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1. Introduction

To determine the deformation of a body from the system of differential equa-
tions governing its thermo-mechanical deformations, we need side conditions such
as boundary conditions. The most frequently employed boundary conditions are
those of place and/or traction in a purely mechanical problem and of temperature
and/or heat flux in a thermal problem. These and other more familiar mechanical
boundary conditions are summarized by SEWELL [1, eqns. (9)-(13)]. The frequently
considered thermal boundary conditions are discussed by CARSLAW & JAEGER |[2,
Chapter 1]. It seems that the interest in non-classical mechanical boundary condi-
tions originated in the study of elastic stability, and a convenient reference for the
various mechanical loadings considered up to 1961 is the book by BoLoTIN [3].
In this book, BoLoTiN discusses many elastic-stability problems under follower
loads, defined as those which follow in a prescribed manner the deformation of the
surface element upon which they are acting. More general than these are the con-
figuration-dependent loadings [1] defined * by an a priori assumption that the load
acting at a material boundary point is calculable from an assigned function of at
most the displacement of that point and its neighbors. SEWELL also gives sufficient
conditions for such loadings to be conservative. In [4], NEMAT-NASSER states that
surface tractions are usually prescribed so as to represent the interaction between
a deforming body and its surroundings. He proposes that applied surface trac-
tions on a body be represented by forces which are defined on material neigh-
bourhoods as vector valued functions of the displacement, velocity, acceleration
and their first and higher order gradients with respect to the particle positions in

* Cf. SeweLL [1, p. 3271
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a reference configuration and calls these motion-dependent loads. In the specifica-
tion of these motion-dependent loads, it is tacitly assumed that the body interacts
locally with the environment. In a general sense, the configuration-dependent
loadings and the motion-dependent loadings follow the material in that the load
senses the deformation in the neighborhood of its point of application and varies
with it.

Here, I also adopt the viewpoint that the boundary conditions describe how
the body interacts with its environment, which I call a loading device in the follow-
ing discussion. It is assumed that the loading device L can be regarded as a de-
formable continuum. Presuming a rather simple theory for it, I strive to derive
an approximate theory with the hope that the deduced boundary conditions
account somewhat for the deformation of L. Said differently, an attempt is made
to express the balance laws for L in terms of quantities defined on the common
interface C and then, assuming the contact conditions at C, to derive the boundary
conditions. In this context it may be mentioned that the prescription of boundary
conditions can alternatively be regarded as specification of the constitutive equa-
tions for L and the contact conditions at the interface C. For example, assigning
zero surface displacements at the bounding surface of a body B is equivalent to
saying that B is permanently glued to L, the loading device is a rigid body, and L
cannot suffer any motion. As should become clear after the reader has gone
through the following discussion, the proposed technique of deriving balance laws
for L and thence the boundary conditions works at most for the class of loading
devices for which C always consists of the same material particles of L.

What emerges is that the body and the loading device interact nonlocally in
the sense that, in a purely mechanical problem, the surface tractions at a point
of C depend upon the deformation of all points of C and not just on the deforma-
tion of its neighborhood. An analogous result holds for the thermal boundary
condition. These results are in sharp contrast to the prescription of forces and
heat flux now in use. Also, this study reveals that the surface tractions at C can
depend on the field of displacement defined on C and not on the inward normal
derivatives of displacement. A similar result holds for the heat flux.

* 2. Derivation of Balance Laws for Loading Devices

The technique pursued here to deduce the balance laws for the loading device
is the one customarily used in deriving the balance laws for a shell or a rod*
from the three dimensional equations. The details are slightly different since, in
the case of both shells and rods, advantage is usually taken of the special geometry
of the body. Though the procedure followed below would work for more general
continuum theories** for L, for the sake of simplicity I start with a rather con-
ventional (non-polar) continuum theory. In particular, it is assumed that the
loading device obeys the following balance laws of mass, linear momentum,
moment of momentum and energy and an entropy inequality (2.1);. In Cartesian

* For a detailed discussion of these, see the recent articles by NaGHDI [5] and ANTMAN [6].
** E.g., those which account for director stresses, body couples, couple and multipolar
stresses. efc.
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tensor notation, these laws take the forms
d
W I p* d V= 0,

d . .. C e % 11, -
P l ‘;}: '\“u‘l *J 7“‘[1«'5“ —J .’7‘4 dV=0,

d . 5 . ; ¢ ¥ o ro % y
({7{ j}/ Xii ,\'Hui - J,\“ /”“ u.\“ j,\.[‘ rHJ] dV=0, (2_1)

*
LT (ot + ) A= T - 02 dS, = (b sty V=0,

[ dV+[JFdS,~[h*dV=0.
dt ! !

The integrands are considered as functions of time ¢ and the material co-ordinates
X,, interpretable as co-ordinates of a particle in a convenient reference configu-
ration. For a given loading device, the reference configuration is a region R, in-
dependent of time, the region of integration in (2.1). On its boundary 0 R, d S, de-
notes the outward directed vector element of area. Further, p* is the mass, b7 the
body force, y* the supply of internal energy, ¢* the internal energy, n* the entropy
and h* the entropy supply, each measured per unit reference volume. In (2.1), and
(2.1)5, O and JF are the heat flux vector and the entropy flux vector reckoned
per unit area in the reference configuration. The tensor T, is the Piola-Kirchhoff
stress tensor, the vector x; denotes the present coordinates of a particle and x;
denotes its velocity. If, in (2.1)5, one sets

*
*__Qa
Jo = 9

and
o

where 0, the temperature of a particle, is assumed to be strictly positive, one
recovers the Clausius-Duhem inequality. To obtain MULLER’s * entropy inequality
for a supply free loading device, one needs to take A*=0. In (2.1), line or surface
concentrations of mass, energy and entropy, etc. are assumed to be absent, and
it is also presumed that there is no production of mass, linear momentum, moment
of momentum and energy within L, whereas (2.1) asserts that the production of
entropy is non-negative. Also under the change of frame

fi(Xa’ t) = Qij(t) xj(Xa’ t) + ci(t)’
Q,00,;(H=0;, det[Q;()]=+1

* See, e.g., MULLER [7].

2.2)
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where §;; is the Kronecker delta; it is conventional to assume that the above
quantities transform as follows:

pr=p*, Br=g*,  §=0,
Ar=m*,  RE=h%, §r=yx,
Q‘*=Q* f*=J*
Ti:= ijTjts B?—ﬁ*’éi:Qij(bf“P*ij)-

In preparation for the discussion to follow, it is helpful to observe that the integral
equations (2.1) are of the form

2.3)

%jW*dV—IZI-:dSa—IO'"*dV=jP*dV. (2.9

Here, y*, 0> * and P* are tensor fields of the same order defined over R and 2. *
is a tensor field of order greater by one than that of * and ¢*>*. We interpret P *
as the production of y* within R and the second and third terms on the left-hand
side of (2.4) as the rate of increase of y* because of inflow through the boundary
of R and growth at places within R. It is usual to call 2 * the flux and o> * the
supply of *. To express (2.4) in terms of quantities defined on the part C of the
boundary of the loading device, it is convenient to introduce a curvilinear co-
ordinate system defined by the transformation

Z°=Z(X,) (a,b=1,23)
such that
(i) the common interface C is contained in the co-ordinate surface Z3=0,
(ii) the co-ordinate curves
Z'=const., ZZ*=const.
intersect F defined by
F=0R-C

in one point only,

(iii) Z“ are of class C!, and

ol i
1

J +0 everywhere in the region V defined by
© v={Z" Z°eR, (Z%,0)eC). Q@7

iv) J 1 =d
{1v) det[“\,&

It may be remarked that the stated conditions on the co-ordinate system Z are
more restrictive than is necessary for our purpose. These conditions on the co-
ordinate system Z do not require that the Z* co-ordinate curves be along the
normal to the surface Z3=0. Hereafter, we shall denote the material co-ordinates
of a point on C by Z* (a=1, 2).

