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The formulation of the propert ies of compositional waves ( i  opened the now classical  f i e l d  
of spinodal decomposition of multicomponent sol ids.  S im i la r l y ,  there is an increasing awareness 
that the l inear  and nonlinear e las t i c  waves are instrumental in the martensi t ic  transformations 
(2,3). Spec i f ica l ly ,  i t  is presently suggested that tweed represents an incommensurate per iodic 
s t ra in ordered state wedged between the high temperature (austenite) and low temperature marten- 
s i t i c  phase (4). I t  is also known that  compositional adjustments play an important role in the 
formation of lower bain i te which has surface r e l i e f  patterns s imi la r  to those of martensite. 
There are thus many reasons why one might wish to explore the character is t ics  of coupled elasto-  
compositional waves. In th is note we w i l l  give a f i r s t  account of these kinds of waves. We w i l l  
concentrate on the at tentuat ion of the compositional wave as i t  has been recent ly observed in 
In-T~ al loys (5). 

The der ivat ion of the coupled e las t i c  and compositional wave equations in a one-dimensional 
inhomogeneous sol id can s tar t  with the series expansion of the free energy around a stress free 
equi l ibr ium conf igurat ion, 

, = - - , f ,,2 ½feee2 f(c,c ,c", . . . .  e ,e ' ,e " , . . . )  - fo ½fcc c2 + ½fc c 'c'2 + ½ c"c ''c + 

+ ½fe'e 'e'z + ½fe"e ''e''z + fec ec + ½fe'e'c e'2c 
(i 

+ f ,, e"c. e c 

In this expression c, c' and c" denote the deviation from the average composition, the spatial 
gradient and curvature of this quantity. Similarly, the quantities e, e' and e" denote the strain, 
i ts gradient and curvature. The expansion coefficients of the free energy are the partial deriv- 
atives with respect to the_ appropriate parameter evaluated at the equilibrium configuration. For 
example, the coefficient fc 'c '  denotes the second partial derivative of the free energy with 

respect to the composition gradient. Mixed terms of the free energy involving one parameter and 
• ee"  i ts derivatives, e.g , fee" , mixed terms involving derivatives of di f ferent parameters, e.g. 

~Fe,c,e'c' and terms vanishing because of the mirror symmetry of the problem, e.g., fec,eC' have 

_been omitted from eqn. ( i ) .  Since there is presently no compelling need (6) to include the term 
fe.e,(e")2 in the theory of premartensitic topological solitons, this term w i l l  be neglected as 

wel I .  
The one-dimensional wave equation of the strain is derived from (7) 

pe : S~ - S21 4- S3 Ill ( 2 )  

where S I is the shear stress, S 2 the dipolar stress, and S 3 represents the curvature stress. 
These stresses can be derived from the free energy as 

$I = fe ' $2 = fe' ' $3 = re" " (3) 

The desired wave equation resulting from the combination of equations ( I)  through (3) is 
_ • = • 

Pe = fee e -  " + fec c "  " + fe,,c clv - fe'e 'elv - fe'e'c- (e'c)"' (4) 
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In th i s  paper we are not concerned w i th  spontaneous composi t ional  f l u c t u a t i o n s .  I t  w i l l ,  
there fo re ,  be s u f f i c i e n t  to consider  a simple extension of  F ick 's  law to descr ibe the coupl ing 
of  the composition to the s t r a i n  waves. The c o n s t i t u t i v e  r e l a t i o n  

J = Dc' + ~e' (5) 

s a t i s f i e s  t h i s  requirement. The consequences of  the log ica l  extension of  t h i s  c o n s t i t u t i v e  re la -  
t i on  which includes a l l  features of  the inhomogeneous s ta te  embodied in  equat ion ( i )  w i l l  be 
described l a t e r  (9). The quan t i t y  L in  equat ion (5) represents a mechanical t ranspor t  c o e f f i c i e n t  
A more general form of the c o n s t i t u t i v e  r e l a t i o n  (5) can be found in  Ref. 8. Combining equat ion 
(5) w i th  

: a' (6) 

y ie lds  the desired equation descr ib ing  the temporal and spa t ia l  evo lu t i on  of  the composit ion 

: Dc" + he" . (7) 

The coupled equations governing the v a r i a t i o n s  of  s t r a i n  and composit ion can now be stated in  
terms of  the fo l low ing  normalized coordinates and parameters. 

