One can see no discernible effect of particulate size from this
analysis as the maximum deviation is only 1%.

Thus from results of Figs. 5(a) and (b) one can conclude that any reasonable
arrangement of particulates of diameters between 30 and 70 lm will give the same
effective stress versus effective strain curve.
4.6. Effective values of parameters as a function of the volume fraction of constituents

Of primary interest to material designers and engineers is the effect of the volume
fraction of the particulate on the effective material parameters. Results from Sections
4.1 and 4.2 give an indication of the appropriateRVE size and theFEmesh to study the
problem. Sections 4.3 and 4.4 demonstrate that the particulate size and distribution
have little effect on the response of the RVE. With these guidelines, a 0.25 · 0.25 mm
RVEmeshed with 2500 uniform square elements is studied, using 50 lmdiameter par-
ticulates centered on the vertices of equilateral triangles. The distance between the par-
ticulates is adjusted to give volume fractions between 50% and 80%. Less than 50%
volume fraction is of little interest to designers; greater than 80% volume fraction is dif-
ficult to achievewith circular particulates. EachRVEwas subjected to plane-strain ten-
sion tests at nominal axial strain-rates of 5000 and 50,000/s.Additionally, theRVEwas
tested at 50,000/s with temperature rises of 200 and 500 K.
4.6.1. Elastic parameters

Fig. 6 shows Young�s modulus as a function of the volume fraction of W. Values
obtained from the rule of mixtures and the Mori–Tanaka method are also plotted as
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B.M. Love, R.C. Batra / International Journal of Plasticity 22 (2006) 1026–1061 1045
a reference. The Mori–Tanaka estimate, as shown by Weng (1984), assumes ran-
domly distributed spherical particulates; this plane-strain analysis assumes particu-
lates to be circular cylinders. Despite the non-isotropic arrangement (if one
considers the x3-direction), the homogenized values are quite reasonable. The Pois-
son�s ratio of the composite matched the Poisson�s ratio of the constituents within
1% for all volume fractions; it is to be expected since Poisson�s ratios of the two con-
stituents are the same.
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4.6.2. Strain hardening parameters

The variation of B* and n with the volume fraction of W is shown in Figs. 7(a)
and (b), respectively. The proposed procedure predicts slightly higher values for
B* and n than the rule of mixtures, but the slope is nearly the same as that of the
curve obtained from the rule of mixtures.

4.6.3. Strain-rate hardening parameters

The strain-rate hardening coefficient C was determined for each of the volume
fractions at effective plastic strains of 5–30%. Fig. 8(a) shows the value of C at 5%
effective plastic strain for each of the volume fractions; results are similar to those
obtained from the rule of mixtures. It is important to note that the value of C is dif-
ferent over the range of strains studied. Fig. 8(b) shows C as a function of the effec-
tive strain ee for each of the tested volume fractions.

One possible explanation for the variation of C with ee is the interaction between
the particulates and the matrix. As should be evident from the plot of Fig. 1(b) NiFe
is much softer than W, so it is deformed more severely in the beginning. Also, it
exhibits more strain-rate hardening; so, the initial strain-rate hardening value for
the composite is maximum. As the strain increases, more of the W is deformed plas-
tically, lowering the overall strain-rate hardening. This effect is amplified by our
choice of a constant value for B* and n (dictated by the linear curve fit); realistically,
B* and n are also functions of strain. This variation with respect to strain depends
upon the microstructure of the material and is difficult to quantify. The situation
is somewhat similar to that of a piezocomposite which exhibits pyroelectric effect
even if none of the constituents is pyroelectric. Here, C is independent of ee for
the two constituents but not for the composite.
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4.6.4. Thermal softening
Fig. 9(a) shows the melting temperature as a function of the volume fraction of W

particulates. The values indicated as Dh = +200 and +500 K are obtained by
comparing the plane strain tension test at the reference temperature to tests with a
temperature rise of 200 and 500 K, respectively. Note that there is a small difference
between the two lines. Fig. 9(b) shows the variation in the computed melting
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temperature versus strain. There is a slight increase in the melting temperature with
strain, possibly for reasons similar to the strain-rate hardening case above.

