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A shear deformation theory including a logarithmic function in the postulated expression for the circum-
ferential displacement is developed for thick circular beams and is used to analytically solve static defor-
mations of bi-directional functionally graded circular beams. The consideration of a logarithmic term is
motivated by the displacement field in the analytical solution of the plane strain elasticity problem of a
hollow circular cylindrical shell. The non-zero shear traction boundary conditions at the two major sur-
faces of the beam are a priori satisfied by the assumed displacement field. The material properties are
assumed to vary according to exponential and power laws, respectively, in the tangential and the thick-
ness directions. Parametric studies conducted for the variation of stresses and displacements indicate
that material properties can be tailored to satisfy several structural constraints. For the bending of a sand-
wich beam with a bi-directionally graded core and homogeneous isotropic facesheets, it is found that the
maximum interfacial bending stress, the peak interfacial shear stress and the maximum interfacial peel-
ing stress can be reduced, respectively, by 20%, 44% and 42%.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Curved beams are used in civil, mechanical and aerospace
industries as part of grid stiffened floors, wind turbine blades,
and as stringers and rings in wing and hull assemblies. Beams
made of functionally graded materials (FGMs) have smooth mate-
rial composition profiles [1] that help mitigate interface problems
like delamination failure observed in layered composites [2] while
also providing multi-functionalities. For example, by combining
the thermal resistance of ceramics with the toughness, wear resis-
tance and machinability of metals [3,4], FG beams can be designed
with high stiffness-to-weight ratios. In this study, we develop a
shear deformation theory for thick circular beams and use it to
analyze static deformations of bi-directional FGM circular beams.

One way to derive a highly effective beam/plate/shell theory is
to postulate displacement fields in terms of basis functions [5–8]
that appear in the analytical solution of the corresponding bound-
ary value problem solved using the linear elasticity theory.
Borrowing from expressions for the tangential displacements for
a hollow circular cylindrical shell subjected to surface tractions
on its inner and outer surfaces, given for example in [9], we postu-
late an expression for the tangential displacement of a circular
thick beam that includes a combination of algebraic and logarith-
mic functions of the radial coordinate as well as terms multiplying
tangential tractions applied on the two major surfaces. The radial
displacement is assumed to be a function of the angular position
only. Stresses derived from the postulated displacements and
Hooke’s law satisfy the tangential traction boundary conditions
on the two major surfaces.

Deformations for a curved beam differ from those of a straight
beam in that a radial displacement of a point produces axial strain
and axial stress in the circumferential direction whereas in a
straight beam only displacement gradients induce strains. In the
proposed beam theory, the effect of the transverse normal strain
(i.e., the thickness-stretch effect) is not considered, and the trans-
verse normal (or radial) stress is obtained by using a one-step
stress recovery scheme (SRS) by integrating the equation of
equilibrium in the radial direction.

The mechanics of straight FGM beams with material properties
graded in only one direction, either through-the-thickness
[4,10–17] or axially [18–21] have been extensively analyzed, with
focus mostly on thickness-wise gradations. Bi-directionally graded
beams wherein the material properties vary along the axis and



Fig. 1. Geometry of the circular beam.
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thickness of the beam simultaneously have recently been shown to
improve structural efficiency and help fulfill practical design
requirements. Semi-analytical elasticity solutions based on the
state space method were presented by Lu et al. [22] for the bending
of bi-directional FGM straight beams while the steady-state free
and forced vibration of these structures was optimized using
meshless methods by Qian and Batra [23] and Goupee and Vel
[24]. Simsek [25] and Wang et al. [26] studied the dynamics of
bi-directional FGM straight beams using the Timoshenko and the
Euler–Bernoulli beam theories, respectively. Using an exponential
gradation along the beam thickness and a power law distribution
along the length, an abrupt jump in natural frequencies was
reported for specific values of the gradation parameters.

For curved beams, however, there is a paucity of analytical solu-
tions for bi-directionally graded beams. Beams with material prop-
erties varied only through the thickness have been studied using
the differential quadrature method [27,28], initial values method
[29], variational principles [30–33], the beam theory approach
[34], the power series method [35,36], the finite element method
[37] and the variational iteration method [38]. Two dimensional
elasticity solutions for the statics [39,40] and free vibrations
[9,41,42] of FGM circular beams with thickness-wise variations
in material properties have also been developed. Recently, Pydah
and Sabale [43,44] presented analytical solutions for the flexure
of bi-directional FGM circular beams using the Euler–Bernoulli the-
ory and the first order shear deformation theory. However, these
models were unable to capture the non-linear distribution of the
transverse shear stress through the thickness of the beam and
necessitated the use of a shear correction factor.

Here, we assume Young’s modulus to be of the form
Eðr; hÞ ¼ E�f rð Þg hð Þwherein f ðrÞ and gðhÞ are non-dimensional func-
tions representing the gradations along the depth (i.e., in the radial
(r�) direction) and along the arc-length (i.e. in the tangential/axial
(h�) direction). Numerical results have been computed by assum-
ing the function f ðrÞ to be a power-law in r and gðhÞ an exponential
in h. Through-the-thickness distributions of all stresses including
the transverse normal stress computed using the one-step SRS
are found to agree well with those from the analysis of the corre-
sponding plane stress elasticity problems using the commercial
finite element software, ABAQUS/ Standard. By decomposing the
total strain energy of the beam into its components due to bending,
transverse shear and transverse normal deformations, it is found
that for thick circular cantilever beams (thickness/radius of the
centroidal axis = 0.3) subjected to uniformly distributed loads,
the strain energy due to transverse shear deformations is almost
15% of that due to bending deformations and the tip displacement
is underestimated by 11% if shear deformations are not accounted
for. Parametric studies conducted for the variation of the stresses
and the displacements indicate that the gradation parameters
can be tuned to satisfy several structural constraints. For the flex-
ure of a sandwich beam with a bi-directional FGM core and homo-
geneous isotropic facesheets, significant reduction in the bending
stress (20%), the shear stress (44%) and the transverse normal
stress (42%) are obtained at the interface between the core and
the facesheets by employing a suitably tailored bi-directional
FGM core.

2. Mathematical formulation

Fig. 1 depicts a thick circular beam with radius R0 of its cen-
troidal axis and a rectangular cross-section of width b and thick-
ness h. The beam subtends an arc angle htip at the center of the
fixed rectangular Cartesian coordinate axes x1; x2ð Þ with the origin
at point O. The beam is loaded by the applied normal tractions
qinðhÞ and qoutðhÞ, and tangential tractions sinðhÞ and soutðhÞ, respec-
tively, on the inner and the outer surfaces of the beam (see Fig. 2
for an infinitesimal element of the beam).