Now consider a material tube 7, T< R, with one end consisting of points of
o < C and the lateral surface 0 T, consisting of points of the set

{z°: Z°eR, (Z%,0)edo}.
With the definition
o,=TNF,
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we have
aT=O'U6T0UO'°.

Let a parametric representation of do < C and of g, be*
Z*=Z%(s),
X*=X%Z",2%.

(2.8)

I now introduce the following definitions:
Y (Z)=y*(Z)I(Z),
ot (Z)=*(ZYJ(2Z9, (2.9)
P*(Z)=P*(2%)J(Z°).
Whereas y* is the density per.unit Euclidean volume, y* is the density per unit

co-ordinate volume dZ' dZ* dZ®. We now try to express the flux 2 ¥ in terms of
the flux 2} measured per unit co-ordinate area. Note that
axt axe

24dS =2,y —— —— dZ* dZF,
o b 0zs 0z

F
=2,_“J§}Z—stgkdzgdlk,
=2{_ +f8fgdegde,

where we have set
oz

+f_~ a
27 =a o

In (2.10), &, is the alternating tensor having values 1 or —1 according as 4, b, ¢
form an even or odd permutation of 1,2, 3 and vanishing otherwise. Because of
(2.8), and our choice of the material tube T, on the mantle 67, of T,

dz° .
73 dsdZ’,

=v,dsdZ?

sabcdzbdzc=8aa3

where

1a

Va(ZP)=t,43 as
points along that outer normal to d¢ which lies in the surface Z3=const.
We note that v, does not depend upon Z3. Thus

§ 2*dS,= [ v,2.*"dsdZ®= | v, 2, **dsdZ? -

8To 8To oTo

* Let o, be given by
z3=27%(2, Z%.
Then on oy,

X=X%(Z, 2%, 232", Z29))=X"(Z", Z%).
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where the second equality follows from the fact that v,=0. Using the definitions
2(Z3)={Z>: (Z§, Z°)eF},

8X* ox° oX> ox°
V(7% 0)= * *
P (Z ’O)—sabc [zl-a aZi aZZ 0+ Zl—a azi aZZ

], Z%cs, (2.13)
Zi=z

Z3=

(2.9) and (2.12), we can write (2.4) in the form

d F 3ol 392 33 ¥ 371 772 + 3
—— ¥ dz2'dz*dz’~ {P*dz' dz*- | 2.} v*dsdz
ar iV ] FESA 214)
—fo>*dz'dz*dz*= [P* dz' dz?*daz®.
T T

We can interpret P¥(Z§, 0) defined by (2.13), as the total flux of ¥ through the
ends of the curve

{Z°: Z°€eR, Z2°=23}. (2.15)

With y* and 2 *, etc., there is the advantage that we can avoid introducing co-
variant differentiation. Since I am using the material description throughout this
d . .

paper, the operators 47 o (2.14) and the superposed dot used below are equi-
valent to partial differentiation with respect to time 7. We now introduce the
following definitions and thus express (2.14) in terms of quantities defined on C:

W (2, 0)= 5 ¥t (Z9dZ’,

o> (Z5,0)= [ o> * (2% dZ?, (2.16)

2.,4(2%,0)= g 25 (2%4dZ?,
P(z%,0)= fP*(z") az>.
o

Recalling the definition (2.13), of z, we see that the integration in (2.16) is along
the curve parallel to the Z* co-ordinate curve and having (22 0), (2%, 2(Z%) as
the terminal points. In terms of the definitions (2.16), we rewrite (2.14) as

;t-fl//dZ‘ dz’— (P*dz'dz*- § 2, ,v"ds— [o> dZ' dZ*= [ PdZ"dZ>. (2.17)
4 a 2o 4 a

The second term in (2.17) can be viewed as the supply of Y from within the loading
device or as the production of ¥ in the material surface element ¢. Thus even if we
assume that there is no production of  within L, i.e. P*=0 in (2.4) and hence
P=0in (2.17), there may be a finite contribution to ¥ due to this term. It is clear
from (2.9), (2.11), (2.13) and (2.16) that the values of ¥, %, o>, etc. depend upon
the geometry of the loading device and on the choice of co-ordinate system Z.
With the postulate that (2.17) holds for every surface element of C and the
assumption that the integrands are continuous, (2.17) is equivalent to the local
equation

y—P*~2* —>=P. (218)
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To obtain (2.18), the surface divergence theorem has been used. Here and below,
a comma stands for partial differentiation with respect to Z°, that is

02"

R

Keeping in mind the derivation of (2.18) from (2.4), we have the balance laws
(2.1) which take the following forms in terms of quantities defined on C:

p=0,

=Pl = @7 ,—b;=0,

myn— Pin— P, «— 02 in=0 (2.19)
—Pe—<15” «—0>=0,

n—P1— —hz=0,
where
l:k = p* )-Cis
myij=p* X X,
- (2.20)
e* =E*+T.’.Ci*i1
For example, to derive (2.19), from (2.1),, in (2.4) take

lb*=l* 2|-la ta’ a-):k=b:k’ I’i*=03

and define /,, P!, ®!,, b, in a way analogous to the definitions (2.16). The balance
of mass expressed by (2.19), just states that the reference density is independent
of t. I now try to write the balance of energy and the balance of moment of
momentum in a form from which the inertial forces have been eliminated. To do
so0, I introduce the following definitions:

x(Z°% O)Eljp+ X dz?®,
Po
pi(Z%, 0)=x;—

. ox® ox°
Aij(z s O)Eaabc [ azT '52'2_ T;a j)

+fax" ach )‘ ]
A4 taPi all

uan Tf;dZs, (2.21)
0

Cy= [pib} d2°,
0

= (j;P+ Pil.’jdz3
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With these we can write (2.19), ; as
pXi—P!—&'F ,—b,=0,
Apji+ By, o+ Crijp— Iy =0.

It is clear from (2.21), that %;(Z%) is the mass center of the material particles
situated on the material curve (2.15) in the reference configuration. Accordingly,
p(Z3) %(Z%, 0) equals the linear momentum associated with the material particles
situated on the curve (2.15). We now separate the kinetic energy from the total
energy. Set

8m(Za, O)E%,‘;p*— i’ii’i dZsa

94(2%,0)= (! piTip dZ°,

{(2*,0)= [ p;b dZ?, (2.23)
0
. 0X° ox° .. ox® axc .
&z ,0)=8abc'37r721‘7"iapi Zs=o+8abcTZTTZ'Z_T'iapi )
e m_ . OX* ax° ox® axc
Q(Z,O)=3abc azi azz Qa Z3=0+aabc aZi 6Z a Zoms

Introducing the definitions* of e, P¢, ®¢ and ¢>° in (2.19),,, eliminating the inertial
forces pX; by substituting from (2.22),, and rewriting the resulting equation in
terms of the quantities defined in (2.23), we obtain

é+ém_€+q+(p1,a—Qa,a—C-7=Oa
where **

0.-for az
From (2.3), the defining relations (2.9), (2.16) and the definitions (2.21) and (2.23),
we can deduce the transformation laws for various quantities; for example,
p=p, §i=Qijxj+ci9 P =QijP_;’
pi= Qij Pjs jij= 01 Q1 Axs, Eija= Qix Q;1Byio
iij=Qik Qi1 +Qi Eyy le,
i=e, §=1, d=q, 0.=Q, (2.25)
Em=£m+Q.ij Qulj+3 Qij QkiEjk’
E=¢+0,;00 4
Pu=@,+Q;; Qik Byjw

* These are defined in a way analogous to the definitions (2.16).
** (f (7 1R).
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whara

E(Z%,0)= gP+ bip; dz®.

