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Abstract

We use multiscale and multiphysics analyses to approximately account for the microstructure of a
composite comprised of tungsten particulates embedded in a nickel–iron matrix and deformed in
plane strain tension at a high strain rate. Both materials are assumed to be perfectly bonded to each
other, and heat-conducting, microporous, strain- and strain-rate hardening, and thermally softening
with thermomechanical material parameters degrading with the evolution of porosity. The square
region whose finite thermomechanical deformations are analyzed is divided into a uniform mesh,
(for example), of 10 · 10 super-elements or patches, and each patch is subdivided into 10 · 10 uni-
form finite elements (FEs). Material properties in a super-element are obtained from those of its con-
stituents and their volume fractions by a homogenization technique. Thus the square region is
comprised of 100 homogeneous subbodies perfectly bonded to each other. Keeping the total number
of FEs fixed, the effect of the number of patches on the time of initiation of an adiabatic shear band
(ASB) is delineated, and it is compared with that obtained from the mesoscale analysis of the prob-
lem with the 100 · 100 uniform FE mesh and considering each material separately. With an increase
in the number of patches, the ASB initiation time converges to that obtained from the mesoscale
analysis. The CPU time and other computational resources required for the patchwork analysis
are considerably less than those needed for the mesoscale analysis. The proposed technique enables
one to consider effects of microstructure in analyzing deformations of a full-scale structure.
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1. Introduction

An adiabatic shear band (ASB) is a narrow region, usually a few micrometers (microns)
wide, of intense plastic deformation that generally forms in metals deformed at high strain
rates. Their study is important since they invariably precede ductile fracture. Tresca (1878)
observed them during the hot forging of a platinum bar and called them ‘‘hot lines’’. Even
though heat conduction plays a significant role in determining their widths and spacing
between adjacent shear bands, they are called adiabatic since there is not enough time
for the heat produced due to plastic working to be conducted out of them. Batra and
Kim (1991) have shown, through numerical experiments, that the consideration of heat
conduction has negligible effect on the ASB initiation time but influences the band width;
however, for high heat conducting materials such as copper and/or when thermal loads are
significant (Batra and Wei, 2006), heat conduction must be considered. Most experimen-
tal, analytical and numerical works on ASBs have assumed the material to be homoge-
neous and isotropic (e.g., see Batra (1987, 1988); Batra and Kim (1990a,b, 1991); Batra
and Ko (1992, 1993); Wright (2002); Bai and Dodd (1992)); exceptions to this include
the experimental studies of Dick et al. (1991), Wei et al.’s (2001), and Dai et al. (2004),
one-dimensional analytical/numerical analysis of Charalambakis and Baxevanis (2004),
and two-dimensional numerical studies of Batra and Love (2004, 2005a,b), and of Chat-
zigeorgiou and Charalambakis (2005). For a homogeneous material, Batra and Kim
(1992) and Batra and Lear (2005) have adopted the following ASB initiation criterion:
an ASB initiates at a point when the maximum shear stress there has dropped to 80%
of its peak value at that material point, and it is deforming plastically. Batra and Love
(2005b) have reported that this criterion fails for particulate composites even though it
can be successfully used for functionally graded materials in which material properties
vary continuously within the body (e.g., see Batra and Love, 2004). For a tungsten
(W)/nickel–iron (NiFe) particulate composite, they found that this criterion was satisfied
at a material point at time t1 but failed there at a subsequent time t2. Until the time a
coherent ASB had formed, material points where this criterion had been met did not nec-
essarily lie on a contiguous curve or within a simply connected region. Furthermore, con-
tours of the effective plastic strain used here to fore to identify ASBs (e.g., see Needleman
(1989); Batra and Liu (1989); Zhu and Batra (1990)), could not be used to delineate an
ASB. Batra and Love (2005b) have proposed that an ASB initiates at a material point,
when the rate of increase of the specific energy dissipation rate there increases by an order
of magnitude. We adopt this criterion to analyze the initiation of ASBs in a W/NiFe par-
ticulate composite by two methods – a mesoscale analysis in which material properties of
each constituent are considered, and a multiscale analysis which divides the cross-section
into a suitable number of patches, and material in each patch is assumed to be homoge-
neous with properties derived from those of its constituents and their volume fractions.

We note that the characteristic time and the characteristic length for the thermal and
the mechanical problems are quite different. Here nonlinear coupled thermomechanical
deformations of the particulate composite have been analyzed. Energy dissipated due to
plastic deformations influences the heat produced, and hence the temperature rise of a
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particulate which in turn softens it and causes it to deform more severely and rapidly. The
multiphysics analysis refers to solving the two-way coupled transient thermomechanical
problem.

The assumption of plane strain deformations implies that W particulates are cylinders
with axes perpendicular to the plane of deformation; here these are assumed to be ran-
domly distributed uniform circular cylinders. However, one actual microstructure from
Wei et al.’s (2001) paper that describes experimental work on dynamic deformations of
tungsten heavy alloy (WHA) rods has also been studied.

