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Abstract
We derive a one-dimensional model from the three-dimensional equations to
analyze electromechanical deformations of a piezoceramic cylinder. We
show that its extensional and torsional deformations are coupled if the axis
of polarization at a point makes a nonzero angle with the axis of the cylinder
and the projection of the polarization vector on a cross section is
perpendicular to the radial line through the point.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

We study the electromechanical deformations of a piezoce-
ramic cylinder with the axis of polarization a, at a point mak-
ing an angle ( 1

2 π − α), with the axis of the cylinder, and the
projection of a on a cross section is perpendicular to the ra-
dial line passing through the point. We focus on analyzing its
coupled extensional and torsional deformations and first de-
rive a one-dimensional model by using the principle of virtual
work. From the assumed fields of the mechanical displacement
and the electric potential, governing equations and constitutive
relations are derived by integrating quantities over a cross sec-
tion. The approach is similar to that of Mindlin [1]. Various at-
tempts to systematically derive plate and rod theories have been
reviewed by Koiter and Simmonds [2], Naghdi [3], Antman
[4] and Leissa [5] amongst others. Vidoli and Batra [6] used
a mixed variational principle of Yang and Batra [7] to derive
equilibrium equations and constitutive relations for plate-like
and rod-like piezoelectric bodies. Their approach considers
the effects of double forces without moments which change
the thickness of the plate and the cross section of the rod. The
deformation field envisaged here is simpler than that consid-
ered in [6]. Consequently, the derived governing equations and
the constitutive relations are easier to analyze. We study three
problems, namely, the quasistatic deformations of a rod sub-
jected to a uniform charge density along its length, quasistatic
deformations of a rod fixed at one end and subjected to a torque
at the other end, and traveling waves in the rod. The third prob-
lem exhibits the coupling between the speeds of the extensional
and torsional waves for a large range of values of the angle α.

2. Formulation of the problem

We use rectangular Cartesian coordinates to describe the
electromechanical deformations of a circular cylindrical body

occupying the region C = S × I in the stress-free reference
configuration. Here S is a circle of inner radius R1 and outer
radius R2 and I the real interval [0, L]. Thus R2 is the outer
radius of the cylinder and L its length. We assume that the
origin of the coordinate system is at the center of the cross
section S × {0} and the x3-axis coincides with the centroidal
axis of the cylinder. The position vector x of a point in C is
given by

x = ρ cos βe1 + ρ sin βe2 + ze3. (1)

Here e1, e2 and e3 are, respectively, unit vectors along the x1,
x2 and x3 axes, ρ is the radius of the point, z its axial distance
from the bottom end face of the cylinder, and β the angle
between the x1-axis and the projection of x onto the x1–x2

plane.
We assume that the body is made of a transversely

isotropic piezoelectric material. However, the axis of
transverse isotropy a, which is the same as the material
polarization vector, is not constant in C but varies according to
the relation

a(ρ, β, z) = − cos α sin βe1 + cos α cos βe2 + sin αe3 (2)

where α ∈ [0, 1
2 π ]. For α = 1

2 π , a is parallel to e3 and the
piezoelectric body is homogeneous. However, for α �= 1

2 π ,
the projection of a onto the plane z = constant is along the
tangent to the circle ρ = constant. For a fixed value of α, the
angle between a and e3 is a constant; a does not vary along
a radial line but changes as one moves in the circumferential
direction. Since the material properties depend upon the vector
a, therefore, they are functions of the angular position, β, of a
point and the body is nonhomogeneous.

The principle of virtual work for electromechanical
deformations of a piezoelectric body is∫

C

[
(bi −ρüi)ūi +qφ̄

]
dv =

∫
C

[
σij eij (ū)+DiWi(φ̄)

]
dv (3)
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where u is the mechanical displacement field, φ the electric
potential, ū and φ̄ are virtual fields corresponding to u and φ, b
and ρü are the densities of the body and inertia forces, ρ is the
mass density, a superimposed dot indicates differentiation with
respect to time t , q is the density of body charges, σ is the stress
tensor, D is the electric displacement, eij = (ui,j + uj,i)/2
the infinitesimal strain tensor, ui,j = ∂ui/∂xj , Wi = −φ,i

the electric field, and a repeated index implies summation
over the range of the index. The constitutive relations for the
transversely isotropic piezoelectric body are

σij = γ1QikeklQlj + γ2QlkeklQij + γ3(Pikekj + eikPkj )