2.1. Kinematics of deformation, stress resultants and equilibrium
equations

The kinematics of deformation of the beam is defined using
three unknown functions. Inspired by the displacement expres-
sions for the plane strain axisymmetric deformations of a FGM
cylinder derived in Ref. [9], we use a combination of algebraic
and logarithmic functions of the radial coordinate, r, to define the
displacement field which satisfies the tangential traction boundary
conditions at the inner and the outer surfaces of the beam. The dis-
placement components ur (along the unit vector er) and uh (along
the unit vector eh) of an arbitrary point of the beam are assumed
to be given by

urðr; hÞ ¼ u0
r ðhÞ

uhðr; hÞ ¼ u0
hðhÞ þ ðr � R0Þ/ðhÞ þ U0ðrÞwðhÞ þ U1ðrÞsin

þ U2ðrÞsout ð1Þ
Here

sin ¼ sinðhÞ
Gðrin; hÞ ; sout ¼

soutðhÞ
Gðrout; hÞ

wðhÞ ¼ u0
h � u0

r

� �0 � R0/ðhÞ ð2Þ

U0ðrÞ ¼ 4

h2 r2 � R2
0 þ r 1� 2R0 lnðr=R0Þð Þ

� �
ð3Þ

U1ðrÞ ¼ 1
h

r2 � r ðR0 þ h=2Þ lnðr=R0Þ
� � ð4Þ

U2ðrÞ ¼ 1
h

r2 � r ðR0 � h=2Þ lnðr=R0Þ
� � ð5Þ

Here, sinðhÞ and soutðhÞ are the applied tangential tractions
on the inner surface (rin ¼ R0 � h=2) and the outer surface
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Fig. 2. Free body diagram for a beam element.
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(rout ¼ R0 þ h=2Þ of the beam, respectively, u0
r hð Þ is the radial dis-

placement of a point on the centroidal axis of the cross-section,
/ðhÞ is the rotation of the cross-section about the z-axis, and a
prime ð:Þ0 denotes differentiation with respect to h. This beam
theory neglects effects of the transverse normal strain �r (i.e., the
thickness-stretch effect) on deformations of the beam. Using Eq.
(1), the linear axial (tangential) bending strain eh r; hð Þ ¼ ur

r þ 1
r

@uh
@h ,

the transverse shear strain crhðr; hÞ ¼ 1
r

@ur
@h þ @uh

@r � uh
r , the axial bend-

ing stress rhðr; hÞ and the transverse shear stress srhðr; hÞ are given
by

eh ¼ 1
r

u0
r þ u0

h

� �0 þ ðr � R0Þ/0 þ U0w
0 þ U1sin 0 þ U2sout 0

n o
¼ rh

Eðr; hÞ ð6Þ

crh ¼
1

h2r
h2 � 4 r � R0ð Þ2
� �

u0
r

� �0 � u0
h þ R0/

� �
� r � R0ð Þsas þ ss

¼ srh
Gðr; hÞ ð7Þ

where

ss ¼ 1
2
sin þ soutð Þ; sas ¼ 1

h
sin � soutð Þ

and it has been assumed that the material is isotropic and obeys
Hooke’s law with Young’s modulus Eðr; hÞ and the shear modulus
Gðr; hÞ. We have also assumed that the width b � R0 and that a state
of plane stress exists in the r � h plane so that rzz ¼ 0. Here the
z�direction is perpendicular to the r � h plane. We have not modi-
fied E to satisfy the requirement rr ¼ 0 implicitly assumed in
Hooke’s law. The transverse normal stress rr is determined through
a one-step SRS explained later. The three functions u0

r ðhÞ;u0
hðhÞ and

/ðhÞ are the primary unknowns in the problem. We note that the
solution of the differential equation �h ¼ 0 need not be independent
of h. Thus, the so-called neutral axis need not be the curve
r ¼ constant. Of course, results for the plane strain problem can
be deduced from those of the plane stress problem by modifying
E and G in the standard way.

The axial force N hð Þ, the bending moment M hð Þ about the z-axis
through the midpoint of the beam thickness and the transverse
shear force FðhÞ at any section are defined as
N hð Þ ¼ b
Z R0þh

2

R0�h
2

rhðr; hÞdr

M hð Þ ¼ b
Z R0þh

2

R0�h
2

rhðr; hÞ r � R0ð Þdr

F hð Þ ¼ b
Z R0þh

2

R0�h
2

srhðr; hÞdr ð8Þ

In the Euler–Bernoulli beam theory, the location of the neutral
axis is obtained by setting the resultant axial force equal to zero,
for the case of pure bending. For the present beam theory, the solu-
tion of the differential equation NðhÞ ¼ 0 need not be independent
of h even for a homogeneous beam.

By multiplying the following two equilibrium equations of the
2D linear elasticity

@ðrrrÞ
@r

þ @srh
@h

� rh ¼ 0 ð9Þ

1
r
@ðr2srhÞ

@r
þ @rh

@h
¼ 0 ð10Þ

by b, Eq. (10) by br, and integrating the resulting expressions across
the beam thickness in the radial direction, we get the equations of
equilibrium along the radial and the tangential directions, and of
the moment about the z-axis.

F 0 � N þ b routqout � rinqinð Þ ¼ 0

N0 þ F þ b routsout � rinsinð Þ ¼ 0

M0 � R0F þ bh
2

routsout þ rinsinð Þ ¼ 0 ð11Þ

We note that use of the second equation has been made in the
third equation to obtain its final form. The third term appearing on
the left hand side of Eq. (11) clearly indicates that the same surface
traction applied on the inner and the outer surfaces will induce dif-
ferent deformations of the beam. In order to analyze deformations
of the beam due to a normal point load P0 on the beam inner sur-
face at h ¼ h0, the load is considered as a normal traction qin acting
over an infinitesimal patch of arc length � and width b such that
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qin ¼ P0
H rin; h� ðh0 � �

2Þ
� ��H rin; h� ðh0 þ �

2Þ
� �

b�

where HðhÞ is the Heaviside function and �� 1. This expression for
qin can be substituted into Eq. (11-1) of equilibrium along the radial
direction, since rrðrin; hÞ ¼ qin.

2.2. Gradation laws

For bi-directional FGM beams, Young’s modulus Eðr; hÞ and the
shear modulus Gðr; hÞ are assumed to have the following variation

Pðr; hÞ ¼ P�f rð Þg hð Þ ð12Þ
where Pðr; hÞ can be either Eðr; hÞ or Gðr; hÞ, P� is a constant (with
dimensions ML�1T�2;M is mass, L length and T time), and f ðrÞ and
gðhÞ are non-dimensional functions representing gradations along
the radial and the circumferential directions, respectively. Poisson’s
ratio m is assumed to remain constant so that G� ¼ E�=2ð1þ mÞ. As
pointed out in Refs. [45,9], this assumption has a negligible effect
on stresses but can noticeably affect displacements. For numerical
examples in this study, we assume

f ðrÞ ¼ 1þ Pin

Pout
� 1

� �
1
2
� r � R0

h

� �kr

with P� ¼ Poutð Þ ð13Þ

gðhÞ ¼ exp khhð Þ ð14Þ
where h is in radians and kr and kh are non-dimensional parameters
(also called gradation indices) dictating the gradation along the
radial and the circumferential directions, respectively. Pin , Pout are
defined as

Pin ¼ P R0 � h=2;0ð Þ and Pout ¼ P R0 þ h=2;0ð Þ
A bi-directional gradation scheme according to Eqs. (12)–(14) is

shown in Fig. 3 with Ein ¼ 380 GPa, Eout ¼ 210 GPa, kr ¼ �1 and
kh ¼ �0:25. Note that kr ¼ kh ¼ 0 for a homogeneous material
beam.