From (2.21), and (2.25),5, we get the following differential equation relating
E;;and I;;:

Eij=Iij+Iji' (2.26)

The preceding details make clear that the derivation of (2.22) and (2.24),
from (2.1) is rigorous. However, the information provided by these is much less
than that provided by (2.1). The relation between (2.22), (2.24), and (2.1) is
somewhat similar to that between the continuum theory and the atomistic theory.
As the continuum theory is designed to give information about the gross effects
of deformation, similarly (2.22) and (2.24), are expected to deliver information
about suitably defined mean values of various quantities. In thin shell theory, the
shell is replaced by an appropriate* inner surface and the upper and lower sur-
faces of the shell are parallel to it (see e.g., the definition of a shell-like body in
[NAGHDI, 5, Section 4]). Here C, a part of the boundary of L and V, defined by
(2.7), need not equal R. However,

f¥dz'dz*= [y* dz' dz*dZ?,
C \4

the total ¥ associated with the region V rather than with R. In those cases when
either the geometry of R is such that with no choice of co-ordinate system Z,
V=R, or the most natural choice of co-ordinates Z as dictated by the geometry
of R makes V+R, we account for y, associated with R— ¥, by postulating an
edge density ¥, defined on @ C such that

fwdz'dz’+ § y ds=[y* dZ'dZ*dZ>.
C oc R

We shall further illustrate this point in an example worked out below.

As is sometimes done for theories of shells and rods and in kinetic theory of
gases, we could also have considered higher order moments of the balance laws
(2.1) and deduced their averages. These higher order moments would give some
information about surface couples and other related variables. For a simple
body, it is not clear how one should use this extra information. We remark that
for the purpose of exploring some information about the boundary conditions of
surface traction and heat flux, (2.22) and (2.24), suffice. Also, this is the usual
place to stop in thin shell theory. Below we discuss some features of the balance
laws (2.22), (2.24),.

In (2.19), the emergence of the production term denoted by P!, P¢, etc., which
can be associated with the supply of the corresponding quantity from within L,
has some interesting consequences. In COLEMAN’s ** thermodynamics, the fields of
body force and heat supply are taken to be arbitrary, and thus the Clausius-Duhem
inequality is required to hold as an identity. Also, the feasibility of eliminating
the supply term from the energy equation and the entropy inequality facilitates
the exploitation of the latter for obtaining restrictions on the constitutive equa-

* Usually, this is called the middle surface.
** See, e.g., COLEMAN [8].



172 R. C. BATRA!

tions. In the deduced two dimensional formalism, the external source terms in the
energy equation and the entropy inequality would not, in general, be related so
simply, and therefore the above advantage disappears. Also, there is the possibility

z z
that [y* dZ* may equal zero, whereas [h* dZ3 does not or vice-versa. Thus, from
1] 0

the two dimensional viewpoint, L may be free from the supply of internal energy
without being free from the entropy supply or vice-versa. Even if 4* =0 and there-
fore h=0, the appearance of the term P7 in (2.19); would mean that there is an
apparent supply of entropy. This means that a loading device, which is supply
free from a 3-dimensional viewpoint, would appear to be supply receiving from

the 2-dimensional viewpoint. Also, even if A* =0, [A*dZ> could be zero every-
1]

where on C, thus implying that even if L is receiving external supply of entropy,
the 2-dimensional equations would indicate that it is not. These remarks make
clear that both MULLER’s entropy principle and COLEMAN’S approach to thermo-
dynamics need to be generalised to apply to this 2-dimensional theory.

One possibility is to consider (2.22) and (2.24),; as equations of motion for
the fields of position x, temperature # and possibly other fields of interest, intro-
ducing constitutive equations for the quantities X;, P, ®,, 4pi 5, By e Crijp
L3> Pis & &ms &, 4, @4, Q,,  as is often done for shell, plate or membrane theories.
In fact, conventional theories of thin plates or shells could provide useful approxi-
mate theories of this type. MINDLIN’s * [9] work on plated crystal plates provides
a simple illustration of this remark. For a fixed geometry of L, the constitutive
equations for X, @', etc., would partially** characterize the material of L. One
possibility is to derive these constitutive equations, using essentially their defini-
tions (2.21) and (2.23), from the known 3-dimensional constitutive equations.
Another is to postulate these. Usually the derivation from 3-dimensional con-
stitutive equations presents considerable difficulties, and it is easier and simpler
to follow the direct approach. This is analogous to using the theory of Cosserat sur-
faces to describe shells. I propose that these constitutive equations be such that
the balance of moment of momentum (2.22), is satisfied identically. Also, these
constitutive relations should obey the transformation laws exemplified by (2.25)
and the appropriate entropy principle. If one determined the constitutive equa-
tions from relations like (2.21), then, since quantities bearing the superscript +
are densities per unit co-ordinate volume or co-ordinate area, the calculated con-
stitutive relations would depend upon the choice of the curvilinear co-ordinate
system Z. However, these quantities corresponding to different choices of the
co-ordinate system Z are related to each other, the equivalence relation depending

on the nature of the problem. For example, in the static problem X,=0 and
assuming b;" =0, then two &},’s can differ by at most a solenoidal vector field since
P} is determined from the surface tractions on the boundary of L. This remark
suggests that we should talk about equivalence classes of constitutive equations
with the equivalence relation depending on the constitutive variable and on the

* See also the remarks after equation (2.30) below.
** Because the constitutive equations also depend upon the choice of the co-ordinate
svstem Z.
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nature of the problem. As regards the smoothness of these constitutive equations,
it is necessary that the flux terms be smoother than the densities. Indeed, for
(2.22), with %,-:0 to be meaningful, P! and b, need just be defined, whereas &},
must be differentiable on C. The model calculations given in the next two sections
illustrate the averaging procedure and the aforementioned remarks.

Because of the averaging carried out to obtain quantities like ¢, X;, efc., NOLL’S *
definition of peer group and homogeneity is not easy to extend to the present case.
If one considers from the 3-dimensional viewpoint a homogeneous deformation
of a homogeneous loading device, the two dimensional constitutive equations
may depend explicitly upon the surface particle virtually implying that L is in some
sense inhomogeneous. The problem of material symmetry in thin elastic shells
has been discussed by NAGHDI [5] and more recently by ERICKSEN [11].

To deduce information about the boundary conditions it is simplest, though
not necessary, to assume that the part** F of the boundary of the loading device
is isolated in the sense of the following definition:

Definition 2.1. F will be said to be isolated if and only if, at each point of F, there
is no mechanical work done and there is no flux of energy through it.***. When
F is isolated, the second term in (2.23), and in (2.23)5 vanishes and one gets
a simple interpretation for ¢ and ¢. For example, ¢ equals the heat flux
at the contact surface C. Also' P} may equal the surface tractions f; exerted by
B on L at the points of the contact surface C. We recall that these tractions are
measured per unit co-ordinate area. Depending upon the contact conditions at
the common interface, we classify the loading device in the following two cate-
gories.

Definition 2.2. A contact loading device L for a body B is a 3-dimensional con-
tinwum occupying a region R in the reference configuration such that

(i) R is in the exterior of the region R, occupied by the body B in its reference
configuration,

(i) C=0RNIR,+9,

(iii) C is a material surface for L,

(iv) F, defined by (2.6), is isolated as is made precise in Definition 2.1, and
(v) L obeys the balance laws (2.1).