+γ4(ekkPij + eklPlkδij ) + γ5(eklPlk)Pij

−δ1(akWk)Qij − δ2(QikWkaj + QjkWkai)/2

−δ3(akWk)Pij (4)

Di = ν1Qij Wj + ν2Pij Wj + δ1Qikeklal + δ2Qikeklal

+δ3Pij ejkak (5)

where δij is the Kronecker delta, γ1, . . . , γ5 are the five
elasticities of the transversely isotropic material, δ1, δ2, δ3 are
the piezoelectric moduli, ν1 and ν2 are the dielectric constants,
and Pij = aiaj and Qij = δij − aiaj are respectively the
projectors on the direction a of transverse isotropy and on the
plane perpendicular to a.

2.1. One-dimensional model

From the aforestated equations describing the three-
dimensional deformations of the piezoelectric cylinder, we
now derive a one-dimensional model in which the electric field
is only axial and the mechanical deformations are extension
and twisting of the cylinder. We presume that

ui(x, t) = w(z, t)δi3 + θ(z, t)ε3ij xj φ(x, t) = ψ(z)

(6)
where εijk is the permutation symbol or the alternating tensor,
w the axial displacement and θ the angular twist of the
cross section z = constant. The virtual electromechanical
deformation field analogous to the deformations (6) is

ūi(x) = w̄(z)δi3 + θ̄ (z)ε3ij xj φ(x) = ψ̄(z). (7)

Substitution from equations (6) and (7) into equation (3) and
recalling that w̄(z), θ̄ (z) and ψ̄(z) are arbitrary, we arrive at
the following one-dimensional model:

N ′ + b = ρAẅ T ′ + µ = ρJ θ̈ .′ + χ = 0 (8)

where N ′ = dN/dz, and

N =
∫

S

σ33 dA T =
∫

S

ε3jkσ3j xk dA

. =
∫

S

D3 dA b =
∫

S

b3 dA

µ =
∫

S

ε3jkbj xk dA χ =
∫

S

q dA (9)

represent, respectively, the axial traction, the torque, the
resultant axial electric displacement, the axial body force,
the torsional moment due to the body forces, and the
resultant charge per unit length of the cylinder. Furthermore,

A = π(R2
2 − R2

1) and J = π(R4
2 − R4

1)/4 equal, respectively,
the area of cross section and the moment of inertia of the hollow
circular cross section S. The boundary conditions involve the
prescription at the end faces of either N or w, T or θ and . or
ψ . Also, at time t = 0, w, ẇ, θ , and θ̇ need to be given.

We now substitute from (6) into (4) and (5), and the result
into (3) to arrive at the following constitutive relations for the
one-dimensional model{

N

T

.

}
=

[
AK11 BK12 AK1e

BK12 J K22 BK2e

−AK1e −BK2e AKee

] {
w′

θ ′

ψ ′

}
(10)

where

K11 = 1
8

(
3(γ1 + γ2 + γ5) + 8(γ3 + γ4)

+(γ1 + γ2 + γ5) cos 4α

+4(γ1 + γ2 − 2γ3 − 2γ4 − γ5) cos 2α
)

K12 = − sin α cos α
(
γ1 + γ2 − 2(γ3 + γ4)

−γ5 + (γ1 + γ2 + γ5) cos 2α
)

K1e = − sin α

2

(
δ1 + δ2 + (δ1 + δ2 − δ3) cos 2α + δ3

)
K22 = 1

4

(
γ1 + γ2 + 4γ3 + γ5 − (γ1 + γ2 + γ5) cos 4α

)
K2e = − cos α

(
cos 2α(δ1 + δ2 − δ3) + δ3 − δ1

)
Kee = 1

2

(
ν1 + ν2 + (ν1 − ν2) cos 2α

)
B = π(R3

2 − R3
1)

3
. (11)

Equations (8) through (11) are also valid for a solid circular
cylinder for which R1 = 0.

3. Results for three problems

We study two static and one dynamic problem with the one-
dimensional theory derived above and illustrate the interaction
between extensional and torsional deformations.