Using Eqs. (8) through (12), the forces and moments are found
to be

N¼bE�g hð Þ u0
r þ u0

h

� �0h i
a0 þ u0

h

� �0 � u0
r

� �00 �R0/
0

h i
a1 þ /0a2

n o
þk1

ð15Þ

M¼ bE�g hð Þ u0
r þ u0

h

� �0h i
a2 þ u0

h

� �0 � u0
r

� �00 �R0/
0

h i
a3 þ /0a4

n o
þk2

ð16Þ

F ¼ bG� g hð Þ a5 u0
r

� �0 � u0
h þ R0/

� �
þ a6ss � a7sas

n o
ð17Þ

where

a0 ¼
Z R0þh

2

R0�h
2

f rð Þ
r

dr

a1 ¼ 4

h2

Z R0þh
2

R0�h
2

f rð Þ r2 � R2
0 þ r 1� 2R0 lnðrÞð Þ

� �
r

dr
Fig. 3. Variation of E=E� in a bi-directional FGM curved beam with kr ¼
a2 ¼
Z R0þh

2

R0�h
2

f rð Þ r � R0ð Þ
r

dr

a3 ¼ 4

h2

Z R0þh
2

R0�h
2

f rð Þ r � R0ð Þ r2 � R2
0 þ r 1� 2R0 lnðrÞð Þ

� �
r

dr

a4 ¼
Z R0þh

2

R0�h
2

f rð Þ r � R0ð Þ2
r

dr

a5 ¼ 1

h2

Z R0þh
2

R0�h
2

f rð Þ h2 � 4 r � R0ð Þ2
� �

r
dr

a6 ¼
Z R0þh

2

R0�h
2

f ðrÞdr

a7 ¼
Z R0þh

2

R0�h
2

f ðrÞðr � R0Þdr ð18Þ

k1 ¼ bE� g hð Þ sin 0 b10 þ sout 0 b20ð Þ

k2 ¼ bE� g hð Þ sin 0 b11 þ sout 0 b21ð Þ

bij ¼
Z R0þh

2

R0�h
2

f rð ÞUiðrÞ r � R0ð Þ j
r

dr; i; j ¼ 0;1;2:

For a homogeneous material (kr ¼ kh ¼ 0), expressions for the
constants ai i ¼ 0;1; . . . ;7ð Þ are given in Appendix A.

For statically determinate circular beams the stress resultants
N hð Þ, M hð Þ and FðhÞ can be directly determined from equilibrium
Eq. (11) and the associated boundary conditions
NðhtipÞ ¼ N�; FðhtipÞ ¼ F� and MðhtipÞ ¼ M�, where N�; F� and M�

are the applied tip loads. Substituting for /ðhÞ from Eq. (17),

Eqs. (15) and (16) are solved for u0
r þ u0

h

� �0h i
and u0

h

� �0 � u0
r

� �00h i
to get

u0
r þ u0

h

� �0 ¼ 1
b a2

2 � a0a4
� � Ma2 � Na4

E� g hð Þ þ a2a3 � a1a4ð Þ
G�a5

Fð Þ0
 !

ð19Þ

u0
h

� �0 � u0
r

� �00 ¼ 1
b a2

2 � a0a4
� � NR0a2 �MR0a0

E� g hð Þ þ �a
G� F

0
 !

ð20Þ

where

N ¼ N � k1; M ¼ M � k2

�a ¼ R0a1a2 � R0a0a3 þ a0a4 � a2
2

a5

F ¼ F
gðhÞ � bG�ða6ss � a7sasÞ
1 , kh ¼ �0:25. The beam thickness is exaggerated for illustration.



Table 1
Through-the-thickness distribution of the bending stress rh for a quarter circular
cantilever loaded with a tip moment.

rh (MPa) % Error

r (m) Present Study Dryden [39] and Wang and Liu [40]

0.50 �7.2786 �7.2878 �0.12
0.52 �3.6102 �3.6092 0.03
0.54 �0.6539 �0.6528 0.17
0.56 1.6919 1.6911 0.05
0.58 3.5191 3.5185 0.02
0.60 4.9089 4.9132 �0.09
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From Eqs. (19) and (20), we get the governing differential equation
for u0

r ðhÞ:

u0
r

� �00 þ u0
r ¼ 1

b a2
2 � a0a4

� � MaM � NaN

E� g hð Þ þ aF

G� F
0

 !
ð21Þ

where

aM ¼ R0a0 þ a2

aN ¼ R0a2 þ a4

and

aF ¼ a2
2 � R0a1a2 þ R0a0a3 � a0a4 � a1a4 þ a2a3

a5

Note that the right hand side of Eq. (21) is an explicit function of h.
Once u0

r ðhÞ is determined, u0
hðhÞ can be obtained by integrating the

first order differential Eq. (19). Finally, /ðhÞ can be determined from
the algebraic Eq. (17). The solution to these two ordinary differen-
tial equations requires three additional boundary conditions to be
specified at h ¼ 0.

For a clamped edge:

u0
r ð0Þ ¼ 0; uhðR0;0Þ ¼ 0 and u0

r

� �0ð0Þ ¼ 0 ð22Þ
For a pinned edge:

u0
r ð0Þ ¼ 0; uhðR0;0Þ ¼ 0 and Mð0Þ ¼ 0 ð23Þ
For a roller that restrains the radial displacement:

u0
r ð0Þ ¼ 0; Nð0Þ ¼ 0 and Mð0Þ ¼ 0 ð24Þ
Hence, a total of 6 boundary conditions are required to analyze

the deformation of statically determinate beams. For a statically
indeterminate beam, the additional reactions are treated as
unknown externally applied loads and the problem solved as
above. Using the associated displacement boundary conditions at
the supports, like (22)–(24), the unknown reactions are deter-
mined. For example, consider a cantilever beam with a roller sup-
port at the tip. The reaction at the roller RF is treated as an
unknown applied load on the structure and equations of equilib-
rium can be solved for NðhÞ;MðhÞ and FðhÞ in terms of the applied
loads and RF . Using the boundary conditions at the clamped edge
(22) and the additional condition u0

r ðhtipÞ ¼ 0, the governing Eq.
(21) can be solved for u0

r ðhÞ and RF can be determined.
Once the bending stress rh and the transverse shear stress srh

have been obtained from Eqs. (6) and (7), the transverse normal
stress rrðr; hÞ at r ¼ r� is determined by using a one-step SRS which
involves integrating the equilibrium Eq. (9) in the radial direction
from r ¼ rin to r ¼ r� with the boundary condition
rrðrin; hÞ ¼ qinðhÞ. The discrepancy between rrðrout; hÞ and qoutðhÞ
will serve as a check on the accuracy of the solution. The procedure
can be summarized as.

� Compute constants ai i ¼ 0;1; . . . ;7ð Þ using Eq. (18).
� Solve equations of equilibrium (11) for N hð Þ, M hð Þ and FðhÞ
treating any indeterminate reactions as unknown applied
loads.

� Solve Eq. (21) for u0
r ðhÞ.

� Obtain u0
hðhÞ by integrating Eq. (19).

� Determine /ðhÞ from Eq. (17).
� Determine the unknown reactions using displacement bound-
ary conditions at the supports.

� Compute the bending stress rh and the transverse shear stress
srh using Eqs. (6) and (7).