Previously, Batra and Love (2006a) used the following multiscale approach to analyze
ASBs in a WHA. The 10 mm · 10 mm region was divided into a uniform mesh of
200 · 200 elements and assumed to be made of a homogeneous and isotropic material
whose properties were deduced from those of its isotropic constituents and their volume
fractions by the rule of mixtures. Coupled thermomechanical deformations were assumed
to be symmetric about the horizontal and the vertical centroidal axes. Plane strain defor-
mations of the 5 mm · 5 mm region in the first quadrant were analyzed, and time histories
of velocities, temperature and stresses at nodes on the boundaries of the 1 mm · 1 mm
subregion with the bottom left corner coincident with the corresponding vertex of the
5 mm · 5 mm region were recorded. Subsequently, the actual microstructure in the
0.5 mm · 0.5 mm subregion of the 1 mm · 1 mm region was considered with the remaining
region comprised of the homogenized material used in the earlier analysis; bottom left cor-
ners of the 0.5 mm · 0.5 mm and the 1 mm · 1 mm regions coincided with each other.
When time histories of velocity and temperature were prescribed on the boundaries of
the 1 mm · 1 mm region, the analysis failed in the sense that the solution did not converge.
However, the analysis ran smoothly with time histories of tractions and temperature
assigned on these boundaries. The ASB initiation time computed from this multiscale
analysis equaled 22 ls whereas that found from the mesoscale analysis of the
5 mm · 5 mm region was 58 ls. However, the ASB initiation time predicted from the pres-
ent patchwork approach is very close to that obtained from the mesoscale analysis, and the
difference between the two can be minimized by systematically increasing the number of
patches.

The rest of the paper is organized as follows. Section 2 gives formulation of the problem
that includes governing equations, constitutive relations, and initial and boundary condi-
tions, the Galerkin approximation of the problem, and a description of the technique to
determine values of thermomechanical parameters of the homogenized body equivalent
to the given particulate composite. Section 3 describes the multiscale analysis approach,
and compares results computed using this method with those obtained from the mesoscale
analysis. Results from a hypothetical microstructure, and an actual microstructure with
90% volume fraction of W, taken from Wei et al.’s (2001) paper, are presented in Section
3. Conclusions drawn from this work are summarized in Section 4.

2. Formulation of the problem

Fig. 1a depicts the microstructure of a 2 mm · 2 mm sample of a WHA containing 50%
volume fraction of 50 lm diameter W particulates, shown dark, randomly distributed in
NiFe matrix, depicted light grey; the microstructure of a WHA with 90% volume fraction
of W is exhibited in Fig. 4a. The sample of Fig. 1a is divided into 10 · 10 uniform super-
elements. Within each super-element material properties are assumed to be homogeneous,



Fig. 1. (a) 2 mm · 2 mm particulate composite consisting of 50% volume fraction of 50 lm diameter W
particulates randomly embedded in a NiFe matrix. (b) Inhomogeneous body generated when the body in (a) is
divided into 10 · 10 uniform and homogeneous super-elements.
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and derived from those of its constituents and their volume fractions as described in Sec-
tion 2.3; the inhomogeneous body so obtained is exhibited in Fig. 1b. The volume fraction
of W in these super-elements varies from 45.3% to 55.6%. Thus, the sample is divided into
uniform 100 inhomogeneous bodies. Whereas the microstructure of Fig. 1a is generated
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with a computational algorithm, a microstructure used in experiments and containing 90%
volume fraction of W has also been analyzed in Section 3.

We assume that the particulate and the matrix materials can be modeled as isotropic,
microporous and thermo-elasto-viscoplastic. We use rectangular Cartesian coordinates
and the referential description of motion to describe their finite plane strain transient cou-
pled thermomechanical deformations. Deformations of each constituent, and of the com-
posite body are governed by Eqs. (1)–(4) expressing, respectively, the balance of mass, the
balance of linear momentum, the balance of moment of momentum, and the balance of
internal energy

qð1� f ÞJ ¼ q0ð1� f0Þ; ð1Þ
q0ð1� f0Þ _vi ¼ T ia;a þ q0bi; i ¼ 1; 2; a ¼ 1; 2; ð2Þ
T iaF ja ¼ T jaF ia; ð3Þ
q0ð1� f0Þ _e ¼ �Qa;a þ T ia

_F ia þ q0s. ð4Þ

Here q is the present mass density, q0 the mass density in the reference configuration, f

the porosity (i.e., the volume fraction of voids at time t), f0 the porosity in the refer-
ence configuration, J = det F, Fia = xi,a = oxi/oXa the deformation gradient, x the pres-
ent position at time t of a material particle located at the place X in the reference
configuration, T the first Piola–Kirchhoff stress tensor, e the specific internal energy,
Q the present heat flux measured per unit reference area, v the velocity of a material
particle, a superimposed dot indicates the material time derivative, a repeated index im-
plies summation over the range of the index, b the body force per unit mass, and s the
specific source of internal energy. Typically, in solid mechanics, b and s are taken as
zeros. Greek indices refer to coordinates in the reference configuration, and Latin indi-
ces to coordinates in the present configuration. The porosity f is assumed to be uni-
formly distributed in each constituent, and can be regarded as a measure of the
damage.

We assume that the strain-rate tensor D defined by Dij = (vi,j + vj,i)/2, vi,j = ovi/oxj, has
the additive decomposition into an elastic part De, a plastic part Dp, and a thermal part
â _h1, viz., D ¼ De þDp þ â _h1. Here â is the coefficient of thermal expansion, h the temper-
ature rise, and 1 the identity tensor. Eqs. (1)–(4) are supplemented with the following con-
stitutive relations.