3.1. Static problems

Consider a solid cylinder of length L and radius R fixed and
grounded at the end z = 0, traction free and electrically
insulated at the end z = L, and loaded only by a uniform
charge of density χ̄ per unit length. This electric load can be
applied by using a set of electric plates spanning the length
of the cylinder. Thus b = 0, ẅ = 0 and θ̈ = 0. The
static electromechanical deformations of the cylindrical bar
are governed by the differential equations

AK11w′′ + BK12θ ′′ + AK1eψ
′′ = 0

BK12w′′ + J K12θ ′′ + BK2eψ
′′ = 0

−AK1ew
′′ − BK2eθ

′′ + AKeeψ
′′ + χ̄ = 0 (12)

and the boundary conditions

w = 0 θ = 0 ψ = 0 at z = 0

N = 0 T = 0 . = 0 at z = L. (13)
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Figure 1. The variation with the angle α of the angular twist, θ(L),
and the normalized extension, w(L)/R, of the end z = L of a
PZT5A cylindrical rod fixed at the end z = 0 and subjected to a
uniform charge density along its length.

This boundary-value problem has the solution

w(z) = (AJ K22K1e − B2K12K2e)

AD

(2L − z)z

2
χ̄

θ(z) = B2(K11K2e − K12K1e)

BD

(2L − z)z

2
χ̄

ψ(z) = (B2K2
12 − AJ K11K22)

AD

(2L − z)z

2
χ̄ (14)

where D = AJ K22(K2
1e + K11Kee) − B2(K11K2

2e + K2
12Kee).

The angular twist θ(L) of the end z = L of the cylinder and its
normalized extension w(L)/R against the angle α are plotted
in figure 1 for a PZT5A solid cylinder of radius 2 mm and
length 2 cm. Values of the material parameters for the PZT5A
are listed below:

γ1 = 45.2 GPa γ2 = 54 GPa γ3 = 42.2 GPa

γ4 = 50.8 GPa γ5 = −99.1 GPa

δ1 = −7.21 C m−2 δ2 = 12.32 C m−2

δ3 = 15.12 C m−2

ν1 = 1.53 × 10−8 F m−1 ν2 = 1.50 × 10−8 F m−1.

Thus (γ1 + γ2)/(2γ3 + 2γ4 + γ5) 
 0.23. Results plotted in
figure 1 reveal that the normalized axial elongation attains
its maximum value for α = π/2, and the angular twist is
maximum for α 
 42◦. Hence a PZT5A cylinder with the
axis of polarization at each point making an angle of about 48◦

with the axis of the cylinder will exhibit maximum torsional
deformations when subjected to a uniformly distributed charge
along its length.

Consider the PZT5A solid cylinder studied above but
assume that there are no body forces and distributed charges;
i.e. b = 0, µ = 0, χ = 0 in equations (8). The cylinder is
clamped and grounded at the end z = 0 and subjected only to
the torque TL at the end z = L. Thus

w(0) = 0 θ(0) = 0 ψ(0) = 0

N(L) = 0 T (L) = TL .(L) = 0. (15)

The solution of equations (8) under the boundary conditions
(15) is

N(z) = 0 T (z) = TL .(z) = 0. (16)

Figure 2. The variation with the angle α of the difference in the
electric potential between the end faces of a PZT5A solid cylinder
subjected to pure torques at the end faces.

We can solve constitutive relations (10) for w′, θ ′ and ψ ′ in
terms of TL, and thus obtain the following expression for the
electric potential, ψ(L), at the end z = L:

ψ(L) = LTL[(K2
12 − K11K2e)]/[B(K12K1eK2e

−K11K2
2e + K2

12(K2e + Kee))

−AJ K22(K12K1e + K11Kee)/B]. (17)

We have plotted in figure 2 the dependence upon the angle α

of the non-dimensional electric potential, ψ̃(L), defined as

ψ̃(L) = ψ(L)BL(δ1 + δ2 − δ3)

TL

. (18)

As expected, ψ̃(L) is maximum for α 
 0 and gradually
decreases to zero for α = π/2. Thus a PZT5A cylindrical
disk with the polarization vector everywhere perpendicular
to the radial line and perfectly bonded to another deformable
body can be used to measure the torsional deformations of the
surface to which it is perfectly bonded.