In stating the next definition, we shall need the following notations. Let g(x) be
a field defined in two regions R, and R, of which a smooth orientable surface S
is a common boundary. Granted that the limits indicated in the following rela-

* See e.g. TRUESDELL & NotL [10].
** Recall definition (2.6) of F.
*** In some problems, it may suffice to assume that FN\ V is isolated in the sense of the
Definition 2.1,
t When F is traction free, (2.20); and (2.13) imply

ox® oxe .
lyza — ¥k =f. .
P(Z ,0)—8abc5—zr 277 T fi (2.27)

Z3=0
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tion (2.28) exist, then

[g](x)= lim g(y,)— lim g(y,), xeS, (2.28)
sieR, yaeRe

gives the jump [g](x) of g at x€.S. The function g(x) is continuous across S if and
only if [g] (x) =0 everywhere on S. Henceforth we take the reference configurations
of the body and the loading device as the ones they occupy when they are just
abutted together*. I also assume that both the body and the loading device are
referred to the same co-ordinate system X. Thus those material particles of the
body and the loading device which are situated on the common interface C will
bear the same material co-ordinates X,. Now we are ready to state the following

Definition 2.3. An intimate-contact loading device for B is a contact loading
device which satisfies the following continuity conditions at the common inter-
face C:

[x(X,]=0, VX,eC, >0,

Lfi(Xa D1=0,
[6(X.. H]=0,

[¢(X, H]1=0,

where f; and g are the surface tractions and the heat flux per unit co-ordinate
area.

In thermo-mechanical terms, (2.29), states that there is no slip at the interface and
(2.29); implies that the contiguous parts of the body and the loading device have
the same temperature. The relations (2.29), and (2.29), imply, respectively, the
continuity of the surface tractions and the heat flux across C. With the usual
assumptions on the various fields, (2.29), and (2.29), are equivalent to the asser-
tion that the balance laws (2.1) hold for regions containing parts of the interface C
and (2.29), is satisfied. The condition (2.29), certainly holds when either B or L,
or both, are linearly heat conducting. The contact loading devices as defined above
do not embrace all conceivable kinds of surface loading devices. For example, B
could bear surface charges which can interact with a charge situated at some
distance from @ B, and thus the latter can exert surface tractions on B. Also, during
the deformation process, different parts of L could come in contact with 0B, as
for example in a roller bearing or in a globule of fluid rolling over the surface of
the body. Thus it is rather simple to devise examples of loading devices not
covered by Definition 2.2. The following discussion is limited to exploring how
the contact loading devices interact with the body.

Remembering that F is isolated**, and combining (2.29), with (2.22), and
(2.29), with (2.24),, we obtain

Yi=—(pX,— ' ,—b),
bq= —(-é—ém+Qa,a_(p¢,z+é+C+y)

* We reckon time from this instant.
** Here F is taken to be traction free.

(2.29)

(2.30)
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where the upper left index b designates that the quantity is defined on the boundary
particles of the body. If the constitutive quantities for the loading device are
known, (2.30) gives, for part C of the boundary of B, the surface tractions and the
heat flux in terms of whatever independent variables are involved. Since F is
isolated, a possibility is to take the fields of displacement and temperature defined
on C as the independent variables.

MiNDLIN’S [9] work on plated crystal plates is easily interpretable in the pre-
sent context. He discusses a purely mechanical theory and does not require that F
be isolated in the sense of Definition 2.1. However, his analysis can easily be
modified to incorporate the isolation condition on F. He imposes (2.29); and
(2.29), at the common interface between the platings and the plate; thus the
platings can be thought of as an intimate-contact mechanical loading device for
the plate. Assuming (2.1) and linear elastic constitutive equations for the platings,
he derives approximate versions of the 2-dimensional balance laws and the con-
stitutive equations.

We now point out a peculiar feature of intimate-contact loading devices. For
our discussion, the choice of independent variables is immaterial. I discuss a
purely mechanical problem and take displacements defined on C as the independ-
ent variables. Assuming that the constitutive relations for the loading device are
known, then, in principle, the boundary condition (2.30), might be expected to
determine the deformation of the points of the body lying in a small neighbor-
hood of C. The deformation of these very points is also given by the field equations
governing the deformation of all points of the body. That is, we have two sets of
differential equations which supposedly determine the deformation of the neigh-
borhood of C. It is quite possible that these two sets of equations are not mutually
compatible, This causes a concern about the genuineness of (2.30), as the mechani-
cal boundary conditions for the part C of the boundary of B.

We can state the above problem in a slightly different way as follows. When
the constitutive equations for the loading device are substituted in (2.22),, then
in principle the field equations (2.22), together with some side conditions are ex-
pected to determine the field of x defined on C. The known constitutive relations
for L would then yield the surface tractions defined at points of C. The continuity
conditions (2.29),,, would make known the boundary values of surface tractions
and displacements on part C of the boundary of B. This boundary data is more
than can be assigned for some bodies. That should be clear from the case of the
linear elastic problem treated below. To resolve this issue, we shall explore the
consequences of the following proposal:

The constitutive equations of intimate-contact loading devices should be such that
the balance laws (2.22), (2.24), are satisfied identically. (2.31)

If we adopt the viewpoint that the fields of body force and heat supply are
arbitrary, then the requirement (2.31) does not place any restrictions on the con-
stitutive relations since we can set

bi=P3%i—lfi—‘plia,
and
v=é+4, 'q+0¢" ,—Q" ,—¢-C
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However, when b; and y are not arbitrary, e.g., when the loading device is supply
free, i.e., b;=0, y=0, then the constitutive equations for X,, ®;, etc. are severely
restricted by the requirement (2.31). There is nothing in our experiential back-
ground which can provide a motivation for (2.31). For some simple examples of
loading devices, we can derive, by mechanistic calculations, the surface constitutive
equations from their known three dimensional counterparts. For these cases, we
can check the validity of (2.31).

3. Model Calculations: Thermal Problem

We now illustrate the averaging method and illuminate some of the afore-
mentioned remarks by working out the details for the case when the intimate
contact loading device is a supply free, homogeneous, isotropic, linear thermo-
elastic half space D. Since rather few results are known for coupled linear thermo-
elasticity, I shall consider the “uncoupled” case. That is, the thermal and me-
chanical problems are considered separately. Further the deformations envisaged
are “quasi-static” in the sense that unsteady thermal problems are discussed but
the mechanical problem studied is a static one. Unless that part of the boundary
of the adjoining body B which is glued to D equals D, the common interface C
between the body and the loading device would be a proper subset of the bounding
plane 0D of D. Take reference configurations for B and D as those occupied by
them at the instant of glueing, and reckon time from this instant. We assume the
reference configuration for D to be a natural one, i.e. the initial stress vanishes,
and the initial temperature = constant 6,>0, but make no assumptions regarding
either the constitutive equation for B or its reference configuration. However, for
consistency with the assumption that D is an intimate contact loading device,
surface tractions vanish and 6 (X, 0)=0,, at those points of B which liec on C. Here,
it is convenient to choose a rectangular Cartesian coordinate system for D such
that the X;-axis projects into D and X;=0 on the bounding plane 4D. In the
notations of the previous section, the X-axes coincide with the Z-coordinate
curves and, to avoid confusion between superscript and power, we shall use sub-
scripts only for labelling the coordinates. Thus a typical material tube T would
be a material cylinder with the cross-sections contained in the planes X; =constant
and generators parallel to the X;-axis.

I now consider a purely thermal problem. Let B and D exchange heat through
the contact area C and we investigate this transfer of heat when the temperature
deviations

o(X, t)E—el—-(a(X, f)~0,), XeD,
(]
are small. The only relevant balance laws are the energy equation and the entropy

inequality. The former, when linearized around 0=6,, takes the form (3.1), in
terms of the temperature deviation v:

1v )
C;E,(A\" D=xV v(X, 1),
dt
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where

= (/{}1“”“-

FPN
_ 1 a0,
K= —— —&

30U, 4 |9=9,0,a=0

Here ¢ and « are absolute constants since D is presumed to be homogeneous and
isotropic. c is called the specific heat and x the thermal conductivity at tempera-
ture 6. It is common to assume, and I also do, that ¢ and x are positive. On C,
(2.29); and (2.29), hold and Definition 2.1 for the isolation condition on F takes
the form (3.2),,,. Thus the side conditions governing the solution of (3.1), are

q(X,)—0 as | X|=(X; X))t >0, >0,

q(X,)=0 (X, )e(éD-C)x (0, t],

9X,D="9(X,1) (X,9)eCx(0,1], (3.2)
v(X,0)=0 XeD.