4.6.5. Thermal conductivity

Fig. 10(a) shows the thermal conductivity as a function of the volume fraction of
W particulates. The top and the bottom surfaces of each RVE were held at constant
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temperatures, with the top surface held at +100 K over the bottom surface. The
average heat flux in the X2-direction was calculated at multiple values of X2 = con-
stant using the local material parameters; this heat flux was nearly constant through-
out the body after reaching steady-state conditions. The average heat flux divided by
the overall temperature gradient (100 K/0.25 mm) gave the values reported in
Fig. 10(a). The values so obtained are compared with those from the rule of mixtures
and also with those computed from the relation given by Hatta and Taya (1985).
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It should be noted that each RVE was tested at both normal orientation and after
a 90� rotation. For the W/NiFe RVEs, the rotation made a little difference in the re-
sults because of the small difference in the thermal conductivities of the two materi-
als. Care must be taken when implementing this technique for systems with great
disparity between the thermal conductivities of the constituents; thermally isotropic
arrangements of such systems can be difficult to realize.
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4.6.6. Coefficient of thermal expansion

The coefficient of thermal expansion as a function of volume fraction of tungsten
is given in Fig. 10(b). The edges of each RVE were held fixed as the body was given a
uniform temperature rise of 50 K. The average values of stress components were cal-
culated as indicated in Section 3, and the effective value of the coefficient of thermal
expansion was computed by Eq. (37). It should be noted that the effective value of
the bulk modulus used in Eq. (37) is obtained from the values of Young�s modulus
in Fig. 6 and Poisson�s ratio of 0.29. The average stress r33 is slightly different from
that of the in-plane stresses r11 and r22 due to the cylindrical particulates required by
the plane-strain condition; however, the impact on the results is negligible. Note the
excellent agreement between the present results and those of the approach proposed
by Hashin and Rosen (1970).

4.6.7. Summary of effective material parameters

Eqs. (40) through (48) give the homogenized material parameters as functions of
the volume fraction of tungsten, vf. A polynomial of sufficient order was used for the
least squares fit to capture the values. Note that these relations are only valid for

0.5 6 vf 6 0.8.

Young’s modulus ðGPaÞ: E ¼ 241:76þ 155:03vf þ 4:53v2f ; ð40Þ
Poisson’s ratio: m ¼ 0:29; ð41Þ
Yield stress ðGPaÞ: A� ¼ 0:6384þ 0:8985vf ; ð42Þ
Strain hardening coefficient ðGPaÞ: B� ¼ 2:394� 1:152vf ; ð43Þ
Strain hardening exponent: n ¼ 0:2126� 0:1535vf ; ð44Þ
Strain� rate hardening coefficient: C ¼ 0:07563� 0:04794vf ; ð45Þ
Thermal conductivity ðW=mKÞ: j ¼ 76:24þ 81:63vf ; ð46Þ
Coefficent of thermal expansion ð�10�6=KÞ: a ¼ 14:11� 9:138vf ; ð47Þ
Melting temperature ðKÞ: hm ¼ 1214:1þ 447:1vf . ð48Þ

Listed in Table 5 are the maximum deviations of the effective values of each thermo-
mechanical parameter from those computed with the rule of mixtures and corre-
sponding micromechanical models.

4.7. Verification of the effective values

In order to test the accuracy of the proposed method, a homogeneous material
with material parameters found from the above techniques was subjected to a
plane-strain tension test at 50,000/s with a uniform temperature rise of 200 K. The
stress–strain curve was compared with a similar analysis performed on an RVE.
Shown in Fig. 11 is the result for the 80% volume fraction of tungsten particulates.
The result of a similar test on a homogeneous material with the properties derived by
the rule of mixtures is given for comparison. Note that the maximum point-to-point
error for the homogenized material over the entire range of strains is 1.8%. For the
seven different volume fractions, the maximum point-to-point error was 2.2%, with



Table 5
Maximum deviation of the homogenized material parameters from the rule of mixtures and
micromechanical models

Quantity Max. % deviation from the rule of mixtures Micromechanical model

Name Max. % deviation

E �2.2% Mori–Tanaka 1.2%
A* – Suquet 5.9%
B* 6.2% – –
n 13.7% – –
C �10.4% – –
hm �2.7% – –
j �10.5% Hatta–Taya �8.1%
a �7.4% Hashin–Rosen �3.7%
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Fig. 11. Effective stress versus effective strain curve for 80% volume fraction tungsten RVE and its
equivalent homogeneous material deformed in plane strain tension.
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the average point-to-point error being less than 0.5%. This level of accuracy is
encouraging considering that the RVE is not truly isotropic due to the plane strain
assumption.