_rij þ rikW kj þ rjkW ki ¼
Eð1� f Þ

1þ m
De

ij þ
Eð1� f Þm

ð1þ mÞð1� 2mÞD
e
kkdij; ð5Þ

_e ¼ cs€hþ c _hþ 1

qð1� f Þ rijDe
ij; T ia ¼ JrijðF �1Þaj; ð6Þ

qi ¼ �j 1� 3

2
f

� �
h;i; Qa ¼ JqiðF �1Þai; ð7Þ

/ � r2
e

r2
y

� 1þ 2f �b1 cosh
3b2~p
2ry

� �
� b2

1ðf �Þ
2 ¼ 0; r2

e ¼
3

2
r0ijr

0
ij; i; j ¼ 1; 2; 3; ð8Þ

Dp
ij ¼ _k

o/
orij
¼ _k

3r0ij
r2

y

� f �b1b2

ry
sinh

3b2~p
2ry

� �
dij

" #
; r0ij ¼ rij þ pdij; ð9Þ

p ¼ �ðr11 þ r22 þ r33Þ=3; �p ¼ pHð�p � 0Þ; ð10Þ
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_k ¼
ð1�f Þry _ep

e

rij
o/
orij

if / ¼ 0 and _/ P 0;

0 when either / < 0 or / ¼ 0 and _/ < 0;

8<
: ð11Þ

_f ¼ ð1� f ÞDp
ii þ

f2 _ep
e

s2

ffiffiffiffiffiffi
2p
p e

�1
2

epe�en
s2

� �2

Hð�p � 0Þ; ð12Þ

f � ¼
f ; f 6 fc;

fc þ fu�fc
ff�fc
ðf � fcÞ; f > fc;

(
ð13Þ

ry ¼ ðAþ Bðep
e Þ

nÞ 1þ ~C ln
_ep

e

_ep
0

� �� �
1� h� hr

hm � hr

� �m� �
. ð14Þ

The left-hand side of Eq. (5) equals the Jaumann derivative of the Cauchy stress tensor
r, Wij = (vi,j � vj,i)/2 is the spin tensor, E Young’s modulus, and m Poisson’s ratio. Consti-
tutive relation (5) implies that each constituent is being modeled as an isotropic hypoelas-
tic material. Replacing the Jaumann derivative of r by another objective stress rate will
change the constitutive description of the material. However, Batra and Jaber (2001)
found that it does not alter the ASB initiation time in a homogeneous thermoviscoplastic
material mainly because elastic deformations are negligible as compared to the plastic
deformations within an ASB and in regions adjacent to it. Similarly, adopting another
constitutive relation, such as that for a hyperelastic material, will not affect the ASB ini-
tation time. Eq. (6)1 is the constitutive relation for the internal energy, e. In it c is the spe-
cific heat, and s the thermal relaxation time that equals the time required to establish a
steady state of heat conduction in an element suddenly exposed to heat flux. Fourier’s
law of heat conduction is described by Eq. (7)1 in which j is the thermal conductivity
of the solid material, and h the present temperature of a material particle. Eq. (6)2 relates
T and r.

In the yield surface (8) proposed by Gurson (1977) for a porous material, p is the hydro-
static pressure given by Eq. (10)1, and f* the modified value of porosity given by (13). Gur-
son’s yield surface is based on quasistatic analysis with the matrix material modeled as
rigid perfectly plastic and obeying von Mises yield criterion. Constants b1 and b2, intro-
duced by Tvergaard and Needleman (1984), provide a better fit of results computed from
a FE analysis of the formation of ASBs in a plate having an array of large cylindrical voids
with test observations. Eq. (9)1 is the associative flow rule requiring that the current value
of the plastic strain rate be along the normal to the yield surface with _k, the factor of pro-
portionality, defined by (11); _k > 0 only when the material point is deforming plastically.

Eq. (12) gives the evolution of porosity; the first term on its right-hand side is derived by
assuming that the matrix is incompressible and the elastic dilatation is negligible as com-
pared to the plastic dilatation, and the second term is the strain based nucleation of voids
introduced by Chu and Needleman (1980). f2, s2 and en are material parameters; the rate of
nucleation of voids is highest when ep

e equals en and decays exponentially with the differ-
ence between ep

e and en. H is the Heaviside step function. We have thus assumed that new
voids nucleate only when the hydrostatic stress is tensile. To account for the coalescence of
neighboring voids, Tvergaard and Needleman (1984) enhanced the porosity, as given by
Eq. (13), after it reaches its critical value fc. In Eq. (13), ff is the porosity at ductile fracture,
and fu = 1/b1 is the porosity when the yield surface has shrunk to a point. Wei and Batra
(2002) have proposed that _f ¼ 0:566 ðexp½rkk=2ry �Þ_ep

e Hð�p � 0Þ.
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In the Johnson and Cook (1983) relation (14) ry, the current yield stress of the material,
depends upon the effective plastic strain ep

e , the effective plastic strain rate _ep
e , and the tem-

perature h. Furthermore A; B; ~C; _ep
0, and m are material parameters, hr the room temper-

ature, and hm the fictitious melting temperature of the material in the sense that it is a
curve fitting parameter rather than the actual melting temperature. Parameters B and n
characterize the strain hardening of the material, ~C and _ep

0 the strain-rate hardening,
and the last factor on the right-hand side of Eq. (14) its thermal softening.

Eqs. (8) and (14) imply that the radius of the von Mises yield surface increases due to
strain- and strain-rate hardening of the material but decreases due to the softening induced
by the temperature rise and the increase in porosity. The degradation of material properties
due to the damage, taken here synonymous with the porosity, is indicated by Eqs. (5)–(8).
The affine variation with the porosity of Young’s modulus, the bulk modulus, the stress-
temperature coefficient, and the heat capacity implies that the rule of mixtures has been
employed to find their effective values; the expression for the thermal conductivity in Eq.
(7)1 is due to Budiansky (1990). The interaction, if any, among neighboring voids has been
tacitly ignored. Jiang and Batra (2002), among others, have considered this interaction. The
shrinkage of the yield surface due to an increase in porosity described by Eq. (8) can be seen
by plotting the yield surface for two different values of f while keeping other variables fixed.

