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1. Introduction

Whenever there is an interaction between a dissipative body and a non-
dissipative one, the usual expectation is that the energy of the non-dissipative
body will also be dissipated. Furthermore, if the system consisting of the two is
isolated in the sense that there is no mechanical work done upon it by external
forces, one expects that the system will approach a state of rest. An example
of such a system is an elastic body submerged in a viscous fluid. Another similar
but easily manageable problem is the isolated system formed by a viscous fluid
at rest in a container whose walls are made of a linear elastic membrane and a
rigid undeformable material. I study the manageable problem and prove that the
energy of arbitrary disturbances of the rest state eventually decays. I assume that
no external force acts upon the system, that the fluid adheres to the walls, that
the surface tractions are continuous across the common interface between the
fluid and the membrane, and that the strain energy of the membrane is a non-
negative homogeneous quadratic form in the displacement gradients and is in-
variant under rigid body motions. Further, once the system is given an initial
disturbance, the rigid portion of the walls of the container is maintained at rest
subsequently. | assume also the existence of a weak solution of the equations
governing the deformation of the fluid and the membrane, and I do not obtain
the rate of decay of the energy.

It is worth mentioning that even though I show that the strain energy of the
membrane approaches the value it takes in the unperturbed configuration, the
displacements of all points of the membrane, measured from the initial undisturbed
configuration, need not go to 0 as #—o0. This is due to the assumption on the
form of the strain energy of the membrane.

First I prove the result for an incompressible Navier-Stokes fluid; then I prove
it for a Reiner-Rivlin fluid.

2. Formulation of the Problem

Assume that, in the unperturbed (reference) configuration, the fluid occupies
3 smooth connected and bounded region R with a smooth boundary éR. The
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surface formed by the walls of the vessel containing the fluid in the reference
configuration is to be smooth enough (see CaMPANATO [1] and FICHERA {2]) to
apply the divergence theorem, the Poincaré inequality, the Korn inequality and
the theorem of trace. Let d,R be the part of the walls made of a rigid material
and let the remaining portion 9, R=0R—9; R of the walls be an elastic membrane.
I assume that 8, R is smooth enough to apply the surface divergence theorem.
The position of a material particle in the reference configuration is denoted
by X and its position at time ¢ by x(X, t)=g(X, ¢). Thus u(X, t)=x—X, and

v(X, 1) E—g—f(X, t)=x give, respectively, the displacement and the velocity of X

at time ¢. The surface co-ordinates Z* on dR are given by a smooth transformation
X =X(Z%. Hereafter, a comma followed by an index i («) indicates partial dif-
ferentiation with respect to the rectangular Cartesian coordinates x* (Z%). The
indices i, j etc. (o, B etc.) range over 1, 2, 3 (1, 2).

When there are no external forces, the equations governing the mechanical
deformations of the fluid are

dive=0 in g(R,?),
pv=divT in y(R,?),
TN=—f on 1(0,R,?1),
v=0 on x(0;R,1),

where
T=—pl+2ud,
dij=vy, =4 ;+0v; ),
ox! ox*

Ni=¢yv 27 277

The deformations of the membrane are governed by the equations

. oW
pmv=((f'*) +f  on y(d,R,1),

ou ./
u=0 on Jy(3;R, ).

Here Tis the Cauchy stress tensor, d is the strain-rate tensor and ¢;;, is the alter-
nating tensor having the value 1 or —1 if i, j, k form an even or odd permutation,
respectively, of 1, 2, 3 and vanishing otherwise. Summation over repeated indices
is implied. Further, p and p denote, respectively, the mass density per unit volume
and the shear viscosity of the fluid, p(x, ) gives the arbitrary hydrostatic pressure;
f denotes the surface tractions per unit coordinate area dZ' dZ? exerted by the
fluid on the membrane, p,, is the mass density and W the strain energy of the
membrane, each measured per unit coordinate area dZ' dZ2. W is assumed to
be a non-negative homogeneous quadratic form in s , and is normalized to take
the value O in the reference configuration. Note that for the same system, different
choices of the surface coordinates will, in general, result in different values of p,,
and f. The vector N defined by (2.2); points along the outward normal to the sur-
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face in the present configuration and need not be of unit magnitude. Use of it
rather than of the usual unit normal vector permits partial differentiation in (2.3),.
In order that the assumptions that the fluid be incompressible and it adhere
to the walls be mutually consistent, the deformations of the membrane must be
such as to leave the total volume of the fluid invariant. Henceforth, I assume
that the fluid is homogeneous. The analysis can be easily modified to apply to an
inhomogeneous fluid [3]. Thus both the density and the shear viscosity are con-
stant throughout the fluid, and I take them to be positive. For use in the definition
of a weak solution I set