4.7.1. Loading and unloading

During a general loading, material points may be loaded, unloaded, and possibly
reloaded. To test the accuracy of the proposed procedure, a RVE containing 60%
volume fraction of tungsten particulates and its equivalent homogeneous sample
were subjected to the plane strain deformations with the lateral edges kept traction
free. However, the prescribed velocity on the upper surface had a non-constant pro-
file, as in Eq. (49).
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v2 ¼

12:5� 106t m=s; 0 6 t 6 1 ls;

12:5 m=s; 1 < t 6 6 ls;

12:5ð7� 106tÞ m=s; 6 < t 6 8 ls;

�12:5 m=s; t P 8 ls; on X 2 ¼ H .

8>>><
>>>:

ð49Þ

The time t in Eq. (49) is in seconds. The steady axial velocity v0 = 12.5 m/s corre-
sponds to a nominal axial strain-rate of 50,000/s. Shown in Fig. 12(a) is a plot of
the effective stress versus time for both the homogeneous sample and the RVE. Note
the excellent agreement, even after the body has been unloaded and then reloaded.
4.7.2. Simple shear

The effective material parameters are only accurate if the response of the homo-
geneous material compares well to that of the RVE under different types of loading.
To test the proposed technique, a 60% volume fraction tungsten RVE and a homo-
geneous sample with the homogenized properties are subjected to a simple shear test.
The upper and lower surfaces are restrained in the x2-direction and the upper surface
is given velocity v0 in the x1-direction while the lower surface is given the velocity �v0
in the x1-direction. Here, v0 was chosen such that the effective strain-rate is 25,000/s.
The lateral edges x1 = constant were kept traction free. Fig. 12(b) shows time-histo-
ries of the driving force (the force in the x1-direction on the upper surface) for the
two cases. Note the excellent agreement between the two sets of curves.
4.8. Axisymmetric deformations

This provides a more severe test of values of the effective thermophysical param-
eters of the homogenized material since tungsten particulates now are in the form of
circular rings rather than cylinders. Fig. 13 exhibits the time histories of the axial
load required to pull a cylinder containing 60% volume fraction of W particulates
at a nominal axial strain rate of 50,000/s. It is clear that loads computed from defor-
mations of the RVE and the homogenized material essentially coincide with each
other.
5. Determination of material parameters from the solution of initial-boundary-value

problems

In contrast to the approach adopted here, Batra and Kim (1990) used the semi-
inverse method to find values of material parameters for a thermoelastoviscoplastic
material from a given shear stress–shear strain curve for a steel. They used handbook
values of the mass density, Young�s modulus, Poisson�s ratio, specific heat and ther-
mal conductivity, and estimated values of A, B, C,m, n, and _e0. The initial-boundary-
value problem describing coupled thermomechanical deformations was solved
numerically. It was postulated that the problem formulation simulates well the test
conditions. Values of A, B, C, m, n, and _e0 were iterated upon till the computed shear
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stress–shear strain curve upto the peak in the shear stress was ‘‘close’’ to that ob-
tained from the test data. They used the same procedure to ascertain values of mate-
rial parameters in the Bodner–Partom relation (1975), power law, and the Litonski
(1977) relation for simple and dipolar (strain-rate gradient dependent) materials.
This approach was not tried here. However, present results suggest that a good set
of starting values for the iterative process can be estimated from the rule of mixtures.
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6. Local deformation fields

For an ordered arrangement of 50% volume fraction of 50 lm diameter W partic-
ulates in the NiFe matrix exhibited in Fig. 14(a), Fig. 14(b) evinces the evolution of
the effective plastic strain at three points; one of these points is in the W particulate
and the other two are in the NiFe matrix. The specimen is deformed isothermally in
plane strain tension at a nominal axial strain rate of 5000/s. Qualitatively similar re-
sults are obtained for a random distribution of W particulates. For t 6 44 ls, the
effective plastic strain at the point in W has the smallest value out of three values.
However, for 60 P t > 44 ls the effective plastic strain at the point in the W partic-
ulate has a value intermediate between those at the two NiFe points. It is clear that
the ratio of the effective plastic strain in NiFe to that in W varies with time t. Fur-
thermore, the effective plastic strain and the effective plastic strain rate at the two
points in the NiFe matrix are quite different. As expected, deformations of W and
NiFe are inhomogeneous.