� Compute the transverse normal stress rr by using the one-step
SRS.
The locations ðr; hÞ of the critical bending stress in the beam are
found by simultaneously solving the following two equations:

@ðrhðr; hÞÞ
@r

¼ 0;
@ðrhðr; hÞÞ

@h
¼ 0
3. Example problems

3.1. Quarter circular beam with radial gradation of Young’s modulus
subjected to a tip moment M�

Deformations of a radially graded (kh ¼ 0Þ quarter circular can-
tilever beam with R0 ¼ 0:55 m, h ¼ 0:1 m, b ¼ 1 m subjected to a
tip moment M� ¼ 10 kN�m. are studied and results are compared
with those from the elasticity solutions of Dryden [39] and Wang
and Liu [40]. The exponential gradation of Young’s modulus in
the thickness (radial) direction is assumed to be

EðrÞ ¼ Ein
r
rin

� �2

exp
ln Eout

Ein

� �
� 2 ln rout

rin

� �h i
r
rin

� �
� 1

h i
rout
rin

� �
� 1

8<
:

9=
;

where Ein ¼ 8:27 GPa and Eout ¼ 5:50 GPa. The equilibrium Eqs. (11)
are solved to obtain N ¼ 0; F ¼ 0 and M ¼ M�. As a result, the
through-the-thickness distribution of the bending stress rh is inde-
pendent of the angular position h. Table 1 gives the distribution of
the bending stress rh through the beam thickness. Clearly, results
from the present beam theory agree well with the elasticity solu-
tion. We note that Kardomateas [35] had solved a similar problem
in 1990.

3.2. Quarter circular bi-directionally graded cantilever beam subjected
to a tip shear force F�

Unless otherwise mentioned, we set kr ¼ 1; kh ¼ �0:25,
Eout ¼ E� ¼ 210 GPa, Ein ¼ 380 GPa and m ¼ 0:3.

Deformations of a bi-directional FGM quarter circular cantilever
beam (htip ¼ p=2) with R0 ¼ 2 m, h ¼ 0:2 m, b ¼ 0:1 m and sub-
jected to a tip shear load Fðp=2Þ ¼ F� ¼ 1kN are studied. Integrat-
ing the ordinary differential Eq. (11) and using the boundary
conditions at h ¼ htip, we get

N ¼ F� cos h; F ¼ F� sin handM ¼ �R0F
� cos h

From Eqs. (21), (19) and (17), displacements are determined to be

u0
r ðhÞ ¼ C0r C1rðekhh � 1Þ cos hþ ðC2r þ C3rekhhÞ sin h

� �
u0
hðhÞ ¼ C0h ðC1h þ C2hekhhÞ cos hþ ðC3h þ C4hekhhÞ sin hþ C5hekhh

� �
/ðhÞ ¼ C0/ C1/ ekhh � cos h

� �þ C2/ sin h
� � ð25Þ

where constants Cir i ¼ 0;1;2;3ð Þ;Cjh j ¼ 0;1;2;3;4;5ð Þ and
Ck/ k ¼ 0;1;2ð Þ are given in Appendix B.
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For comparison with the solution of the linear elasticity equa-
tions, we analyze the beam as a plane stress problem (in the rh-
plane) by the finite element method (FEM) using the commercial
software ABAQUS/ Standard. The beam is meshed using 8-node
plane stress quadrilateral elements with reduced integration (ele-
ment type CPS8R) and the load is applied as a point force at
ðR0; p=2Þ. The bi-directional gradation was implemented in ABA-
QUS as an isotropic material with a user-defined USDFLD subrou-
tine to evaluate material properties at the Gauss integration
points, as detailed in Ref. [46]. A uniform 15� 100 FE mesh was
found to give the converged displacement and stress results within
a tolerance of 0:25%. From the FE results, the work done by the
applied load was calculated as 0:185 J and was found to equal
the elastic strain energy ensuring that no energy was dissipated
due to hour glass modes that could ensue because of the reduced
integration used.

Fig. 4 shows the comparison of the centroidal displacements u0
r

and uhðR0; hÞ along the arc-length, as obtained from the FE solution
and the beam theory equations. The maximum difference in dis-
placements occurs at the tip and is found to be �0:72% for
u0
r ðp=2Þ and �0:82% for uhðR0;p=2Þ clearly indicating the accuracy

of the present beam theory.
Fig. 5 shows the comparison of the through-the-thickness dis-

tributions of the bending stress rh, the transverse shear stress srh
and the transverse normal stress rr at h ¼ p=4 obtained from the
two analyses. The beam theory coupled with the one-step SRS
accurately predicts these stresses, as well as their non-linear distri-
butions through the beam thickness. Note that rh ¼ 0 at
r�R0
h ¼ �0:05.
Fig. 6 shows the comparison of the bending stress rh along the

arc-length on the inner surface (r ¼ R0 � h=2) of the beam as
obtained from the two approaches. The results agree well except
for a discrepancy near the root, h ¼ 0, which can be attributed to
the difference in the application of the fixity boundary conditions
in the two analyses. For the beam formulation, the clamped edge
conditions are given by Eq. (22), while for the FE simulation,
urðr;0Þ ¼ 0 and uhðr;0Þ ¼ 0. As expected, the difference between
the results for the two boundary conditions at h ¼ 0 decays rapidly
with distance from the root, as implied by the St.-Venant principle
Fig. 4. Comparison of the centroidal radial u0
r ðhÞ and tangential uhðR0; hÞ displacements

subjected to a tip shear load of 1 kN.
[47]. The reader is referred to Ref. [50] for a mathematical descrip-
tion of the St. Venant principle, and to Ref. [51] for an inhomoge-
neous linearly elastic helical spring. In order to model the fixity
conditions similar to those specified in Eq. (22) in the FE simula-
tion, the boundary conditions at the tip are modified to
urðR0;0Þ ¼ 0 and uhðR0;0Þ ¼ 0 and the bending stress results are
depicted in Fig. 6. It is clear that there is no bending stress concen-
tration observed at the root and the FE results compare well with
those from the beam theory.

To study effects of the manner of application of the tip load in
the FE simulations, Fig. 7 shows the through-the-thickness distri-
bution of the transverse shear stress srh close to the tip (at
h ¼ 89 deg) for three statically equivalent tip shear loads: as a
point force at r ¼ R0, as a uniform tangential traction and as a tan-
gential traction with a parabolic distribution along the beam thick-
ness. Clearly, the way the tip load is applied affects the stress
distribution near the tip with all results for srh closely following
a parabolic distribution through the beam thickness.

3.3. Quarter circular sandwich beam with a FGM core subjected to a
tip shear force F�

We consider a clamped circular sandwich beam with R0 ¼ 2 m
consisting of a FGM core of thickness hc ¼ 0:18 m sandwiched
between two homogeneous isotropic facesheets of thickness
hf ¼ 0:01 m (see Fig. 8). The inner facesheet R0 � hc=2� hf 6 r 6
R0 � hc=2 has Young’s modulus Ein ¼ 380 GPa while the outer face-
sheet R0 þ hc=2 6 r 6 R0 þ hc=2þ hf has Young’s modulus
Eout ¼ 210 GPa. Poisson’s ratio m ¼ 0:3 for the facesheets and the
core. At h ¼ p=2, the sandwich beam is subjected to a tangential
traction with resultant force F�ðp=2Þ ¼ 1 kN. The analytical
solution of this problem with the beam theory is similar to the
one given in Eq. (25) except that the values of constants
ai i ¼ 0;1; . . . ;7ð Þ are different. A uniform 40� 160 FE mesh using
the CPS8R elements was used to compute the converged displace-
ment and stress results within a tolerance of 0:25% in ABAQUS.