Depending upon the values of material parameters, softening induced by the increase in
porosity can exceed that due to temperature rise and induce the initiation of an ASB; e.g.,
see Batra and Jin (1994).

We have described damage by porosity rather than by the Johnson–Cook type relation
since the dependence of the yield surface and other material parameters upon the latter is
unknown. Neither the porosity evolution nor the time history of the Johnson–Cook dam-
age variable can be measured experimentally in metals undergoing high strain rate
deformations.

We note that the problem formulation incorporates thermal stresses developed due to
the differences in the coefficients of thermal expansion of the constituents.

For plane strain deformations, D33 ¼ D13 ¼ D23 ¼ Dh
13 ¼ Dh

23 ¼ Dp
13 ¼ Dp

23 ¼ 0 but Dp
33

and Dh
33 are, in general, nonzero.

For metallic alloys the parabolic and the hyperbolic heat equations give essentially the
same ASB initiation time. As stated earlier in Section 1, if the objective is to find the ASB
initiation time, one can neglect heat conduction, except possibly for copper. However, the
spacing between adjacent ASBs, and the width of an ASB are affected by the value of ther-
mal conductivity.

Substitution for _e and qi from Eq. (6)1 and (7) into Eq. (4) gives the following hyper-
bolic heat equation:

q0ð1� f0Þcðs€hþ _hÞ ¼ j 1� 3

2
f

� �
h;a

� �
;a

þ JrijD
p
ij þ q0s. ð15Þ

The term JrijD
p
ij equals the heating due to plastic working per unit volume in the refer-

ence configuration; thus the Taylor–Quinney parameter has been taken as 1. Except for
a delay in the time of initiation of an ASB other results remain unaffected by a lower
value of the Taylor–Quinney factor. The form (15) of the hyperbolic heat equation is
due to Cattaneo (1958) and Vernotte (1958). Batra and Lear (2005), and Batra and Chen
(1999) found that the finiteness of the thermal wave speed affects the ASB initiation time
in a typical steel, and the spacing between adjacent shear bands only when s P 10�6 s.
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For a typical steel, s = 1 · 10�12 s, and s . 25 · 10�12 s for copper. For these values of s
Batra and Lear (2005) found that the hyperbolic and the parabolic heat equations give
identical values of the ASB initiation time. Batra (1975) considered higher-order spatial
and temporal gradients of temperature, and derived a heat equation that admits finite
speeds of thermal waves. However, in such a material either a thermal wave propagates
with a finite speed or the linearized problem has a unique solution. Ideally, one will like
to have both.

We note that Batra and Kim (1990), Batra and Jaber (2001), and Batra and Chen (1999)
have analyzed different aspects of shear banding with four different thermoviscoplastic
relations, namely, the Johnson and Cook (1983), the Litonski–Batra (e.g., see Batra
(1988)), the Bodner and Partom (1975) and a power law. These relations were calibrated
to give nearly the same effective stress vs. the effective strain curve during homogeneous
deformations of the body. However, during inhomogeneous deformations, each one of
the relations gave qualitatively similar but quantitatively different results. The decision
to use the Johnson–Cook relation here is based on the availability of values of thermome-
chanical parameters for W and NiFe.

2.1. Initial and boundary conditions

The body is initially at rest, stress free, at a uniform temperature, has zero rate of
change of temperature, and a prescribed initial porosity. Thus

xðX; 0Þ ¼ X; vðX; 0Þ ¼ 0; hðX; 0Þ ¼ h0; _hðX; 0Þ ¼ 0; qðX; 0Þ ¼ q0ðXÞ;
rðX; 0Þ ¼ 0; ep

e ðX; 0Þ ¼ 0; f ðX; 0Þ ¼ f0ðXÞ; X 2 X. ð16Þ

Here X is the region occupied by the body in the reference configuration.
We assume that the body is prismatic having a uniform cross-section, and the volume

fractions of constituents, initial conditions, and boundary conditions are independent of
the axial coordinate. We thus assume that a plane strain state of deformation prevails
in the body. Furthermore, for the body deformed in simple tension, the initial cross-
section is square of side 2H, and thermomechanical deformations are assumed to be sym-
metric about the two centroidal axes. Thus the compositional profile has been tacitly
assumed to be symmetric about the two centroidal axes.

Tensile deformations of one-quarter of the cross-section, shown in Fig. 1a, are ana-
lyzed. Boundary conditions (17)4�6 and (17)7–9, listed below, arising from the symmetry
of deformations are imposed at points on the centroidal axes X1 = 0 and X2 = 0. The ver-
tical surface X1 = H is taken to be traction free and thermally insulated; see Eq. (17)1–3.
Normal velocity, null tangential tractions, and zero heat flux are prescribed on the top
horizontal surface X2 = H; these are given by Eq. (17)10–12. The prescribed normal veloc-
ity, given by Eq. (17)12, increases linearly with time to its steady state value v0 in 1 ls and is
then held fixed.

T 21 ¼ T 11 ¼ 0; Q1 ¼ 0 on X 1 ¼ H ;

T 21 ¼ 0; v1 ¼ 0; Q1 ¼ 0 on X 1 ¼ 0;

T 12 ¼ 0; v2 ¼ 0; Q2 ¼ 0 on X 2 ¼ 0;

T 12 ¼ 0; Q2 ¼ 0; v2 ¼
v0ðt=1 lsÞ; 0 6 t 6 1 ls;

v0; t P 1 ls;

�
on X 2 ¼ H .