Fig. 14(c) exhibits the time history of the effective plastic strain averaged over the
W, the NiFe and the entire body. Note that the effective plastic strain is non-nega-
tive. At any time t > 4 ls the averaged effective plastic strain in the NiFe matrix is
greater than that in the W particulates because the former has a lower yield stress
than the latter. From these averaged values of the effective plastic strain, epe;avg, a
pseudo-effective stress, rps

eff , is computed in each constituent from the relation

rps
eff ¼ Aþ Bðepe;avgÞ

n
; ð50Þ
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where A, B and n are material constants in the Johnson–Cook relation. The rule of
mixture is applied to the pseudo-effective stresses to compute the effective stress in
the composite. The time history of the effective stress so computed is compared in
Fig. 14(d) with that obtained from the surface tractions needed to deform the body.
It is clear that at every time t, the effective stresses computed by the two methods are
very close to each other even though the effective plastic strain does not obey the rule
of mixtures (cf. Fig. 14(c)) for large values of time t.

In an attempt to see if the above-mentioned technique can be generalized to a
composite of three constituents we have analyzed deformations of a composite
comprised of 375% volume fraction of 50 lm diameter W particulates and 17.14%
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volume fraction of 30 lm diameter steel particulates embedded in NiFe matrix. The
random distribution of particulates is exhibited in Fig. 15(a), and the effective stress
versus effective plastic strain curves for the three constituents are depicted in
Fig. 15(b). It is clear that the three materials strain-harden at very different rates.
Time histories of the evolution of the effective plastic strain at three points, one in
each material, on the horizontal line X2 = 0.12 mm in the reference configuration
are shown in Fig. 15(c). These evince quite different effective plastic strain histories
at the three points. Because of varying deformations, these points need not lie on
a horizontal line at all times. The plot of Fig. 15(d) reveals that at any time t the
effective stress computed with the rule of mixture from the pseudo-effective stress
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in each constituent matches very well with that obtained from surface tractions act-
ing on the bounding surfaces of the specimen. It is a nontrivial task to find time his-
tories of the average values of the effective plastic strain in each constituent.

In the aforestated results mechanical and thermal deformations have been consid-
ered separately from each other. Coupled thermomechanical deformations of the
composite have been scrutinized by Batra and Love (2005a,b, 2004) both by homog-
enizing the material and by considering deformations of each constituent. Thermal
stresses are induced because of different values of thermophysical parameters of
the two constituents. When the composite was replaced by an equivalent homoge-
nized medium the criterion to delineate the initiation of localization of deformation
proposed for a homogeneous material (e.g., see Batra and Kim (1992), Batra and
Lear (2005)) could be used. However, when deformations of each constituent were
analyzed, this criterion did not give a coherent shear band. Furthermore, the crite-
rion was satisfied at a material point at time t1 but failed at the same material point
at time t2 > t1. Eventually a contiguous narrow region formed in which the energy
dissipation rate due to plastic working is considerably more than that in the material
surrounding it. Since the analysis of deformations of each constituent is computa-
tionally very expensive, Batra and Love (2005c) used a multiscale analysis technique
to delineate the localization of deformation into narrow bands. Attempts to improve
upon the multiscale analysis are being pursued.
7. Conclusions

We have developed a technique to find the thermoelastoviscoplastic properties of
a metal-metal particulate composite. This technique was used to find the thermovi-
scoplastic parameters for the Johnson–Cook relation for a tungsten heavy alloy com-
posed of tungsten particles perfectly bonded to a nickel–iron matrix. It was found
that the rule of mixtures underpredicts the strain hardening parameters B* and n,
with the underprediction of n being as much as 13%. Furthermore, the strain-rate
hardening coefficient C was shown to vary with strain, possibly due to the two con-
stituents being strained at different rates. The rule of mixtures over-predicts C by
�10%. The thermal softening of the homogenized material, governed by the pseu-
do-melting temperature hm was found to be slightly less than that predicted by the
rule of mixtures. A slight (<5%) variation in the melting temperature at different
strains and temperature ranges was observed.

The values of effective parameters were verified by subjecting a representative vol-
ume element of the microstructure and the corresponding homogeneous material to
a series of tests. A tension test where the specimen was unloaded and reloaded, a sim-
ple shear test, and a test involving axisymmetric deformations showed that the stress
strain curves of the homogenized sample and the RVE were nearly identical.

Time histories of the evolution of the effective plastic strain at a point in each
constituent reveal significant differences in deformations of the two constituents.
Averaged values of the effective plastic strain in a constituent are used to find the
pseudo-effective stress in that constituent from its stress–strain relation. The effective
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stress in the two or the three constituent composite computed from the pseudo-effec-
tive stresses and the rule of mixture is found to match well with that found from sur-
face tractions acting on the specimen boundaries.
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