In Fig. 9 we have compared the centroidal displacements u0
r and

uhðR0; hÞ along the arc-length while Fig. 10 shows the comparison
of the through-the-thickness distributions of the bending stress
along the arc-length in the bi-directionally graded quarter circular cantilever beam



Fig. 5. Comparison of the through-the-thickness distributions of the bending stress rh , the transverse shear stress srh and the transverse normal stress rr at h ¼ p=4 in the bi-
directionally graded quarter circular cantilever beam subjected to a tip shear force of 1 kN.

Fig. 6. Comparison of the bending stress rh along the arc-length on the inner surface (r ¼ R0 � h=2) of the bi-directionally graded quarter circular cantilever beam subjected
to a tip shear force of 1kN. The FE results for the clamped condition specified by urðr;0Þ ¼ 0 and uhðr;0Þ ¼ 0 are shown in orange color while those for the relaxed fixity
boundary condition specified by urðR0;0Þ ¼ 0 and uhðR0;0Þ ¼ 0 are shown in green. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this article.)

A. Pydah, R.C. Batra / Composite Structures 172 (2017) 45–60 51
rh, the transverse shear stress srh and the transverse normal stress
rr at h ¼ p=4, obtained from the two analyses. The present single-
layer beam theory captures well the centroidal displacements with
a maximum difference of �0:41% for u0

r and �0:38% for uhðR0Þ at
the tip, as well as through-the-thickness non-linear distributions
of the bending stress rh, shear stress srh and transverse normal
stress rr (computed using the SRS for the beam theory). An accu-
rate estimate of the interfacial stresses is needed to choose an
appropriate adhesive with the requisite bond strength to prevent
delamination failure at the interfaces.
3.4. Difference in results from the present and the Euler–Bernoulli
beam theories

We analyze deformations of a quarter circular cantilever beam
with R0 ¼ 2 m and b ¼ 1 cm subjected to a uniformly distributed
radial force q� ¼ 5 kN=m applied on the inner surface of the beam
using the two theories. For the Euler–Bernoulli beam theory [43],
the expression for uh in Eq. (1) has only the first two terms with

/ ¼ 1
R0

u0
h � u0

r

� �0� �
.



Fig. 7. Comparison of the FE results of the through-the-thickness distribution of the transverse shear stress srh near the tip at h ¼ 89 deg in the bi-directionally graded
quarter circular cantilever beam subjected to three statically equivalent tip shear loads.

Fig. 8. Geometry of a circular sandwich beam.
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We decompose the total elastic strain energy of the beam
(which is equal to the work done by the applied loads) into its
components due to bending, shear and transverse normal deforma-
tions as

Utotal ¼ Ubending þ Ushear þ Utransnormal

Ubending ¼ 1
2
b
Z htip

0

Z R0þh
2

R0�h
2

rh r; hð Þeh r; hð Þrdr dh

Ushear ¼ 1
2
b
Z htip

0

Z R0þh
2

R0�h
2

srh r; hð Þcrh r; hð Þ rdrdh
Utransnormal ¼ 1
2
b
Z htip

0

Z R0þh
2

R0�h
2

r2
r r; hð Þ
Eðr; hÞ rdrdh

Fig. 11 depicts the variation of the percentage difference in the

tip displacement u0
r , defined as u0r jEB�u0r jPresent

u0r jPresent
� 100, as the thickness h

of the beam is increased, for various values of the gradation param-
eters. Fig. 12 shows variation of the shear energy component, nor-
malized by the bending energy, Ushear=Ubending, with the beam
thickness for various values of the gradation parameters. Results
for a homogeneous beam (kr ¼ kh ¼ 0) are also shown. Clearly, as
the beam thickness increases, effects of shear deformations
become important, particularly for FGM beams, as indicated by
the 11% difference in the tip displacement u0

r and the shear energy
being 15% of the bending energy for h=R0 ¼ 0:3. For the assumed
functional variations of the material properties, it is observed that
the tangential gradation parameter kh has a greater influence on
the shear deformation than the radial gradation parameter kr . This
can be explained by examining the right hand side of Eq. (21),
which for gðhÞ specified in Eq. (14) and with sin ¼ sout ¼ 0 becomes

u0
r

� �00 þ u0
r ¼ 1

ekhh b a2
2 � a0a4

� � MaM � NaN

E� þ aF

G� F 0 � khF
� �� �

ð26Þ

Thus kh scales the value of the centroidal displacement u0
r deter-

mined from the particular integral of the equation. Furthermore, as
kh takes larger negative values, the contribution of the underlined
term on the right hand side of the equation, which adds to the
shear deformation in the beam, increases. Hence, the percentage
difference in the tip displacement between the two beam theories
would increase.

3.5. Effect of the material gradation parameters

For various values of the gradation parameters, we present
numerical results for the centroidal displacements u0

r ðhÞ; uhðR0; hÞ,
the bending stress rh, the transverse shear stress srh and the trans-
verse normal stress rr for statically determinate circular beams
with R0 ¼ 2 m, h ¼ 0:2 m and b ¼ 0:1 m for three different loads
(see Fig. 2 for positive directions of the loads).



Fig. 9. Comparison of the centroidal radial u0
r ðhÞ and tangential uhðR0; hÞ displacements along the arc-length in the quarter circular sandwich cantilever beam subjected to a

tip shear force of 1 kN.

Fig. 10. Comparison of the through-the-thickness distributions of the bending stress rh , the transverse shear stress srh and the transverse normal stress rr at h ¼ p=4 in the
quarter circular sandwich cantilever beam subjected to a tip shear force of 1 kN.
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3.5.1. Cantilever beam with a tip shear force F�

The stress resultants determined from Eq. (11) are given by

NðhÞ ¼ F� sin htip cos h� cos htip sin h
� �

FðhÞ ¼ F� sin htip sin hþ cos htip cos h
� �

MðhÞ ¼ �R0F
� sin htip cos h� cos htip sin h
� �

For htip ¼ p=2 and F� ¼ 50 kN, Fig. 13 and Fig. 14 show the vari-
ation of the centroidal displacements and the stresses along the
arc-length and through the beam thickness.
3.5.2. Cantilever beam with a tip axial force N�

The stress resultants are given by
NðhÞ ¼ N� cos htip cos hþ sin htip sin h
� �

FðhÞ ¼ N� cos htip sin h� sin htip cos h
� �

MðhÞ ¼ R0N
� 1� cos htip cos h� sin htip sin h
� �

For htip ¼ p=2 and N� ¼ 50 kN, Fig. 15 shows the variation of the
centroidal displacement and the stresses along the arc-length and
through the beam thickness.