ð17Þ
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2.2. Interface conditions

It is assumed that, during the entire deformation process, the W particulates are both
mechanically and thermally perfectly bonded to the NiFe matrix. Thus

½u� ¼ 0; ½h� ¼ 0; ½T iaN a� ¼ 0; ½QaNa� ¼ 0 on C; ð18Þ
where N is an outward unit normal, in the reference configuration, to the interface C be-
tween a particulate and the matrix, and the square bracket indicates the jump of a quantity
across the interface C between a particulate and the matrix. This assumption is reasonable
since a WHA is usually manufactured by sintering in which the composite material is
heated to a temperature close to the melting temperature of the matrix and subjected to
a high pressure.

2.3. Material properties for the equivalent homogenized body

There are no micromechanics based relations available to compute values of all mate-
rial parameters of a composite comprised of thermo-elasto-viscoplastic constituents. Val-
ues of E, m, j, a, q and c for the equivalent homogenized medium can be computed by
using a micromechanics based model such as that proposed by Mori and Tanaka
(1973), but those of A, B, ~C, m, n and hm cannot be so found. We note that the melting
temperature hm for the composite will equal the lowest temperature at which one of its
constituents melts. The value of hm for the equivalent homogenized medium equals a fic-
titious number obtained by fitting the Johnson–Cook relation (14) to the data from either
physical or numerical experiments. Numerical plane strain tension tests on representative
volume elements (RVEs) of different sizes containing varying volume fractions of random
and/or ordered arrangements of particulates of circular cross-section were performed; e.g.,
see Batra and Love (2006b). Values of E, j, a, B, ~C, n and hm obtained from these numer-
ical experiments were found to differ by at most 10% from their values computed by the
rule of mixtures. According to this rule, the value P of a material parameter for a mixture
comprised of two constituents with volume fractions V f

1 and V f
2 and values P1 and P2 of

the material parameter is given by

P ¼ V f
1P 1 þ V f

2P 2 ¼ ð1� V f
2ÞP 1 þ V f

2P 2. ð19Þ
It gives exact values of the mass density and the heat capacity, and is simple to use. It
ignores interactions among adjacent particulates, their shapes, sizes and orientations,
and their distribution in the matrix. Here the rule of mixtures, Eq. (19), has been used
to ascertain values of material parameters of the W/NiFe composite.

2.4. Semi-discrete formulation of the problem

Eqs. (5), (6)2 and (3) imply that the balance of moment of momentum (3) is identically
satisfied. The present mass density can be computed from Eq. (1) if the deformation gradi-
ent and the current value of the porosity are known. Thus, the dependent variables to be
solved for are x, f and h and the independent variables are X and t. Eqs. (2) and (15) are
second-order coupled non-linear hyperbolic partial differential equations for x and h. These
can not be written explicitly in terms of x and h since T is given by (6)2 and _r by (5) which
involves Dp and h. We solve the problem numerically by the finite element method (FEM).
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We first introduce an auxiliary variable n ¼ _h. Let w1,w2, . . .,wn be the FE basis func-
tions defined on X. We write

vi ¼
Xnodes

A¼1

wAðXÞ~vAiðtÞ; h ¼
Xnodes

A¼1

wAðXÞ~hAðtÞ; n ¼
Xnodes

A¼1

wAðXÞ~nAðtÞ; i ¼ 1; 2. ð20Þ

Here ~v is the vector of velocities of nodes, ~h the vector of nodal temperatures, and ~n the
vector of rate of change of temperature at the nodes. Following the usual procedure, e.g.
see Hughes (1987), we get

M _~v ¼ Fext � Fint;
_~h ¼ ~n; sH

_~n ¼ Fh þ ~Q; ð21Þ
where

MAB ¼
Z

X
q0ð1� f0ÞwAwB dX; F int

Ai ¼
Z

X
wA;aT ia dX; F ext

Ai ¼
Z

X
wAq0bi dX;

H AB ¼
Z

X
q0cð1� f0ÞwAwB dX; F h

A ¼
Z

X
j 1� 3

2
f

� �
h;awA;a dX;

QA ¼
Z

X
wAðq0sþ J trðrDpÞÞdX.

ð22Þ

Note that the natural boundary conditions of zero heat flux on all bounding surfaces,
and null surface tractions on X1 = H, zero tangential tractions on X2 = 0, H, and X1 = 0,
have been embedded in Eq. (21). For non-zero surface tractions, and nonvanishing heat
flux prescribed on a part of the boundary, Eq. (22)2 and (22)4 are suitably modified.

In the Lagrangian formulation of the problem, matrices M and H are computed only
once but matrices Fint, Fh and ~Q are computed after every time step. These matrices are
modified to incorporate essential boundary conditions (17)12.

We solve Eq. (14) for _ep
e in terms of ry, ep

e and h, and integrate the resulting equation
along with Eqs. (5) and (12) at the integration (or Gauss quadrature) points. Recall that
_ep

e > 0 only when a material point is deforming plastically as signified by the satisfaction of
Eq. (8)1; otherwise _ep

e ¼ 0. Weak form of equation _x ¼ vðX; tÞ is also derived. We thus get
coupled nonlinear ordinary differential equations (ODEs)

_d ¼ F; ð23Þ
where d is the vector of unknowns, and F is the force vector that depends upon time t and
d(t). The six unknowns at a node are {x1, x2, v1, v2, h, n}, and the dimension of vector d

equals 6 times the number of nodes. Furthermore, unknowns at a quadrature point are
fr11; r22; r12; r33; f ; ep

eg. Thus the total number of coupled ODEs to be integrated equal
6 (number of nodes) + 6 · 4 · (number of elements) for a 2 · 2 integration rule. Batra
and Jaber (2001) employed a similar technique to numerically solve the coupled thermovi-
scoplastic problem. They used a FE mesh comprised of triangular elements and one-point
integration rule to compute the domain integrals.