In (3.2); and below, the upper left index / prefixed to a quantity signifies the value
of the corresponding quantity for the loading device; g is the heat flux* per unit
Euclidean surface area. Introducing the notations

rZE(Xa_Xa,)(Xa_Xa,)'l-X?az,

H,(X,X',t,7)=[exp(—c rzj“'4tc[‘r~r])]f( -1 (n=1,2,.
we find the solution** of (3.1), satisfying (3.2) to be

L[ e \}
o(X, 1)= - 7(7‘7,) [dt{Hy(X, X', t,7) (X', 1) dA(X),
4 \ni) 5 ¢
where

dA(X")=dX] dX,

is the surface element of area on C. The integral in (3.4) is improper, the integrand
having a singularity at X;=X,, X, =0, 7=¢. However, the singularity is integrable.
Indeed, writing H,(X, X', ¢, 7) in the form

H(X,X',t,0)=(t—1)"" (rz)p—%[rzl(t—f)]%_p

xexp.(—crif4x(t—1)), O<p<l,
we get
HAX. X' < Constant
iH,(X, Jﬂ)l:ft_—ﬂp—,m,
and the right hand side is integrable. Henceforth, we shall denote the points of
D-4D by X, and a point on §.D will be designated by X. Thus, for the surface

* Cf. (2.2_3)5 and the present choice of the co-ordinate system.
** See e.g. CARSLAW & JAEGER [2].
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temperature, (3.4) gives

WX, H=limv(X, f)

x-X

c £l _—
o) Jar H(X X L0 (X, D dAX),

where

H,(X, X', t,7)=[exp.(—c r3/4x(t—‘c))]/(t—t)7, n=1,2,
and
X, X)=(X,— X)) (X,— X,).
Using Fourier’s law,
Q*= —xk0,Gradv,

and observing that, for the present choice of co-ordinates X,

and
z(X)=0 VXedD,
we see from (2.24), that the flux of energy is given by

Qﬂ= jQ’ﬁkdX3= _Keo_‘——ng;.
0 0 aXp

Upon substitution from (3.4) and carrying out the integration*, we obtain

20,
8k~x

0,(X, f)=— gdr g (X;— X)) H (X, X', t,7)'q(X", 1) dAX).  (3.8)

When the internal energy density is normalised by setting &* (8,) =0, its value for
the linear heat conductor is given by
e* (X, )=cO,v(X, 1),

and this, when combined with (3.4) and an expression of the type (2.16),, gives
the following expression for the surface density of internal energy:

4

29 t .
e(X, f)= — 4:; (_Ed‘c chZ(x, X', t,79)'q(X", D) dAX'). (3.9)

To demonstrate the existence of the derivatives of Q, and ¢, we observe that (3.8),
when differentiated with respect to X,, and (3.9), when differentiated with respect
to time ¢, vield

0 (X, D)= — <0 [ dt[(X,— Xp) Hy(X, X', 1,7) Z{; (X', 1) dAX"),

Ikmy ¢

"

Sy
29 1 (3.10)
c . . S s s .
X, )= ———2fdt|Hy(X, X', ,1)"'q(X', 1) dA(X").
dnkg ¢
o 1
* Here we use the known result fc‘;;v,(*,1") s -dy=|n.
5
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To obtain these, integration by parts has been performed which is facilitated by
the fact that the kernel is of the convolution type. Also 'q is assumed to be differ-
entiable on C and continuous across dC. If the latter condition does not hold,
a term involving the line integral along 6C would appear in (3.10). The relations
(3.8) and (3.9) establish linear representations for Q, and &, and (3.10) depicts the
chain rule of differentiation of O, and . To calculate n and Jg, it is sufficient to
point out that, with the normalization n*(6,)=0, we have

n(X, D=2 e(X, 1)

and
Jﬁ(i’ t)=eL Qﬂ(i, t)-
0

Thus representations similar to (3.8), (3.9), (3.10); and (3.10), will result for J,,
1, Jg, . and 1, respectively. It is worth mentioning that the above linear representa-
tions for &, Qg, etc. are not unique since one could integrate these by parts and
obtain linear representations in terms of first or higher derivatives of ‘g. Depend-
ing upon the smoothness properties of ‘g (X, ), this process would introduce line
integrals along 0 C. For example when 9 C has a representation

X,=X,(5),

s being its arc length, (3.8) can equivalently be written as

0%, 0=~ | fae [H,& X', 1,0 L1 (X', 1) dAX")
\J.ll)

t 1
—gg,Jdt § Hy(X, X', 1,7)'q(X,7) ‘ZX“ ds]
0 oc s .
When 'g is continuous across ¢C, the second integral vanishes; otherwise
it gives a contribution. It may be remarked that the kernel in (3.11) is somewhat
smoother than that in (3.8).

It is a simple matter to verify that these constitutive relations are invariant
with respect to the translation of the time axis. This just illustrates the freedom
of choosing the origin of the time scale and is a requirement for the constitutive
equations to be frame-indifferent.

With the above choice of the co-ordinate system, fedA would equal the
internal energy of the solid cylinder ¢

V={X:XeD, (X,,0)eC}.

At the risk of repetition, I remark that the energy of the remaining portion of D
is accounted for by postulating an edge density ¢, defined on 0 C. To demonstrate
its representation, it is convenient to introduce on 0D a curvilinear coordinate
system (Y;, Y,) defined by

such that

13 Arch. Rational Mech. Anal., V
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everywhere on 0D and 4C is given by
Y, =constant, say=1.
Thus at points of dC we can define the edge density by the relation

8,(1, Yz; t)E Ig(Yb Y2)les

6 (Ys, ¥p)

) . du(t—t)
4Wh 1. aY, <? }71 (t—1) lq(Yﬂ”T)dA(Yé)’

where

aX dX, ,
dA(Yp)=—+ (Yp) 2 v (Yp)dY; dY,
rO(Yﬂ'.' Yﬁ)"'lXa(}rﬁ)—Xa(Yﬂ)l

Hence ¢ and ¢, would satisfy
fedA+ $e,dY,=[e*av.
C ac D

The preceding details also make clear that, had we chosen the material tubes
differently, the expression for 'v(X,, t) alone would tally with (3.6); all othersin
general would have a different form. If we denote by & the difference in & evaluated
by two different choices of material tubes and use like notation for Qg, since these
satisfy the appropriate form of (2.24),, the equivalence relation would be

é“" Qﬂ, B =0.
In order to derive the boundary conditions for the body from (2.29);, , and (3.6),
I assume that part C of the boundary of B is described by previously selected

rectangular Cartesian co-ordinates. Thus an outer unit normal to d B at points
of C will have components (0, 0, 1). From (2.29); , and (3.6), we get

_ 31 _
by(X, t)=% (:—K) (_!dt (j;H3 X, X', 1,7)°q(X’, 1) dA(X), (3.13)

which expresses a thermal boundary condition for part C of the boundary of B.
This is not of the classical type; it states that the temperature at a point X of C
is affected by the field of heat flux over C and not just in the neighborhood of X.

We note that the constants ¢ and x in (3.13) are the values of the specific heat
and the thermal conductivity for the loading device. Some of the thermal bound-
ary conditions stated by CARSLAW & JAEGER [2, Chapter 1] are of the form

heat flux=~function of surface temperatures.