3.5.3. Simply-supported beam loaded with a uniformly distributed
radial force q� applied on the inner surface

The stress resultants are found to be

NðhÞ ¼ �A cos h�B sin hþA

FðhÞ ¼ �A sin hþB cos h



Fig. 11. Percentage difference in the tip displacement u0
r ðp=2Þ from the two beam theories for kh ¼ �0:5 (solid lines), kh ¼ �1:5 (dashed lines), kh ¼ �2:5 (dash-dot lines),

kh ¼ �3:0 (dash-dot-dot lines) and homogeneous (kr ¼ kh ¼ 0), for a quarter circular cantilever beam subjected to a uniformly distributed radial force q� as the beam thickness
h is varied from 0:1 m to 0:6 m and R0 ¼ 2 m.

Fig. 12. Shear strain energy to bending strain energy ratio in % for kh ¼ �0:5 (solid lines), kh ¼ �1:5 (dashed lines), kh ¼ �2:5 (dash-dot lines), kh ¼ �3:0 (dash-dot-dot lines)
and homogeneous (kr ¼ kh ¼ 0), for a quarter circular cantilever beam subjected to a uniformly distributed radial force q� as the beam thickness h is varied from 0:1 m to
0:6 m and R0 ¼ 2 m.
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MðhÞ ¼ R0 A cos hþB sin h�Að Þ

whereA ¼rinq�

B ¼rinq� 1� cos htip
sin htip

� �

For htip ¼ p=2 and a uniformly distributed radial force

q� ¼ 5 kN/m, Fig. 16 shows the variation of the centroidal displace-
ments and the stresses along the arc-length and through the beam
thickness.

From these results, the following observations are made:



Fig. 13. In a quarter circular cantilever beam under tip shear force F� ¼50 kN for
kh ¼ �0:5; kr ¼ f1; 2; 3g (a): Centroidal displacements u0

r (solid lines) and uhðR0; hÞ
(dashed lines); (b): Bending stress rh along the arc-length at r ¼ R0 � h

2 (solid lines),
r ¼ R0 (dashed lines) and r ¼ R0 þ h

2 (dash-dot lines) and, (c): Bending stress rh

(solid lines), shear stress 20srh (dashed lines) and transverse normal stress 10rr

(dash-dot lines) through the thickness at h ¼ p
4.

Fig. 14. In a quarter circular cantilever beam under tip shear force F� ¼50 kN for
kr ¼ 1; kh ¼ �f0:25; 0:5; 0:75; 1g (a): Centroidal displacements u0

r (solid lines) and
uhðR0; hÞ (dashed lines); (b): Bending stress rh along the arc-length at r ¼ R0 � h

2

(solid lines), r ¼ R0 (dashed lines) and r ¼ R0 þ h
2 (dash-dot lines), and (c): Bending

stress rh (solid lines), shear stress 20srh (dashed lines) and transverse normal stress
10rr (dash-dot lines) through the thickness at h ¼ p

4.
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1. By choosing various values of the gradation parameters, while
maintaining a constant value of Young’s moduli at the inner
and the outer surfaces of the beam, significant variations in
the displacements u0

r ðhÞ and uhðhÞ occur indicating the capabil-
ity of the bi-directional FGM beams to be tailored to fit a wide
range of structural constraints. In particular, displacements are
more sensitive to the tangential gradation parameter kh than to
the radial gradation parameter kr , as can be seen from 13a, 14a,
15a,b and 16a,b.
2. As can be seen in Figs. 13c, 15d and 16d, the through-the-
thickness variations of the bending stress rh and the transverse
shear stress srh are non-linear. The transverse normal stress rr

determined using the one-step SRS equals the applied tractions
on the major surfaces of the beam (see Fig. 16d). Furthermore,
irrespective of whether the bending stress at the inner surface
of the beam (at r ¼ R0 � h=2) is tensile or compressive, as deter-
mined by the loading conditions and the gradation of the mate-
rial properties, the centroidal axis experiences a non-zero
bending stress.



Fig. 15. In a quarter circular cantilever beam under tip axial force N� ¼50 kN (a), (b): Centroidal displacements u0
r (solid lines) and uhðR0; hÞ (dashed lines); (c): Bending stress

rh along the arc-length at r ¼ R0 � h
2 (solid lines), r ¼ R0 (dashed lines) and r ¼ R0 þ h

2 (dash-dot lines), and (d): Bending stress rh (solid lines), shear stress 20srh (dashed lines)
and transverse normal stress 10rr (dash-dot lines) through the thickness ath ¼ p

4.
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3. The three stresses do not depend on the tangential gradation
parameter kh for statically determinate beams, as can be seen
in Fig. 14b, c. However, the maximum values of the bending
stress (at the inner and the outer surfaces of the beam) are
affected by kr (see Figs. 13c, 14c, 15d and 16d. This feature
can be exploited by first choosing a large value of kh to reduce
deflections in the beams independently of the stresses, and then
lowering the maximum bending stress in the beam by choosing
a smaller value of kr .

3.6. Sandwich beams with a bi-directional FGM core

We consider a circular sandwich beam consisting of a bi-
directional FGM core of thickness hc sandwiched between two
homogeneous isotropic facesheets of thickness hf and Young’s

modulus E0
f (see Fig. 8). Young’s modulus Ecðr; hÞ of the core is

assumed to have the following symmetric variation about the mid-
line r ¼ R0 of the core:
Ecðr; hÞ ¼ E0
c 1þ E0

f

E0
c

� 1

 !
2
r � R0

hc

� �2kr
 !

exp khhð Þ ð27Þ
Here E0
c is the value of Young’s modulus at the core center. Pois-

son’s ratio m is assumed to remain constant in the facesheets and
the core so that Gc ¼ Ec=2ð1þ mÞ. In Fig. 17, using the single-layer
theory, we present numerical results for the quarter circular can-
tilever sandwich beam with R0 ¼ 2 m, hc ¼ 0:18 m and
hf ¼ 0:01m, subjected to a uniformly distributed radial force
q� ¼ 5 kN/m on the inner surface of the beam. We set in Eq. (27),
Ef ¼ 300 GPa, Ec ¼ 30 GPa and m ¼ 0:3. From these results, the fol-
lowing observations on the versatility of using bi-directionally
graded cores in circular sandwich beams are noted:

1. The tangential gradation parameter kh in the core can be tuned
to significantly reduce the centroidal displacements while not
affecting stresses in the sandwich beam, as can be seen in
Fig. 17b. For example, changing the value of kh from �1 to
�0:25 lowers the tip centroidal deflection u0

r by 26% when
kr ¼ 1. Furthermore, choosing a lower value of the radial grada-
tion parameter kr lowers the bending stresses along the arc
length of the beam while simultaneously reducing displace-
ments in the beam (see Figs. 17a, c).

2. Significant reduction in the interfacial values of the stresses can
be achieved by suitably tailoring the FGM core, as can be seen in
Fig. 17d. For example, by reducing the value of kr from 3 to 1 in
the core, the bending stress rh at the interface is reduced by



Fig. 16. In a quarter circular simply-supported beam under a uniformly distributed radial force q� ¼5 kN/m acting on the inner surface (a), (b): Centroidal displacements u0
r

(solid lines) and uhðR0; hÞ (dashed lines); (c): Bending stress rh along the arc-length at r ¼ R0 � h
2 (solid lines), r ¼ R0 (dashed lines) and r ¼ R0 þ h

2 (dash-dot lines), and (d):
Bending stress rh (solid lines), shear stress 20srh (dashed lines) and transverse normal stress 30rr (dash-dot lines) through the thickness at h ¼ p

4 (dashed lines).
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20%, the interfacial shear stress srh by 44% and the interfacial
transverse normal stress by 42% for kh ¼ �0:5. Thus, suitable
gradation of the core material can help fully utilize the core
material (by allowing it to carry higher shear stresses) while
maintaining low interface peeling stress (rr) and shear stress
values to prevent delamination failure.