: m' t ,  ~ = xk O, m* = c~/D, k 0 = Cl /D, c21 : fee/P,  

a I = ( f e ,e , / f ee )k~  , a 2 = fec / fee  ' a3 = ( fe  c"/~ee )k20 ' (8) 

as 

a 4 = ( f e ,e , c / f ee )k~  , a 5 = (~/D)k~ 

eTT = e ~  + a2c~{ + ¢(e,c)  , 
(9) 

cT : c { {  + a 5 e ~  , 

where 

¢(e,c)  = -a I e ~ E  + a3c~{~{ - a4(c e ~ { ~  + 3c{eE~ E + 3c~e~{  + c { { { e { )  , 

and the subscr ip ts  in equat ion (9) denote p a r t i a l  de r i va t i ves  w i th  respect to the normalized 
coordinates ~ and T. 

A so lu t i on  of  equat ion (9) f o r  the case ¢ : 0 can be found by using the ansatz 

e = e o exp (i~T + y~) , 
(io) 

c = c o exp (iu~ + y~) , 

where 

, = u/u* , y = k/k ° . 

This approach leads to the dispersion r e l a t i o n  

(1 - n)y  4 + (u 2 - i . ) y  2 - i .  3 = 0 ( I i )  

where n = a 2 a 5 . The so lu t ion of  (11) is 

Y~,2 (12) - ( ,  - i )  ± [ ("(12 - i)2n) + 4 i ( I  - n ) . ]  ½ 

The subscr ip ts  I and 2 in  Eq. (12) re fe r  to the c h a r a c t e r i s t i c  wave vector  of  the e l a s t i c  and 
composi t ional  v a r i a t i o n s ,  r espec t i ve l y .  The a t tenua t ion  of  the composi t ional  f i e l d  is thus given 
by Re(Y2). In the l i m i t s  of  high and low f requencies t h i s  a t tenua t ion  is 

Re(Y2)l~ = ~ , , >> 1 , 
(13) 

Re(Y2) I o : ~ . 2  • . << 1. 
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The contr ibut ions of the in te rac t ion  terms fe"c and f e ' e ' c  to the at tenuat ion can be found by 

t reat ing the term ¢(e,c) as a per turbat ion.  The solut ions of the perturbed equations (9) w i l l  
be characterized by a frequency ~' = u + ~ and a wave vector y' = y + ~y. Subst i tu t ion  of the 
ansatz 

c = c o exp ( ip '~ + y '~) , 

e = e o exp ( i~'~ + ¥'~) , (14) 

into equations (9) y ie lds ,  a f te r  ca lcu la t ions  very s im i la r  to the ones sketched above, the neces- 
sary correct ion to the a t ten tuat ion  of the compositional f i e l d  in an inhomogeneous so l id .  

Re(6~2)lo = (-eo fe 'e '  + Co fe"c - 8eoCofe 'e 'c)~ B , ~ << I (15) 

where 

3 n (Co + a5eo)eo 
8 = ~ (e 0 + a2c° ) - Co(e ° + a2Co)2 16) 

The low frequency total  at tenuat ion of the compositional "wave" is given by the sum 

Re(~2)[ o + Re(6~2)I 0 = ~ ,~ + (-eofe, e, + Cofe,, c - 8eoCofe,e,c)~4~ 17) 

The attenuation given by equation (17) is proport ional to the damping caused by the in te rac t ion  
of the composition and inhomogeneous s t ra in  f i e l ds .  I t  can be seen from equation (17) that  i t  
includes the well known Gorsky damping ( I0 ) ,  ½n~ 2 charac te r i s t i c  of long wave length i n t e r -  
actions of these two f i e l ds .  The recent experiments on premartensi t ic damping of In-24 at % T~ 
(5) represent the f i r s t  experimental evidence for  short wavelength in te rac t ions .  Both, the 
l inear  damping proport ional to fe"c and the nonl inear damping proport ional  to f e ' e ' c  have been 

observed in th is  a l loy .  The experimental observations indicate that  the nonl inear damping in 
th is  a l loy  is negative, i . e .  the quant i ty  ~e'e'c is pos i t i ve .  Since impur i t ies in metals are 

usual ly  at tracted to i nc i p i en t  boundaries i t  is in te res t ing  to speculate that  B > 0 and the nega- 
t i ve  sign of the nonl inear damping in In-24 at % T~ stems from the cont r ibu t ion  of the couple 
stress in equation (2). 

In summary, the damping due to the short wave length in te rac t ion  of one-dimensional compo- 
s i t i ona l  and s t ra in  f~elds has been calculated.  I t  is shown that  th i s  damping is caused by the 
in terac t ion  of the composition wi th  the curvature and gradient of the s t ra in  f i e l d .  Experimental 
support for  th is  concept has also been noted. 
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