We can obtain this type of functional dependence by inverting (3.13). However,
the inversion of (3.13) does not appear to be straightforward. Accordingly, I seek
a solution of (3.1), under the boundary conditions

v(X, 1)=0, (X, t)e(@D—C) x(0, 1],
=h(X,H) (X,)eCx(0,1], (3.14)

-0 as | X|—=o0, >0,
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and the initial condition (3.2),. The solution* is

X; [ ¢\l
o(X, =" (= | Jde]Hy(X. X', 6,0 0(X, 1 dAX)). (3.15)

O T/ o c

Since the boundary conditions on § D— C are different in the two cases, (3.15) is
not the inverse of (3.4). However, it is clear from (3.15) and (3.7) that the heat
flux vanishes at <o, so that the derivation of the boundary condition (2.30), from
the balance law (2.24), holds. Comparing (3.15) with (3.4), we see that the kernel
in (3.15) has a higher order singularity. This suggests that the representations for
¢, @, etc. in terms of temperature distribution on C would be less smooth than
that in terms of heat flux. It seems worth mentioning that, in (3.4), the order of
integration is immaterial since the singularity of the integrand is absolutely
integrable in each variable separately **. However, the integral in (3.15) is a re-
peated integral, and thus only the t-integral is taken as an improper integral. We
now proceed to calculate heat flux at points of C. From (3.7), the definitions of
g and v, 5, and the fact that outer unit normal to d.D has components (0, 0, —1),
we have

lq(Xa, 0’ t)=K0° lim D(Xa’ X3’ t)_v(Xa’ t)

X350+ X3

(3.16)

Assuming that v is differentiable almost everywhere on 0D, we introduce the
notations

5t X 1, 0=t D)= oK, 1),
l N
B X1, 0= (X D) =0 (X =% = X O T .
8

Before evaluating the limit in (3.16), we note that, because of (3.14),, we can re-
place the region C of integration in (3.15) by éD. Doing so and substituting for v
in (3.16), we obtain

'lj(/'{?. N X,

'4(X,, 0,1)=x0, lim [ {23 (J;)‘jdr‘;’ Ho(X, X', 1, 1)dA(X) - (|

K30 X, |8 \nk/) o a [
+1 (- ) fdt [ Hy(X, X', 1, 1) '5(X,, X, 1, 1) dA (X)) (3.18)
8 ‘nx/) §
/ N LA t
C U U\A,, I) N o o ,
< | o fdt [ Hs(X, X', t, 1) (X — X;) dA (X
+ 8 * TK ) (‘{71\'[}, (! ¢ TF‘L )( T){ B )‘)( ( ]]

A simple calculation shows that

3
Loyt

i I : } X, ( ;,\. ‘)A‘_ff” [ Hs(X, X', t,7)dA(X, %] (_)

X3-0 L~ 8 0 &b
fdt | Hy(X, X', 1, )(X,~ X;) dA(X")=0.
o] oD

* See CARSLAW‘& JAEGER [2].
** Cf. (3.5).
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Thus for every >0, the limit of the first term on the right hand side of (3.18) exists
and the third term in (3.18) vanishes. Since

fdt§()dAX)=[dr[()dAX)+ [dr | ()dAX),
0 0 ¢ 0 abp-cC

and, at points of 6D--C,

~ 1 »
Y o, i i L 0u(X,, 1)
DX, X LT ==X, ) — (X, — X)) ——
' ’ ( \
we can rewrite (3.18) as
a'o(X,, 1)
.\fi

‘A

(X, N=—H(X,)'v(X,)— K, (X, 1)

|

B | X

| /¢ 1 Y ) - Foo o »
+= (=) Ok [ | Hs(X, X', 1, ) 0(X, X', 1, ) dA(X)).

Here
. ¢ i i ¢ 3 1 N o, 3
HX, 0= +x - ) 6,+ - (_7) Oox fde [ Hy(X.X'.1.)dAX),
= 1 ( c “)5 :
KX, )=+4—|—] Ooxfdt |
* 8 \mx, ° 6[ aD-C

It may be remarked that, in (3.21), the region d D—C of integration is unbounded.
Since the integrand tends to zero exponentially as 7, — oo, the integrals in (3.21)
converge and therefore H and K, are well defined. Combining (2.29);,, with
(3.20), we get
b
g(X, D=H(X, )% (X, 9+ K, (X, LoD
0X, x=X

PN ~ =X (3.22)
_1 (_;K.) B [de [ Hs(R, X', 1,0)*5(%, X, 1, ) dA(X),

R

\ 7

as the thermal boundary condition for part C of the boundary of B. Recalling
that v(X, ¢) is a measure of the deviation of the present temperature from the
temperature in the reference configuration, (3.22) makes clear that, when we
account for the heat conduction in the surroundings of B, the heat flux at the
boundary of B is not given by a relation analogous to that obtained when Newton’s
law of cooling is assumed.

If we should calculate the linear representations for Q, using (3.15) in place
of (3.4), we should find the singularity of its kernel to be of lower order than that
of the kernel in the representation (3.20) of ‘q. This would prove the conjecture
that flux terms are smoother than the densities for the linear heat conductor.

4. Model Calculations: Mechanical Problem

For the loading device considered in the preceding section, we now discuss a
purely mechanical static problem. That is, we assume that the deformations of the
half space D are time-independent and either the entropy or the temperature re-
mains constant in space. Envisage infinitesimal deformations of D from its natural
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configuration to another configuration of equilibrium. Since the loading device is
assumed to be supply free and part F of its boundary isolated in the sense of
Definition 2.1, D can be deformed either by applying surface tractions on the
part of the boundary of B not glued to D or by varying the body force field
in B. These deformations of D are governed by

Grad Divu+

2p

pE Au=0, 4.1)
u(X)=x(X)—

is the displacement of point X, A is the Laplacian operator and A, y are Lamé’s

constants. Recalling Definition 2.3 of an intimate contact loading device, the

following boundary conditions for D ensure that F is isolated in the sense of

Definition 2.1:

where

f(X)=0 XedD-C,
FX)=¥X) XecC, (4.2)
IfX)|=0(1) [X]|-o0.
I assume A and 4 to be such that 440 and Poisson’s ratio* ¢ +1. Then (4.1) is

uniformly elliptic. If we assume that A, 4 and (4.2), , satisfy the complementing
condition** on d.D and

gl'f(X’)l dAX"), gIX’ ®f(X)dAX"),

! ! 1 7 r 1 1 ’ 1 (G ’ ekl (4 3)
CIIX ®@X'® f(X')|dA(X") and (!IX VX' ®X'® f(X)|dAX")
are finite, then the theorem of THomPsoN [12, Thm. 7] makes (4.2); redundant.
Rather, it delivers a stronger result that | f(X)| is o(| X | %) as | X | - co. Usually, in
a traction boundary value problem, the surface tractions are prescribed a priori,
and one can possibly evaluate the integrals in (4.3). But, for the present problem,
this is not feasible since here the surface tractions are variables of interest. How-
ever, 1 choose to assume (4.2); and thus not utilize this sophisticated result of
TrOMPSON. Then the theorem given by KNops & PAYNE [13, Thm. 6.2.2] gua-
rantees that the solution of (4.1) under the boundary conditions (4.2) and with
1*0, o%1 is unique to within an infinitesimal rigid body deformation. The
following explicit form of the solution is taken from SoLomon' [14, p. 610]:

w= .j_ ( M)(\ X0
tnpc| ¥
0 -X;
LB (X: a)
Atp 0X;  Xs+r /]
. 5i3 zp(Xp—Xl;)'f'aisXs)
o 4 X,

fodAX,

LM cf‘
At+p 0X;

log(r+ X | 'fidA(X),
o= 220+ ). 7
** See THOMPSON [12] for the definition.
*** The symbol ® denotes tensorial multiplication of two vectors.
t See also Love [15, p. 242].