3. Computation of results

A computer code employing 4-node isoparametric quadrilateral elements has been
developed. Integrals in Eq. (22) over each element are evaluated by using the 2 · 2 Gauss
quadrature rule. Should a FE span two materials, values of the material parameters at the



1868 R.C. Batra, B.M. Love / International Journal of Plasticity 22 (2006) 1858–1878
Gauss quadrature point are used. Batra (1980) used this procedure for analyzing finite sta-
tic deformations of an inhomogeneous cylinder made of a Mooney–Rivlin material and
showed that computed results matched well with the analytical solution. The coupled non-
linear ODEs (23) are integrated with respect to time t by using the subroutine LSODE
(Livermore Solver for ODEs) developed by Hindmarsh (1983). It adjusts adaptively the
time step and the order of the integration scheme so as to compute a stable solution within
the prescribed absolute and relative tolerances. Because of the large number of nodes in
the FE mesh, the Adams–Moulton integration method obtained by setting MF = 10 in
LSODE is employed. Variables RTOL and ATOL that specify the relative and the abso-
lute tolerances in the computed solution are each set equal to 10�6.

Both the mechanical and the thermal problems are hyperbolic. As mentioned in Section
3.1, the speed of the thermal wave is considerably smaller than that of the mechanical
waves, the latter controls the size of the time step. Once deformations begin to localize
the time step drops significantly. This drop in the time step occurs at a lower value of
the nominal strain for a particulate composite than that for the homogenized body. This
is because inhomogeneities in deformations introduced by numerous particulate/matrix
interfaces induce high strains, not necessarily simultaneously, at several discrete points
in the body. The deformation may begin to localize at any one of these sites, and it even-
tually localizes into a connected region. For a 100 · 100 uniform FE mesh the CPU time is
�120 h on a SGI single processor Altix machine.

3.1. Values of material parameters

Values of thermophysical parameters for the W and the NiFe are listed in Table 1. Val-
ues of material parameters in the Johnson–Cook relation (14) are obtained by fitting
curves to data points computed from the relations given by Zhou (1993). Zhou mentioned
that the NiFe matrix phase also contained some W. Values assigned to other parameters
given below in (24) are the same for the two constituents and for the homogenized body;
we note that these are not readily available in the literature for different materials.

b1 ¼ 1:5; b2 ¼ 1:0; f 2 ¼ 0:04; s2 ¼ 0:1; en ¼ 0:5; s ¼ 10�8s;

hr ¼ 273K; f c ¼ 0:15; f u ¼ 2=3; f f ¼ 0:25. ð24Þ

Thus the acoustic impedances of W and NiFe equal 87.86 · 106 and 48.44 · 106 kg/(m2 s),
respectively, and differ by a factor of 1.8. The bar wave speeds in W and NiFe are 4552 and
5265 m/s, respectively, and differ by a factor of 0.86. Speeds of a thermal disturbance in W
and NiFe equal 77.5 and 53.34 m/s, respectively.
Table 1
Values of material parameters

Material q (kg/m3) E (GPa) m j (W/(m K)) c (J/(kg K)) a (10�6/K)

Tungsten 19,300 400 0.29 160 138 5.3
NiFe 9200 255 0.29 100 382 15

A (MPa) B (MPa) n ~C _e0ð1=sÞ hm (K) m

730 562 0.075 0.290 10�6 1723 1.0
150 546 0.208 0.0838 10�6 1225 1.0
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Because of the random distribution of W particulates the fraction of the axial load
supported by W and NiFe at a horizontal surface x2 = constant varies with time t.
Once either one or both of these constituents begin to deform plastically, speeds of
incremental elastic waves in them will depend upon values of the tangent moduli.
There are four non-zero components of the Cauchy stress tensor, and of the elastic
strain tensor giving several elastic moduli for each material that need not vanish
simultaneously. Also waves are reflected and refracted from interfaces between W
and NiFe particulates, as well as reflected from the bounding surfaces. These make
the deformation highly heterogeneous, and provide numerous sites for the initiation
of ASBs.

3.2. Verification of code

The method of fictitious body forces (also called the method of manufactured solutions)
is used to verify that the code correctly solves the initial- boundary-value problem defined
by Eqs. (1)–(18). In this method, analytical expressions for the displacement and the tem-
perature fields are presumed, and body forces b and the source s of internal energy in Eqs.
(2) and (4) are computed so as to satisfy the balance of linear momentum and the balance
of internal energy. Also, initial and boundary conditions are derived from the assumed dis-
placement and temperature fields. These are input into the code and the numerical solution
is found. A good agreement between the computed and the analytical solutions verifies the
code. This method was also used by Batra and Liang (1997, e.g. see remarks following Eq.
(30), of their paper).

For an ASB problem involving a homogeneous material, computed results were also
found to agree very well with those obtained by Batra and Lear (2005) who employed a
similar problem formulation but used 3-node triangular elements for a numerical solution
of the problem.

The code was used to study wave propagation in an inhomogeneous elastic bar (Batra
and Love, 2005a). The time histories of the computed wave speed, and of the axial stress
at a point were found to agree well with the analytical solution of Chiu and Erdogan
(1999).