4. Remarks

We note that Batra and Xiao [48,49] developed a third-order
shear and normal deformable theory for curved laminated beams
with spatially varying curvature, e.g., beam in the form of a full sine
curve, considered all geometric nonlinearities for a St. Venant –
Kirchhoff beam and studied its buckling and post-buckling defor-
mations. They found that for a beam loaded by a uniformly dis-
tributed pressure, the consideration of nonlinear effects increased
the maximum stress by a factor of 4 and the maximum deflection
by 1:5 over that determined using the linear theory.
5. Conclusions

Motivated by the expression for the tangential displacement
field in a circular cylinder subjected to surface tractions on its inner
and outer surfaces, we have developed a beam theory for thick
circular beams by including a combination of an algebraic and log-
arithmic term in the radial coordinate in the expression for the tan-
gential displacement postulated for the beam. Stresses derived
from the hypothesized displacements exactly satisfy tangential
traction boundary conditions prescribed on the major surfaces of
the beam. The beam theory has been used to analyze problems
for bi-directionally graded beams with Young’s moduli in the radial
and the circumferential directions given, respectively, by a power-
law and an exponential relation of the pertinent coordinate. For
five example problems studied in the paper, the beam theory stres-
ses and displacements agree very well with those obtained by solv-
ing the corresponding plane stress problems using the linear
elasticity theory and the commercial finite element software, ABA-
QUS/ Standard. The through-the-thickness variation of all stresses
including the transverse normal stress computed using the one-
step stress recovery scheme agrees well with that from the linear
elasticity theory solution. The gradation in the circumferential
direction only affects displacements but that in the radial direction
affects the maximum values of stresses. Thus, both deflections and
stresses can be controlled by assigning suitable values to the two
gradation parameters. For a sandwich beam with isotropic and
homogeneous face sheets and a bi-directionally graded core, the
maximum stresses at the interface between the core and the face
sheets can be reduced by 40% by suitably tailoring the material
properties of the core.



Fig. 17. In a quarter circular cantilever sandwich beam under a uniformly distributed radial force q� ¼ 5 kN/m (a), (b): Centroidal displacements u0
r (solid lines) and uhðR0; hÞ

(dashed lines); (c): Bending stress rh along the arc-length at r ¼ R0 � h
2 (solid lines), r ¼ R0 (dashed lines) and r ¼ R0 þ h

2 (dash-dot lines), and (d): Bending stress rh (solid
lines), shear stress 20srh (dashed lines) and transverse normal stress 30rr (dash-dot lines) through the thickness at h ¼ p

4 (dashed lines).
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Appendix A

Expressions for the constants ai i ¼ 0;1 . . . ;7ð Þ for a homoge-
neous material are given below.

a0 ¼ ln R0 þ h
2

� �
� ln R0 � h

2

� �

a1 ¼ 4 3hR0 þ R0ð3R0 � hÞ ln R0 � h
2

� �� R0ðhþ 3R0Þ ln h
2 þ R0
� �þ h

� �
h2
a2 ¼ R0 lnð2R0 � hÞ � R0 lnðhþ 2R0Þ þ h

a3 ¼
h3 þ 3R0 h2 � 8R2

0

� �
ðlnð2R0 � hÞ � lnðhþ 2R0ÞÞ � 24hR2

0

3h2

a4 ¼ �R0ðR0 lnð2R0 � hÞ � R0 lnðhþ 2R0Þ þ hÞ

a5 ¼
4hR0 � h2 � 4R2

0

� �
ðlnð2R0 � hÞ � lnðhþ 2R0ÞÞ

h2

a6 ¼ h

a7 ¼ 0
Appendix B

Expressions for constants Cir i ¼ 0;1;2;3ð Þ;Cjh j ¼ 0;1;2;3;4;5ð Þ
and Ck/ k ¼ 0;1;2ð Þ used in the expressions for u0

r ;u
0
h and / in

Section 3.2 are given below.

C0r ¼ � F�

bE�khekhha5 a2
2 � a0a4

� �
k2h þ 4
� �
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C1r ¼ khð2a2
2ðmþ 1Þ � 2a0a4m� 2a0a4 þ a4a5 þ a0a5R

2
0 þ 2a0a3mR0
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k2h þ 4
k4h þ 5k2h þ 4
� �ð2a2

2ðmþ 1Þ

þ a4 �2a0ðmþ 1Þ � 2a1ðmþ 1Þ þ a5ð Þ þ 2a2a3ðmþ 1Þ
þ a0a5R

2
0 þ 2R0 a1a2ð�m� 1Þ þ a0a3ðmþ 1Þ þ a5a2ð ÞÞ

C5h ¼ R0a5k
2
h a2 þ a0R0ð Þ k2h þ 4

� �

C0/ ¼ F�

bE�ekhha5 a2
2 � a0a4

� �
k2h þ 1
� �

C1/ ¼ a5kh a2 þ a0R0ð Þ

C2/ ¼ 2a1a2ðmþ 1Þ k2h þ 1
� �þ a2a5

� a0 2a3ðmþ 1Þ k2h þ 1
� �� a5R0

� �
References

[1] Suresh S, Mortensen A. Fundamentals of functionally graded materials:
processing and thermomechanical behaviour of graded metals and metal-
ceramic composites. 1998. London: IOM Communications Ltd; 2011.

[2] Christensen R. Mechanics of composite materials. Massachusetts, U.S.
A: Courier Corporation; 2012.

[3] Wetherhold R, Seelman S, Wang J. The use of functionally graded materials to
eliminate or control thermal deformation. Compos Sci Technol 1996;56
(9):1099–104.
[4] Chakraborty A, Gopalakrishnan S, Reddy J. A new beam finite element for the
analysis of functionally graded materials. Int J Mech Sci 2003;45(3):519–39.

[5] Timoshenko SP. X. On the transverse vibrations of bars of uniform cross-
section. London Edinburgh Dublin Philos Mag J Sci 1922;43(253):125–31.

[6] Oldfather W, Ellis C, Brown DM. Leonhard Euler’s elastic curves. Isis 1933;20
(1):72–160.

[7] Wang C, Reddy JN, Lee K. Shear deformable beams and plates: relationships
with classical solutions. Elsevier; 2000.

[8] Carrera E, Giunta G, Petrolo M. Beam structures: classical and advanced
theories. John Wiley & Sons; 2011.

[9] Nie G, Batra R. Exact solutions and material tailoring for functionally graded
hollow circular cylinders. J Elast 2010;99(2):179–201.

[10] Venkataraman S, Sankar B. Elasticity solution for stresses in a sandwich beam
with functionally graded core. AIAA J 2003;41(12):2501–5.