184 R. C. BATRA

where r and dA are defined as in Section 3. It is clear from (4.4) that the kernel
has a singularity of the type 1/r, which is integrable. Thus, for the surface dis-
placements, using

u(X)=lim u(X),

x-X
we obtain
- A+2u 0 . (, — X!
dnpe L A+p 1 2+ ro
A (X, X’)(A\',fx,})] " .,
+0—— 22 8 T F (X dAX"),
Fois L+ ro JXDdAX
L= I T(A42u) 8,5 . 7 LYXHJ, ,
uy(X)=—— | |22 8 2= 2 (XY dA(X).
3 dmp o [ (A+p) ry 4+ p) rh J )¢

Before calculating the flux of linear momentum from
&}, = | T;,dXs, 4.6)
(4]

we remark that, because of the infinitesimal deformations envisaged and the as-
sumption that the reference configuration is a natural state, the Cauchy stress
equals the Kirchhoff stress. Using

Tij=luk’k5,-j+2uu(i,j) *(4.7)

and (4.4), we can calculate the stress at any interior point of D. When these are
substituted in (4.6) and the line integral is evaluated, we obtain the expression for
flux &}, of linear momentum. The calculations are elementary but lengthy and
yield the following for the flux &% ,:

oo L ([X-X X, — X)) (X,— X, N AR
2 (0=~ [T 5, = TNL=X) 5 |y aacx, (49

C [ 0

and similar expressions would result for other components of @'. Differentiation
of (4.8) yields

b L X -X) X=X X,~X) . 1 0fi v ,
Oy B)= =g (177 b = s gz XV AAX), (49)
where we have integrated by parts and assumed that 'f is differentiable on C and
continuous across ¢ C. If the latter is not the case, a line integral representing the
contribution of the discontinuity of forces across d C would appear in (4.9). Since

e* =1 A(uy ) > +4pug, j ug, gy

the expressions of the type (2.16), for ¢ and (3.11), for &, are not simple. When
A and u satisfy
34+2p20, pz0,

* Indices in round brackets indicate that a tensor is symmetrized with respect to these
indices.
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¢* would be positive definite, and therefore we can conclude that ¢ and e, would
also be positive definite. For a different choice of material tubes, (4.5) would be

unaltered, whereas, in general, different expressions would result for @} ,, and ¢,.

For the present problem §i=0 in (2.22),, and accordingly the equivalence relation
for &}, would be

I )i 1 I
¢t!azz ¢:a¢(¢51_ ¢1!¢), a=0'

Since D is assumed to be permanently glued to B, (2.29), and (2.29), hold at the
contact surface C, and, consequently, from (4.5) one can deduce the boundary
conditions for part C of the boundary of B. These express surface displacements
in terms of surface tractions. In [1, 3, 4] the surface tractions are stated as a func-
tion of the surface displacements. In order to obtain such a functional relationship
in the present context, it would be desirable to invert (4.5). However, the inversion
does not appear to be straightforward and therefore I consider the solution of (4.1)
under the boundary conditions

u(X)=0 XedD-C,
u(X)="u(X), XeC, (4.10)
lu(X)|=0(1) X|—>
When A and pu are restricted to be such that
ux0, o+ 4, 3

the theorem given by KNops & PAYNE [13, Thm. 6.2.1] implies that the solution
of (4.1), (4.10) is unique. The explicit form of the solution is [15, page 240]

] i‘ 2 ( VI‘ )

1 ! 5 g VI ' '
(X)=5— Cj ax, Outr X 0¥ 3%, u (X dAX"), 4.11)
where
y= At
T A+3u

Here the kernel has a singularity of the type 1/r?. To calculate surface tractions,
we shall need the values of displacement gradients at points of C. Were we to
differentiate under the integral sign in (4.11), the singularity of the kernel would
be of the type 1/r?, which is not integrable. However, this does show that stresses
and therefore surface tractions would vanish at co. Recalling the derivation of the
boundary condition (2.30), from (2.22),, we see that, for the problem defined by
(4.1) and (4.10), (2.30), still holds.

At points of C, u;,, can be calculated from the boundary data (4.10),. We now
proceed to evaluate u; 5 at points of C. We remark that because of (4.10),, the
region C of integration in (4.11) can be replaced by 8 D. Also, a simple but lengthy
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calculation shows that

1 a—l—
7m . oK, HAX)=1
oL
X,—X!) - dA(X")=0,
[ =X - dAGE)
(4.12)
FE
r Y
ﬂ_l{)f(,}X*IO**([“‘[Y) U
()
79]{)(X1—1\‘i) a;ﬁdﬁ‘(x )—7 )1'2()k)7.
By definition,
lui,3( )__ lim ui(Xa’XSL:ui(Xa’O)
3_;o+ X3

Substituting for u; from (4.11), we get
lui, 3 (Xa, 0) = lim

X300+

{ | 1z(l“)’ 1 (4.13)
¢~ o

| 1 ¢ oo A i ' , - i

R P — : ' X - (YAAX ) —u, (X, 0

X, [27“9, ax, OtV &y ax | XD AARXD —uiX, )’

Assuming that 'u; is differentiable almost everywhere on ¢ D, we introduce the
definition

(X X)) =", (X, 0) =", (X,, 0) — (X, — Xj) 102w 20 (4.14)
B

Now making use of the relations (4.12), we can rewrite (4.13) as

| e ]~ o° (I)

¥ r
X,,0 lim |—— —_ VX =
ll[ i( J Xa—0+ X3 271(1‘)) (‘)&3 1;\% ‘]A OXk
- l
0 (X,,0) . R
x “;\( X)) dA(X)+2v X, : i?li\;’if)gu“’mvi

0l (X, 0) . :
T X O) 5t [ Koy (X X5, (X X0) dA(XD),
abD

where
/5 e (rL)
N — 0
KXo X =757 ‘\r TV ax,0x, %

In deriving (4.16) from (4.15), we interchanged the limit and 1ntegration, which is
permissible since the singularity of the integrand has been reduced to 1/r. With the
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definitions |
Eya (X)=— | Kyl XThd AKX,
D=t
GisjaX)=2v050pa— | (K= XDKy(X.Xdax), 1D
we can write (4.16) as =
I.”IJIX?_ Busw Ut st o K (X X "I-'.‘g':.-‘*'. X'jdA{X (4.18)

c
We remark that both E;;; and G;3,, are well defined at all interior points of C*.
Remembering that an outer unit normal to 6 D has components (0, 0, —1) from
(4.6), (4.10), and (4.18) we obtain (4.19) for surface tractions on C:

FoX)=—p['us, o+ E3i'up+ Gasip'th, gl — 1] Koy (X, X') l;j(i’ X)dA(X"),
c
_ 4.19)
T—af las(X9 X’)
3’
(5 To
These relations make plain that the functional dependence of surface tractions on
surface displacements is non-local. Also the functional dependence is not regular
in the sense of VOLTERRA **. Moreover, in (4.19), one can integrate by parts and
obtain a somewhat smoother kernel, implying thereby that the representation
(4.19) is not unique. Depending upon the smoothness of the displacement field
'u, this process would introduce line integrals along 8 C. For example, in (4.19),,
when the term involving second derivatives of 1/r, is integrated by parts, we obtain
{fa(i)=—”[lu3,¢+Eu3kluk+G¢3kﬁluk,ﬂ] o
[ L1 )
¥ v 1
u,(X, X')
+v

- v L rg aXﬂ aXa’ J N

o ( 1 )
U Yo/ 13 /v v de,
+o5— a”at————axﬁ up(X, X')— - ds.
The line integral represents the contribution to the surface tractions because of

the edge effects and is well defined only at points away from the edge. If ' is
continuous across d C, the line integral would vanish in (4.20).

Substitution from (2.29), , into (4.19) yields the following boundary condition,
for the part C of the boundary of B:

%.(X)=p [bu3,a+Ea3kbuk+ Ga3kﬂbuk, s

1B [ w ¥ ¥nbE ¥ vhaacen
2n ¢

X =(A+2p) [Esax s+ Gaze "y, o]
j’ 1 b v 7 7]
+ﬁcj7o us (X, X")dA(X').

