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The formulation of the properties of compositional waves (1) opened the now classical field
of spinodal decomposition of multicomponent solids. Similarly, there is an increasing awareness
that the linear and nonlinear elastic waves are instrumental in the martensitic transformations
(2,3). Specifically, it is presently suggested that tweed represents an incommensurate periodic
strain ordered state wedged between the high temperature (austenite) and low temperature marten-
sitic phase (4). It is also known that compositional adjustments play an important role in the
formation of lower bainite which has surface relief patterns similar to those of martensite.
There are thus many reasons why one might wish to explore the characteristics of coupled elasto-
compositional waves. In this note we will give a first account of these kinds of waves. We will
concentrate on the attentuation of the compositional wave as it has been recently observed in
In-Te alloys (5).

The derivation of the coupled elastic and compositional wave equations in a one-dimensional
inhomogeneous solid can start with the series expansion of the free energy around a stress free
equilibrium configuration,

flc,c',c"y.u.,e,e',0",...) - fo = %fccc2 + %fc.c.c'z + % fc.,c,.c“2 + %feee2

+ ‘2 4 3f "2 4 f +3f '2¢
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(1)

+ fence"c.
In this expression ¢, ¢' and ¢" denote the deviation from the average composition, the spatial
gradient and curvature of this quantity. Similtarly, the quantities e, e' and e" denote the strain,
its gradient and curvature. The expansion coefficients of the free energy are the partial deriv-
atives with respect to the appropriate parameter evaluated at the equilibrium configuration. For
example, the coefficient fc‘c' denotes the second partial derivative of the free energy with

respect to the composition gradient. Mixed terms of the free energy involving one parameter and

its derivatives, e.g., fee"ee“, mixed terms involving derivatives of different parameters, e.g.,

?e.c.e'c‘ and terms vanishing because of the mirror symmetry of the problem, e.g., fec,ec' have

been omitted from egn. (1). Since there is presently no compelling need (6) to include the term
fe..e..(e")2 in the theory of premartensitic topological solitons, this term will be neglected as

well,
The one-dimensional wave equation of the strain is derived from (7)

“ o= wo_ m [
p€ = Sy - Si+ SY (2)
where S1 is the shear stress, S2 the dipolar stress, and 53 represents the curvature stress.
These stresses can be derived from the free energy as
S, =f_ ., S2 = fe' , 53 = fe" . (3)

1 e
The desired wave equation resulting from the combination of equations (1) through (3) is

pe = 1_ceee-" + fecc" * fe”cC1V - fe'e‘e1v - feercle’a)™ . (4)
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In this paper we are not concerned with spontaneous compositional fluctuations. It will,
therefore, be sufficient to consider a simple extension of Fick's law to describe the coupliing
of the composition to the strain waves. The constitutive relation

J = Dc' + xre’ (5)

satisfies this requirement. The consequences of the logical extension of this constitutive rela-
tion which includes all features of the inhomogeneous state embodied in equation (1) will be
described later (9). The quantity A in equation (5) represents a mechanical transport coefficient
? ?ore general form of the constitutive relation (5) can be found in Ref. 8. Combining equation

5) with

¢c=4J (6)
yields the desired equation describing the temporal and spatial evolution of the composition
¢ = Dc" + xe" . (7)

The coupled equations governing the variations of strain and composition can now be stated in
terms of the following normalized coordinates and parameters.

= ¥ = = 2 = =
T = w¥t, ¢ Xko’ w* Cl/D’ k0 cl/D, c21 fee/p,

- (f . _F % - ¥ 2
a; = (Faugi/Fodke , a, = f, /fee » 23 7 (fanc/Tee)kG

a4 = (felelc/fee)kg s a5 = (A/D)kg

as
€rp = €pg + ApCey ¢(e,c) ,
Cr = Cgg * 35 € >

where

¢(esc) = -ay epppp + a3Cergy - 34(C epppyp + 3Cp0gpy + 300y * Crpe®y) o

and the subscripts in equation (9) denote partial derivatives with respect to the normalized
coordinates € and .

A solution of equation (9) for the case ¢ = O can be found by using the ansatz
e = e  exp (jut + vE) ,

(10)

C=c, exp (fut + vE) ,

where
= * =

Bo= owuw* oy k/k0 .
This approach leads to the dispersion relation

(1 - n)y* + (M2 - §u)y2 - ju3 = 0 (11)
where n = a, ag . The solution of (11) is

Cooo(e - i) e (- i)z + 4i(1 - n)u]t .
T2=? 2T - W) (12)

The subscripts 1 and 2 in Eq. (12) refer to the characteristic wave vector of the elastic and
compositional variations, respectively. The attenuation of the compositional field is thus given
by Re(Yz). In the 1imits of high and low frequencies this attenuation is

Re(Yz)im = s u >> 1 s

1
™|
i
'
=

(13)

Re(Yz)lo = w2 , po<< 1.
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The contributions of the interaction terms %e"c and Fe‘e‘c to the attenuation can be found by

treating the term ¢(e,c) as a perturbation. The solutions of the perturbed equations (9) will

be characterized by a frequency u' = u + Su and a wave vector v' = v + 8y. Substitution of the
ansatz

¢ =cyexp ('t +y'g),
(14)

e e, exp (iu't + y'e) ,

into equations (9) yields, after calculations very similar to the ones sketched above, the neces-
sary correction to the attentuation of the compositional field in an inhomogeneous solid.

< (.o ¥ F _ e 4
Re(6v,)], = ( ey Forar ¥ ¢ fang =~ Bec forgi Jut 8, w<<l (15)
where
T S S R (16)
4 € * 8%, Co € * 3¢ 2

The low frequency total attenuation of the compositional "wave" is given by the sum

Re(vp) [ + Re(sy,) | = 7 ue (~eyfarar * Cofanc = 8e c foigi Jn's (17)
The attenuation given by equation (17) is proportional to the damping caused by the interaction
of the composition and inhomogeneous strain fields. It can be seen from equation (17) that it
includes the well known Gorsky damping (10), #nu? characteristic of long wave length inter-
actions of these two fields. The recent experiments on premartensitic damping of In-24 at % Tg
(5) represent the first experimental evidence for short wavelength interactions. Both, the
linear damping proportional *o fe“c and the nonlinear damping proportional to fe'e'c have been

observed in this alloy. The experimental observations indicate that the nonlinear damping in
this alloy is negative, i.e. the quantity ?e'e'c is positive. Since impurities in metals are
usually attracted to incipient boundaries it is interesting to speculate that 8 > 0 and the nega-

tive sign of the nonlinear damping in In-24 at % Te stems from the contribution of the couple
stress in equation (2).

In summary, the dampin%]due to the short wave length interaction of one-dimensional compo-
sitional and strain fields has been calculated. It js shown that this damping is caused by the
interaction of the composition with the curvature and gradient of the strain field. Experimental
support for this concept has also been noted.
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