&={¢|¢: x(R, ) E*, and for every t>0, e C' (x(R, 1) x (0, 1)),
¢=0 on 2(0; R, 1), “'l’lldeéKl, _“'/’2'2 dA<K,, 2.4

for y,=4¢, ¢" ¢,i and ¥, =¢, ¢.’ ¢,a}'

Here E3 denotes the usual 3-dimensional Euclidean space, K, and K, are positive
constants, and the volume integration signified by the presence of the volume
measure dV under the integral sign is over g(R, ). Also the surface integration
signified by the presence of the area measure d4 =dZ"' dZ* under the integral
sign is over x(0, R, t). Taking the inner product of (2.1), and (2.3), with ¢,
integrating the resulting equations over (R, t) and x(d, R, t), adding these two
equations and simplifying by using the divergence theorem, the surface divergence
theorem and the boundary conditions (2.1); , and (2.3), yields

& [fpo-pdv+[puo-6dA]-[{po-$dV+[pyo- ]
= (pbyidV=2dy b 4V~ -4 A,

For use in the proof of the theorem stated below, I briefly recall the inequalities
due to PoINCARE and KORN, and the theorem of trace. For a differentiable vector-
valued function f defined on a smooth domain D such that feL*(D), f;, ;eL*(D)
and f=0 on a part 8, D of the boundary 0D of D, POINCARE’s inequality [CAM-
PANATO, 1]

jfdeépljfi,jfi,jdV,
D D
and KORN’s inequality [CAMPANATO, 1]
‘f},[/(j(!l : le‘/‘H‘j)/;i‘})([[‘
D D
hold. The constants p, and p, appearing in these inequalities depend upon D
and 9, D. For a differentiable vector-valued function f defined on the closure D

of a properly regular domain D such that feL*(D), f; ;e L*(D) and the restriction
of f to 6D is square-integrable over 6D, the theorem of trace states that [FICHERA, 2]

M_[fszél’s[l,!fde+bffi,jfi,jdV] (2.8)

where p; is a function of the domain D.
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Since the two-dimensional measure of 3(0,R, t) is time-independent, v satisfies
the side condition sufficient for (2.6) and (2.7) to hold provided the two-dimensional
measure of 8, R is positive. This last condition is satisfied by virtue of the assump-
tions that a part of the walls of the container is made of a rigid material and the
fluid adheres to the walls. Thus if for every 1>0, veL2(y(R, 1)), v; ;eL*(x(R, 1)),
veL?(%(, R, 1)), then from (2.6), (2.7) and (2.8)

fv*dV<p, fv, ;v ;dV, (2.9)
foi, 0, ;dV<p,[d;d;;av, (2.10)
fv*dA<ps[[v*dV+[v, jv; ;dV]. (2.11)

Here, p, and p, depend upon g(R, ) and £(0,R, t) whereas p; is a function of
2(R, t). Since the region of integration varies with time ¢, it follows that p,, p,
and p; also vary with ¢ and hence are real-valued functions of ¢.

I now introduce a definition of the weak solution. A weak solution of (2.1)-(2.3)
is a pressure field p and a mapping y:R x (0, t) - E* such that for every >0

(i) gz is twice continuously differentiable with respect to X and ¢ in Rx (0, ?),

.. oy )
(it) det X =1YXeR; wu,ved,
(iii) sup|p] is finite,
XeR
t>0

(iv) P,=supp,(t), n=1,2,3 isfinite,

>0
(v) (2.5) is satisfied for every ¢pe®, and
(vi) u and v satisfy initial conditions.

Note that u and v satisfy kinematic boundary conditions because of (ii) above
and the definition of @. I assume that the set S of initial conditions defined below
by (2.12) is non-empty.

S={(uo, vo):4o(-)=u(-,0), v5(-)=v(-,0), E(0)S constant, and there exists
a weak solution of (2.1)~(2.3) for every #>0 satisfying these initial conditions}.
2.12)

E(9)=[W(-, t)dA+§jv2(-, )dV+3 [ pnv*(-, ) dA (2.13)

is the total energy of the system at time ¢. The main result is the following

Theorem. For every initial disturbance in S, the weak solution exhibits the
behavior

[p?2dV—>0, [v*dA—0, [WdA-0 ast-ow (2.149)
provided
inf p, >0, sup p,,<constant, (2.15)
Zed2R Zed2R

and the 2-dimensional measure of 0,R is positive.