U= (212N TE. a2 G AA(Y

* For some infinite regions, G5, may not be well defined.
** See VOLTERRA [16, p. 20]. This is true of the functional dependence of !g on ', too
cf. (3.20).
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The derived boundary conditions (4.21) show that, when the body is loaded by
a deformable loading device, the mechanical boundary conditions are neither
of traction nor of place. The boundary conditions (4.21) do not support the view-
point that B interacts with its surroundings locally, as is usually presumed in the
consideration of follower forces. Also, (4.21) implies that the surface tractions
depend upon the surface values ®u of u and not on the inward normal derivative
of u. In (4.21), A and u are elastic constants for the loading device and not for the
body. In fact, no constitutive assumption was made for B.

We now elaborate the identity problem stated at the end of Section 2. The
equation (4.1) is equivalent to

’Tia,a+7‘l3,3=0‘ (4°22)

Therefore the solutions (4.4) and (4.11) would satisfy (4.22) identically. Integrating
(4.22) along the X;-axes, using (4.6) and the fact that the stress vanishes at oo,
we see that the 2-dimensional balance of linear momentum, viz

¢f aat 7i =0,
is also satisfied identically. Similar reasoning applies to the thermal problem of
Section 3.

In the above example, the loading device was assumed to be a semi-infinite
body. The other extreme case would be to consider a very thin body, e.g. the
platings in MINDLIN’S [9] work or a thin shell as a loading device. In this case,
with conventional approximations, the constitutive equations would be local.

In the example discussed above, infinitesimal deformations of D were con-
sidered and the governing equations were linear. This made the problem tractable.
Moreover, the uniqueness of solutions or trivial non-uniqueness is well under-
stood from the existing theorems. If we were to infer a functional similar to (4.19)
from non-linear elasticity theory, we should encounter difficulties in principle. By

L. forces . ] displacements
mplication, the acting on C should determine the

displacements forces
essentially uniquely. In non-linear elasticity, such a functional relationship would
in general be non-unique. Possibly, adding some suitable side condition, say a
minimum energy condition, would help alleviate the problem. In any event,
mechanistic calculations of surface constitutive equations would be formidable.

We now give a few examples to illustrate that, in the nonlinear theory, the
surface displacements may not uniquely determine the surface tractions. These
examples concern non-linear elastic intimate-contact mechanical loading devices
for which the surface tractions depend only on the present value of the deforma-
tion of the boundary points. It may be remarked that the fields of body force in
B and L and of surface tractions on the part 8 B— C of the boundary of the body
are at our disposal to realize the various deformation fields contemplated in these
examples.

Consider a horseshoe shaped body with the inner surface of its terminal ends
pasted to a rod or a beam which acts as a loading device. Depending upon the
initial deformation of the rod, it may buckle during subsequent deformations, thus
resulting in non-unique surface tractions at the glued ends. Now conceive a thin
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hollow rubber hemisphere with its edges cemented to the bounding surface of the
body, the former acting as a loading device for the latter. If it is possible to
push in the hemisphere without displacing the glued edge, then in the deformed
case the surface tractions on C would be quite different from those in the case
when L is not distorted. Here the free surface F of L would be traction free in
either case, except that internal stresses would be altered because of the change of
shape. Another example is provided by the case when a rubber socket mounted
on a cylinder acts as a loading device for the latter. Holding the outer surface of
the socket fixed, we may rotate the cylinder through 360° so that the points on the
common interface would occupy the initial position, but the surface tractions
between the two would not be the same. For these examples, the additional
requirement of minimum energy might sometimes uniquely determine the func-
tional relationship between the surface tractions and the surface displacements.

5. Remarks

It should become clear from the preceding calculations that the functional
representation for constitutive quantities is smoother when f and ¢ are taken as
the independent variables than when u and 6 are so taken. In both cases, the
kernel is of the convolution type. The kernel has an integrable singularity when
f and g are taken as the independent variables. Because of the symmetry of the
kernel, when f and ¢ are sufficiently smooth a chain rule of differentiation
holds. When u and 0 are taken as the independent variables, the linear representa-
tions can be modified so as to reduce the singularity of the kernel to an integrable
singularity.

A common feature of the 2-dimensional constitutive equations discussed in
the previous two sections is that these are non-local. For a fixed XeC, the influence
on constitutive quantities at X of g or of v at other points dies out as exp(~r?)
in the thermal problem; the corresponding rate of decay in the mechanical problem
is just 1/r? or 1/r. Thus it seems advisable not to approximate the non-local terms
by the local deformation, at least in the mechanical problem.

The expressions (3.6), (3.7) and (3.8) show that the linear heat conductor ex-
hibits fading memory in the sense of CoLeMaN & NoLL, even in the present
2-dimensional formulation. Indeed, to be specific, let us consider (3.8). Let us
visualize two histories of heat flux defined on C such that these differ by a finite
amount in the time interval [0, z,] but are identical afterwards. Then for ¢ larger
than f¢,,

ley (X, )—e,(X, D

&
4nk
x|'qy (X', D) —"q,(X’, ©)| dA(X"),

) e L (5.1)
el X', 1)—'q, (X',
dri (t—ty) ;Urz 'a:(X', 1) = ¢, (X', 7))

ref0,tp]

to _
fdifH,(X, X', 1,7)
0o ¢

¢ r(l,

x fe * " dA(X"),
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and therefore
/1
(X, D=e,(X,0)+0 |- as t— o0

Whereas it is usually assumed that the material has a fading memory, here for
the linearly heat conducting half space, it has been shown to be so.

In the study of the thermal problem in Section 3, homogeneous initial condi-
tions are assumed. Should we consider non-homogeneous initial data, we should
find how the derived linear representations for the constitutive quantities depend
upon the initial conditions. The results for the half space can be derived by con-
sidering instead of (3.4), a solution with non-homogeneous initial temperature
distribution. Actually, it can be shown that, for a linear heat conductor, the
memory of the initial conditions fades away exponentially with the passage of
time. That is, the history of the boundary conditions determines, essentially
uniquely, the temperature distribution and the stress field.

It seems that for a linear theory one can infer quite a bit about the general
behavior of these surface constitutive functionals for more general shapes of
bodies and more general material symmetries. However, for a first study we have
treated a case where these functionals can be calculated quite explicitly.

For nonlinear loading devices, the formidable difficulties presented by the
mechanistic derivation of surface constitutive equations suggest that a direct
approach should be followed. The surface constitutive relations would, in general,
be non-local in the sense that these would involve long range interaction. The
deduced transformation laws exemplified by (2.95) show that it is safe to assume
these surface constitutive relations to be invariant under the Galilean group of
transformations. The constitutive equations of intimate-contact loading devices
are also restricted by the requirement (2.31). If we adopt the viewpoint that the
entropy inequality (2.19); should hold for all solutions of the field equations (2.22)
and (2.24),, then, for intimate-contact loading devices, (2.19)5 should also be
satisfied identically. In general, this may not give any additional restrictions on
the constitutive relations for %,, ®!,, etc., since in (2.19)s, #, J, and h are surface
constitutive quantities. However, when either

*
* _ Qa
J =3
or *
r
*__
h K

then (2.19)5 might also restrict the constitutive equations for X;, ®!,, etc.
Sometimes we need to minimise the total energy E, defined as

E= [e*dV+ [e*dV,
Ry R
= [e*dV+ [edA+ §e.ds,
Ry C ac

with respect to a suitable class of variations of the boundary data on 3 B. In these
cases, we often need to complete the function space consisting of functions
describing the variations of the boundary data on 9B, with respect to a suitable
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norm. The linear representations derived in the previous two sections suggest
that an appropriate norm for this purpose would be a supremum norm rather
than the L? norm. These representations also favor the use of the supremum norm
in the discussion of the Fréchet differentiability of the surface constitutive func-
tionals.
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