3.3. Adiabatic shear band initiation criterion

For both homogeneous and functionally graded bodies in which material parameters
vary continuously with the position the following ASB initiation criterion has been suc-
cessfully used. An ASB initiates at a point where the maximum shear stress has dropped
to 80% of its peak value at that point, and the material point is still deforming plastically;
e.g. see Batra and Lear (2005) and Batra and Love (2004). However, for high strain-rate
deformations of a particulate composite, Batra and Love (2005b) found that this criterion
fails because it is satisfied at a material point at time t1 but not at a subsequent time t2 > t1.
Furthermore, the criterion may be satisfied simultaneously at numerous disconnected
points but eventually some or all of them do not lie within the region of localization of
the deformation. By examining the evolution of different measures of deformation, Batra
and Love (2005b) proposed the following criterion for ASB initiation. An ASB initiates at
a material point when the rate of energy dissipation there suddenly increases by an order
of magnitude.



1870 R.C. Batra, B.M. Love / International Journal of Plasticity 22 (2006) 1858–1878
3.4. Results for WHA with 50% W

Thermo-mechanical deformations of the 2 mm · 2 mm quarter specimen, shown in
Fig. 1, were analyzed. It enabled us to represent well circular bondaries of W particulates
with a 100 · 100 uniform FE mesh. Two microstructures were considered. The first micro-
structure was computer generated by distributing randomly 50 lm diameter W particu-
lates, and the volume fraction of W equaled 50%. The second microstructure analyzed
was taken from Wei et al.’s (2001) paper; it has different size W particulates, and 90%
W by volume. We discuss below results for the first microstructure, and in Section 3.5
those for the second microstructure.

Fig. 2a depicts at t = 90 ls, fringe plots of the effective plastic strain in a 2 mm · 2 mm
sample meshed with 60 · 60 uniform 4-node, quadrilateral elements, 20 · 20 super-
elements or patches, and deformed in plane strain tension at a nominal strain rate of
5000/s. Thus, each super element is divided into 3 · 3 uniform elements. It is clear that
the deformation has localized in three regions that cut across boundaries of super-elements
as well as finite elements. Whereas inhomogeneities across super-elements boundaries trig-
ger the initiation of an ASB, and probably determine the ASB initiation time, the exact
xa
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correlation among the ASB initiation time, location, and the number, magnitude and loca-
tions of inhomogeneities (or defects) is unknown. Batra and Wilson (1998) analyzed plane
strain, and axisymmetric tensile deformations of a 5 mm · 10 mm WHA specimen meshed
with 100 · 100 uniform rectangular elements. They assumed that of the 104 elements, a few
randomly located elements were comprised of NiFe and the remaining of W. In one of the
simulations, an ASB did not pass through either one of the two NiFe elements.

Two points, one within and the other outside the region of localized deformation, are
marked in Fig. 2a. From the time histories of the effective plastic strain at these two points
exhibited in 2b, one can see that at t . 64 ls the effective plastic strain begins to increase
exponentially at the point within the ASB, but its rate of growth steadily decreases at the
point that is outside of the ASB, and becomes essentially zero (i.e., the effective plastic
strain approaches a constant value). It implies that subsequent deformation of the material
point outside of the ASB are elastic. In Fig. 2c, we have plotted the energy dissipation rate
vs. time at the material point located within an ASB. It is clear that the radius of curvature
of this curve suddenly decreases at t . 64 ls signifying the initiation of the localization of
deformation there. Such plots at numerous points, and for different arrangements of par-
ticulates, confirmed that the ASB initiation criterion based on the explosive increase in the
energy dissipation rate works satisfactorily.

Batra and Chen (2001) have computed the energy dissipation rate within an ASB
formed in a thermoviscoplastic material deformed in simple shear. Their values of the
energy dissipation rate also showed a peak like that in Fig. 2c, and the peak value occurred
when s/smax = 0.62 for the Johnson–Cook relation. Here s is the shear stress, and smax its
maximum value at a point during the deformation process. The peak value of the energy
dissipation rate and the corresponding value of s/smax varied with the thermo-visco-plastic
relation even if it had been calibrated against the same test data for homogeneous simple
shearing deformations.

We list in Table 2 below the ASB initiation times and the location in the reference con-
figuration of the point from where an ASB initiates for the different analyses. Whereas for
the 30 · 30 patchwork analysis, the ASB initiation time is very close to that obtained with
the mesoscale analysis, the ASB originates from different points in the two cases.

We note that in a homogenized body with material properties obtained by the rule of
mixtures and without introducing a defect, an ASB formed at t . 126 ls. Deformations
become inhomogeneous because of the interaction between incident waves and waves
reflected from the boundaries. Truncation errors also introduce small inhomogeneities
and may provide nucleation sites for the localization of deformations. Batra and Love
(2005b) have found the defect size introduced at the specimen centroid that will give
ASB initiation time close to the value obtained with the mesoscale analysis.

For a fixed volume fraction of W, Batra and Love (2005b) have shown that the ASB
initiation time varies with the particulate arrangement. For a given volume fraction and
Table 2
ASB initiation times and the location of its point of initiation for different analyses

# patchwork elements ASB init. time (ls) Origination point (ref. config.)

10 per edge (100 total) 64.1 (0.100, 0.000)
20 per edge (400 total) 63.1 (1.300, 0.867)
30 per edge (900 total) 62.3 (1.767, 1.033)
Mesoscale analysis 61.1 (1.470, 1.130)
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arrangement of W particulates, the ASB initiation time depends upon the mode of defor-
mation; it is highest for axisymmetric deformations.