2%
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3. Proof of the Theorem

Since ve P, take ¢ =1 as the test function. With this choice of the test function
and by use of (2.1),, (2.5) is simplified to

From (2.13) and (3.1), conclude that £>0, — K, <E<0 and

lim E(t) exists.

t— o0
Also, for every t>0
E(1)< E(0),
and. in particular.
w(t)=[ W(-, 1) dASE(0). 3.3)

Thus the total strain energy of the membrane stays bounded. Since E is bounded,
E(2) is of bounded variation on (0, T'), 7" being an arbitrary real positive number.
Integrating (3.1) over (0, T') and recalling that E(¢)=0 yields
T
E©22pfdtfdydydv, (34)
1]

and hence
j d;;d; dVeL(0, ). (3.5)

It is clear from the definition of the weak solution that the inequalities (2.9)-(2.11)
hold and are stregthened when p,, p, and p; are replaced, respectively, by P, P,
and P;. From strengthened versions of (2.9) and (2.10), I conclude that » satisfies

fv*dV<P P, {d;d,;dV (3.6)
and this with (3.5) leads to the conclusion that
{v* dVeL'(0, ). 3.7
Now (3.7), (3.5) and the strengthened form of (2.11) give the following:
fv*d4eL!(0, o). (3.8)

If we recall that p is finite and p,, is bounded, from (3.7) and (3.8) it follows
that
pfv?dV+(p,v*d4eL*(0, ).
Rewriting (3.1) as

) . 2 . > 4 - . .
f’r [pfv dV+|p,v°dA]l=—-w—2u(d;;d,. dV,
A J ) J

ij%ij

and recalling the definition of the weak solution, I conclude that w is bounded,
and hence w is of bounded variation on (0, 7). This implies that weL'(0, T).
Use of (3.3) shows that

= 2E(0),

o
% \‘f Hdt
4]
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and since the left-hand side of (3.11) is independent of 7, it follows that we L'(0, o).
From (3.10) and (3.5) I obtain

71‘17 [o[v?*dV+[p,v° dA]eL' (0, ). (3.12)

Thus p[v?dV + ( p,,v*dA is uniformly continuous in ¢ and
pfv*dV+{p,*dd—-0 as t-o (3.13)

now follows from (3.9). (2.14), and (2.14), are immediate consequences of (3.13),
(2.15), and the assumption that p>0.

From (3.2) and (3.13) it follows that
lim [ W(-,7)dA exists. (3.19)

t~ o
To prove (2.14),, it should now suffice to show that
{W(.,1)ddaeL' (0, x). (3.15)
To this end, I choose a test function ¢ € such that
o(x, t)=u(x,1t), (x,t)ex(0OR, t)x(0, t) (3.16)

and ¢ is, for the time being, unrestricted in the interior. For this choice of ¢,
equation (2.5) when integrated over (0, T) yields

T T
2fw(®dt=—~pfv-¢pdV|i~[p,v-udA|J+[dt{p,v*dA
1] ]
T ) T T 3.17)
+pfdtfjv-¢dV+ [dt[pe, dV-2ufdifd,;é, ;dV.
0 (1] (1]

I now try to find sufficient conditions on ¢ which suffice to conclude that each
term on the right-hand side is bounded for arbitrary large 7. The third term on
the right-hand side of (3.17) is bounded because of (3.8) and (2.15),, and for the
remaining terms, by using the Cauchy-Schwarz inequality wherever necessary,
I obtain

1fo(-, T)- (-, DAVIS(fo*C:, TAVP ([4° (-, D aV)
1§ pmo(-, T) - u(-, TYdA| Ssup(pniul)fiv(-, T)|dA4,

(;[Tdtfv.$dV‘§(()detj vde)* (jdtjd;de)*,

(3.18)

T T
édtjP(ﬁi,idV §SUP|P|6[dt“¢i,i|dV,

T

s 1 Nt /1 \
_(f/z_‘l‘u'”qu,‘,.(1["}- (j'¢/;‘|'l!,“f/”.m‘) 1|’f;:‘|‘qf)1_r(,‘\_H:‘[') :

O

That the right-hand sides of (3.18), and (3.18), are bounded follows from (2.15),,
and the definitions of the weak solution and of the set ®. Thus if ¢e® is such
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that ¢ satisfies (3.16) and the conditions
§$*dveI (0, ),

1 :ldVeL! (0, ), (3.19)
and

j¢i,j¢i,jdVEL1 (0, ),

I can conclude (3.15) and hence (2.14);. To demonstrate the existence of such a
function, I introduce a new coordinate system in the neighborhood

R,={X:XeR, distance (X, dR)<¢}

of OR, defined by a smooth transformation

X=X(Z")-n-+-, 0=Zn<e
For sufficiently small ¢, the transformation (3.20) between (X, X2, X%) and
(Z%, Z2, n) is one-to-one. Define

¢(x(X,0),1)= (1 —%) (3.21)

=0 if xex(R—R,?).