[11] Ding H, Huang D, Chen W. Elasticity solutions for plane anisotropic
functionally graded beams. Int J Solids Struct 2007;44(1):176–96.

[12] Li X-F. A unified approach for analyzing static and dynamic behaviors of
functionally graded Timoshenko and Euler-Bernoulli beams. J Sound Vib
2008;318(4):1210–29.

[13] Sina S, Navazi H, Haddadpour H. An analytical method for free vibration
analysis of functionally graded beams. Mater Des 2009;30(3):741–7.

[14] Giunta G, Belouettar S, Carrera E. Analysis of FGM beams by means of classical
and advanced theories. Mech Adv Mater Struct 2010;17(8):622–35.

[15] Br̂san M, Altenbach H, Sadowski T, Eremeyev V, Pietras D. Deformation
analysis of functionally graded beams by the direct approach. Compos Part B:
Eng 2012;43(3):1315–28.

[16] Yoon K, Lee P-S, Kim D-N. Geometrically nonlinear finite element analysis of
functionally graded 3D beams considering warping effects. Compos Struct
2015;132:1231–47.

[17] Nguyen T, Kim N-I, Lee J. Analysis of thin-walled open-section beams with
functionally graded materials. Compos Struct 2016;138:75–83.

[18] Wu L, Wang Q, Elishakoff I. Semi-inverse method for axially functionally
graded beams with an anti-symmetric vibration mode. J Sound Vib 2005;284
(3):1190–202.

[19] Huang Y, Li X-F. A new approach for free vibration of axially functionally
graded beams with non-uniform cross-section. J Sound Vib 2010;329
(11):2291–303.

[20] Shahba A, Attarnejad R, Marvi MT, Hajilar S. Free vibration and stability
analysis of axially functionally graded tapered Timoshenko beams with
classical and non-classical boundary conditions. Compos Part B: Eng
2011;42(4):801–8.

[21] Sarkar K, Ganguli R. Closed-form solutions for axially functionally graded
Timoshenko beams having uniform cross-section and fixed-fixed boundary
condition. Compos Part B: Eng 2014;58:361–70.

[22] Lü C, Chen W, Xu R, Lim CW. Semi-analytical elasticity solutions for bi-
directional functionally graded beams. Int J Solids Struct 2008;45(1):258–75.

[23] Qian L, Batra R. Design of bidirectional functionally graded plate for optimal
natural frequencies. J Sound Vib 2005;280(1):415–24.

[24] Goupee AJ, Vel SS. Optimization of natural frequencies of bidirectional
functionally graded beams. Struct Multi Optim 2006;32(6):473–84.

[25] S�ims�ek M. Bi-directional functionally graded materials (BDFGMs) for free and
forced vibration of Timoshenko beams with various boundary conditions.
Compos Struct 2015;133:968–78.

[26] Wang Z, Wang X, Xu G, Cheng S, Zeng T. Free vibration of two-directional
functionally graded beams. Compos Struct 2016;135:191–8.

[27] Malekzadeh P, Haghighi MG, Atashi M. Out-of-plane free vibration of
functionally graded circular curved beams in thermal environment. Compos
Struct 2010;92(2):541–52.

[28] Kurtaran H. Large displacement static and transient analysis of functionally
graded deep curved beams with generalized differential quadrature method.
Compos Struct 2015;131:821–31.

[29] Tufekci E, Eroglu U, Aya SA. Exact solution for in-plane static problems of
circular beams made of functionally graded materials. Mech Based Des
Struct Mach 2016;44(4):476–94. http://dx.doi.org/10.1080/15397734.2015.
1121398.

[30] Rastgo A, Shafie H, Allahverdizadeh A. Instability of curved beams made of
functionally graded material under thermal loading. Int J Mech Mater Des
2005;2(1–2):117–28.

[31] Shafiee H, Naei M, Eslami M. In-plane and out-of-plane buckling of arches
made of FGM. Int J Mech Sci 2006;48(8):907–15.

[32] Yousefi A, Rastgoo A. Free vibration of functionally graded spatial curved
beams. Compos Struct 2011;93(11):3048–56.

[33] Fereidoon A, Andalib M, Hemmatian H. Bending analysis of curved sandwich
beams with functionally graded core. Mech Adv Mater Struct 2015;22
(7):564–77. http://dx.doi.org/10.1080/15376494.2013.828815.

[34] Eroglu U. In-plane free vibrations of circular beams made of functionally
graded material in thermal environment: Beam theory approach. Compos
Struct 2015;122:217–28.

[35] Kardomateas G. Bending of a cylindrically orthotropic curved beam with
linearly distributed elastic constants. Q J Mech Appl Mech 1990;43(pt
1):43–55.

[36] Filipich C, Piovan M. The dynamics of thick curved beams constructed with
functionally graded materials. Mech Res Commun 2010;37(6):565–70.

[37] Piovan M, Domini S, Ramirez J. In-plane and out-of-plane dynamics and
buckling of functionally graded circular curved beams. Compos Struct 2012;94
(11):3194–206.



60 A. Pydah, R.C. Batra / Composite Structures 172 (2017) 45–60
[38] Eroglu U. Large deflection analysis of planar curved beams made of
functionally graded materials using variational iterational method. Compos
Struct 2016;136:204–16.

[39] Dryden J. Bending of inhomogeneous curved bars. Int J Solids Struct
2007;44:4158–66.

[40] Wang M, Liu Y. Elasticity solutions for orthotropic functionally graded curved
beams. Eur J Mech-A/Solids 2013;37:8–16.

[41] Lim C, Yang Q, Lü C. Two-dimensional elasticity solutions for temperature-
dependent in-plane vibration of FGM circular arches. Compos Struct 2009;90
(3):323–9.

[42] Malekzadeh P. Two-dimensional in-plane free vibrations of functionally
graded circular arches with temperature-dependent properties. Compos
Struct 2009;91(1):38–47.

[43] Pydah A, Sabale A. Static analysis of bi-directional functionally graded curved
beams. Compos Struct 2017;160:867–76. ISSN 0263-8223.

[44] Pydah A, Sabale A, A shear deformation-based model for the analysis of thick
bi-directional functionally graded circular beams (under review), Compos Part
B: Eng.
[45] Lutz MP, Zimmerman RW. Thermal stresses and effective thermal expansion
coefficient of a functionally gradient sphere. J Therm Stresses 1996;19
(1):39–54.

[46] Martínez-Pañeda E, Gallego R. Numerical analysis of quasi-static fracture in
functionally graded materials. Int J Mech Mater Des 2015;11(4):405–24.

[47] Love AEH. A treatise on the mathematical theory of elasticity, vol.
1. Cambridge University Press; 2013.

[48] Batra R, Xiao J. Analysis of post-buckling and delamination in laminated
composite St. Venant-Kirchhoff beams using CZM and layer-wise TSNDT.
Compos Struct 2013;105:369–84.

[49] Batra R, Xiao J. Finite deformations of full sine-wave St.-Venant beam due to
tangential and normal distributed loads using nonlinear TSNDT. Meccanica
2015;50(2):355–65.

[50] Toupin R. Saint-Venant’s Principle. Arch Rational Mech Anal 1965;18:83–96.
[51] Batra R. Saint-Venant’s Principle for a helical spring. J Appl Mech

1978;45:297–301.