3.4.1. Variation of effective plastic strain across an ASB

Fig. 3a shows contour plots of the effective plastic strain, and a straight line perpendic-
ular to an ASB; it is a reproduction of Fig. 2a with an added straight line perpendicular to
an ASB. We have exhibited in Fig. 3b and c the variation of the effective plastic strain and
the energy dissipation rate with the distance from a fixed point on this line. It is evident
that the peak effective plastic strain within the ASB is an order of magnitude larger than
that at points outside of the ASB, and the energy dissipation rate is essentially zero at
points outside of an ASB. The width of the ASB is about 0.15 mm which is probably
an order of magnitude larger than the observed value. Previous analyses of similar prob-
lems have indicated that the band width is mesh-dependent but a reasonably fine mesh
such as the one employed here predicts correctly the qualitative features of the localization
of deformation, and the ASB initiation time.

The primary objective of this work is to delineate the effect of the number of patches or
super-elements. Results included in Table 2 inidcate that 30 · 30 patches are sufficient to
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get ASB initiation time with 2% accuracy for a WHA with 50% volume fraction of 55 lm
diameter randomly distributed W particulates.

3.5. Results for WHA with 90% W

Plane strain tensile deformations of a 10 mm · 10 mm sample of actual microstructure,
depicted in Fig. 4a, and taken from Wei et al.’s (2001) paper were analyzed. The given
microstructure is for a region much smaller than the size of the sample used in the analysis.
Fig. 4. (a) Actual microstructure of tungsten heavy alloy with 90% volume fraction of tungsten; Wei et al. (2001).
White regions are occupied by tungsten, and dark by NiFe. (b) ASB initiation time versus patch size for a
10 mm · 10 mm sample (a quarter was meshed with 100 · 100 elements) for an actual microstructure of a WHA.
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The microstructure in the specimen was assumed to be symmetrical about the horizontal
and the vertical centroidal axes so that deformations of only a quarter of the specimen
deformed at a nominal strain rate of 5000/s could be analyzed. The 5 mm · 5 mm region
was divided into a uniform FE mesh of 100 · 100 elements. The solution so computed is
compared with those obtained by dividing the 5 mm · 5 mm region into super-elements of
different sizes but with 100 · 100 uniform elements in the 5 mm · 5 mm region.

The plot in Fig. 4b of the ASB initiation time vs. the number of uniform super-elements
in either the X1- or the X2-direction shows that the ASB initiation time converges with an
increase in the number of super-elements. The converged value, 70 ls, of the ASB initia-
tion time differs from the ASB initiation time of 67 ls computed with the meso-scale anal-
ysis by less than 5%. Whereas the meso-scale analysis required nearly 120 h of CPU time
on a SGI Altix machine the patchwork analysis needed only 5 h of CPU time. We note
that the difference in the ASB initiation times with the 50 · 50 and the 100 · 100 patches
is indeed very small. Thus one can analyze several different microstructures with the patch-
work, and then study the final one or two with the meso-scale analysis. The computed
ASB initiation time could not be compared with that found by Wei et al. (2001) since they
tested specimens in torsion, and we have simulated plane strain tensile deformations.
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Furthermore, Wei et al. (2001) neither report the ASB initiation criterion nor the ASB ini-
tiation time.

Whereas the patchwork technique gives very good values of the ASB initiation times
the deformation fields within the specimen differ noticeably from those computed with
the meso-scale analysis. For example, we have plotted in Fig. 5a and b the distribution
on the line x2 = 1.5 mm of the effective plastic strain at t = 40 ls computed both with
the mesoscale and the patchwork analyses. The distribution of the mass density is also
shown to identify whether a material particle is made of W (high density) or NiFe (low
density). It is clear that the meso-scale analysis gives sharp gradients in the effective plastic
strain in regions adjoining the interfaces between two different particulates. The effective
plastic strain is usually much larger in NiFe than that in W. As expected, the patchwork
analysis smears out these sharp gradients in the mass density and the effective plastic
strain.

Fig. 6a and b shows results similar to those of Fig. 5a and b at time t = 80 ls which
exceeds the ASB initiation time. In the post-localization regime, the mesoscale and the
patchwork analyses give quite different spatial gradients of the effective plastic strain. Note
that at either one of these two times the spatial variation of the effective plastic strain for
the patchwork analysis cannot be obtained by averaging values at two successive locations
computed with the mesoscale analysis.
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4. Conclusions

We have analyzed the initiation and the development of adiabatic shear bands in a par-
ticulate composite comprised of tungsten particulates immersed in nickel–iron matrix, and
deformed in plane strain tension at a nominal strain rate of 5000/s. Particulates are
assumed to be perfectly bonded to the matrix and the two are in perfect thermal contact.
Effects of heat conduction, thermal expansion, thermal softening, strain- and strain-rate
hardening, and the degradation of material moduli with the evolution of porosity are
incorporated in the analysis of the problem. The problem is analyzed first by considering
material properties of the particulates and the matrix, and then by dividing it into a
number of uniform patches with material properties in each patch obtained by a homo-
genization technique. For the latter analysis, the cross-section is divided into a number
of same-size inhomogeneous bodies. It is found that with an increase in the number of
patches, the adiabatic shear band initiation time converges to that obtained with the
meso-scale analysis. However, the material point from where an adiabatic shear band ini-
tiates is different in the two cases. Furthermore, the gradients in the effective plastic strain
for the meso-scale analysis are much higher than those in the patch-work analysis. Thus, if
one is interested in only the adiabatic shear band initiation time then the patch work anal-
ysis provides very good results with a considerable saving in computational resources.
However, one needs to perform the mesoscale analysis to capture finer details of deforma-
tion fields. A possibility is to examine several initial microstructures with the patchwork
analysis, and the final few with the high fidelity mesoscale analysis.
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