Recalling the definition of the set @, I note that ¢ defined by (3.21) isin ®.
Further this function satisfies (3.16) and (3.19). Thus the theorem is proved.

Since ved, sup || is finite and therefore v is uniformly continuous in ¢.
XeR

Now using also (2.14), ,, I conclude that the velocity of every particle of the fluid
and the membrane approaches 0 as ¢ —c0.

4. Reiner-Rivlin Fluids

I now indicate the modifications necessary for the above analysis to apply
to the case when the viscous fluid is a Reiner-Rivlin fluid. The constitutive equation
for a Reiner-Rivlin fluid is

T=—pl+fid+f,d* 4.1)

where f; and f, are arbitrary functions of the second and third invariants of d,
which are denoted by II and III. I assume that f; and f, are bounded. If I proceeded
as I did for the Navier-Stokes fluid, I should obtain, instead of (2.5), the following:

& [o§v-8aV+(p,0-6dA1~[pfo- 6adV+[ppo-$dA]
(4.2)
=[P dV=[(Fidy s+ F 5 01, ) AV~ 1~ dA.

I modify the definition of the weak solution so as to require also that v, ;v; ,
eL*(z(R, t)). Setting ¢=v in (4.2), using also the Hamilton-Cayley theorem*

* See [3, section 4].
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to simplify the right-hand side, I obtain

= —[{(fi +1Lf=fo) trd®+f, tr(d* +d>+d*)} dV.
Since
tr(d’>+d>+d*)=z0vd,
the inequalities
fi—fo+1lf,=const>0, f,=0 Vd 4.3)

are sufficient to conclude (2.14), , for weak solutions in the case of Reiner-Rivlin
fluids. Proceeding as I did before to arrive at (3.17), I now obtain an expression

T
in which the last term 2p | dt{d,;¢, ;dV on the right-hand side of (3.15) is re-
placed by ©

fdtjfldijd),-,jdV+fdtjfzdfj@,jdV. 4.4
0 0

That the first term in (4.4) is bounded follows from (3.5), (3.19); and the assump-
tion that f; is bounded. As for the second term,

T T
gdtffzdizj‘bi,jdV Ssup Ilegdtjldfj¢i,jldn

T
<sup |f2lojdtjldizjdizjl*lqsi,qui,jl*st
T
Ssup | f,] sup(trdz)éfdt_f l¢i,j¢i,j|*dV'
I used the Cauchy-Schwarz inequality at the intermediate step and the relation*
trd*=(trd?)? to arrive at the final inequality. The relation (3.5) implies that
sup |trd?|< o0

and for the function ¢ given by (3.21)
,“¢i,j (»bi,jl* dveL (0, ).

Thus the corresponding theorem for a Reiner-Rivlin fluid follows. The inequalities
(4.3) delimit the class of Reiner-Rivlin fluids to which the theorem applies. That
the class is not empty becomes clear from the following example. If

f = _BIL
fi=a—BIL+BIL2,

o and B positive constants, the inequalities (4.3) hold.

5. Remarks

So far I have proved that the total strain energy of the membrane goes to 0
ultimately. I now show that for the problem at hand this fact does not necessarily
imply that the displacements also go to zero in L2-norm.

* Cf. I3, section 4].
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A homogeneous quadratic form in u , is expressible as a homogeneous qua-
dratic form in ¢, and w, 4, defined as follows:

eaﬁE%(u,a’X,ﬂ'l'u,ﬂ 'X,a)a

5.1
W=, X g—u,-X ) G.1)
That is,

W(u )= W(sa g> Vg p)- (5.2)

For a rigid motion of the membrane ¢,,=0, and if W is to be invariant under
rigid motions, W must not depend upon w, . Thus

W(u, a) = W(sa ,B) (53)

and since W(0)=0, W(0)=0. For a plane membrane that occupies the surface
X3=0 in the reference configuration, the displacement field

u1=u2=0’ u3=‘//9

where  is any smooth function of Z* and vanishes on the boundary of the
membrane, satisfies (2.3) with v=f=0. For displacements given by (5.4),

8‘1 B = 0,
and, therefore,
Wu )=0

but [#?dA need not be zero. This example shows that the membrane may have
several distinct rest states, not differing from each other by a rigid motion, in
which the total strain energy of the membrane is same. What the above theorem
gives is that the membrane returns to one state of rest.
However, for a plane membrane for which the strain energy satisfies the
inequality
WdA 2 constant ¢, z¢,,dA,

one can easily show that the tangential displacements go to 0 in L2-norm as ¢ — 0.
Indeed, setting Z*=X* in (5.1),, and recalling POINCARE’s inequality (2.6) and
KOoRN’s inequality (2.7), one obtains

fu,u,d4 < constant | WdA
and hence
fu,u,dd—-0 as t—oo0.
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