3.2. Dynamic problem

We now explore, in the absence of distributed charges and
body forces, the dependence upon the angle α of the relative
proportion of the torsional and extensional waves propagating
along the hollow cylinder. From the governing equations:

AK11w′′ + BK12θ ′′ + AK1eψ
′′ = ρAẅ

BK12w′′ + J K22θ ′′ + BK2eψ
′′ = ρJ θ̈

AK1ew
′′ + BK2eθ

′′ − AKeeψ
′′ = 0 (19)

we eliminate ψ , non-dimensionalize the variables through

w̄ = 2w/R2 z̄ = 2z/R2 t̄ = t (2/R2)
√

K11/ρ

(20)
to obtain

K̂11w′′ + 2
3 K̂12θ ′′ = ẅ 2

3 K̂21w′′ + K̂22θ ′′ = θ̈ . (21)

In equations (21), we have dropped the superimposed bar, the
derivatives are with respect to non-dimensional variables, and

K̂11 =
(

K11 +
K2

1e

Kee

)/
K11

K̂12 =
(

K12 +
K1eK2e

Kee

)/
K11

K̂21 = K12/K11 K̂22 =
(

K22 +
4K2

2e

9Kee

)/
K11. (22)
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(a)

(b)

Figure 3. (a) The dependence upon the angle α of the extensional
(yellow (or lower gray) curve) and torsional (blue (or upper dark)
curve) wave speeds in a PZT5A cylinder. (b) The dependence upon
the angle α of the extensional (yellow (or light gray) part of the
curve) and torsional (blue (or black) part of the curve) wave speeds
in a piezoceramic cylinder with moduli different from that of
PZT5A. The green (or dark grey) part of the curve indicates the
interaction between the two waves.

Table 1.

α → 0 α → π/2

v2
w 1

(
1 +

δ2
3

ν2(2γ3 + 2γ4 + γ5)

)−1

v2
θ

γ1 + γ2

γ3

(
1 +

4δ2
2

9ν1γ3

)−1
2(γ3 + γ4) + γ5

γ3

We seek solutions of (21) in the form of traveling waves, i.e.

w = ŵ(z ± vt) θ = θ̂ (z ± vt) (23)

where v is the non-dimensional wave speed. The speeds vw

and vθ respectively of the extensional and torsional waves for
α → 0 and α → π/2 are listed in table 1.

We note that usually

δ2
3

ν2(2γ3 + 2γ4 + γ5)
� 1 and

4δ2
2

9ν1γ3
� 1. (24)

Thus the speeds of extensional waves for α → 0 and α → π/2
are nearly the same. However, the speeds of the torsional waves
for α → 0 and α → π/2 may be quite different because of
the independent values of (γ1 + γ2) and (2γ3 + 2γ4 + γ5); these

are respectively proportional to the transverse and longitudinal
Young’s moduli of the material.

Figure 3(a) exhibits for the PZT5A solid cylinder the non-
dimensional wave speeds as a function of the angle α. The
yellow (lower gray) curve indicates an essentially extensional
wave and the blue (upper dark) curve an essentially torsional
wave. It is clear that there is hardly any interaction between
the two waves; this is because for the PZT5A,

γ1 + γ2

γ3
= 2.35 and

2(γ3 + γ4) + γ5

γ3
= 2.06

(25)
are close to each other and both are greater than one.

We have plotted in figure 3(b) the non-dimensional
wave speeds for a cylinder made of a hypothetical material
for which γ1 = 13.56 GPa, γ2 = 16.2 GPa, γ3 =
63.3 GPa, and values of other material parameters are the
same as those for the PZT5A. The green (or dark gray)
part of the curve reflects the fact that for a large range
of values of α, the speeds of torsional and extensional
waves are comparable with each other. For these values
of α, the extensional and torsional phenomena are strongly
coupled.

4. Conclusions

We have deduced from the three-dimensional governing
equations a one-dimensional model to describe the torsional
and extensional deformations of a PZT cylinder. At every
point of the cylinder the axis of transverse isotropy makes
an angle of ( 1

2 π − α) with the axis of the cylinder, and
the projection of the axis of transverse isotropy on a cross
section is normal to the radial line through the point. For
the cylinder made of a PZT5A, the extensional and torsional
wave speeds depend weakly upon the angle α and are quite
different from each other. However, when the longitudinal and
transverse Young’s moduli of the material of the cylinder are
quite different, there is a large range of values of α for which
the extensional and torsional deformations of the cylinder are
strongly coupled. A PZT5A cylinder with α �= π/2 and
subjected to a uniformly distributed charge density along its
length exhibits both torsional and extensional deformations;
the former are maximum for α 
 42◦ and the latter for
α = 90◦. Whereas for α 
 42◦ both torsional and
extensional deformations occur, for α = 90◦ only extensional
deformations are realized. For α 
 0◦, there is a measurable
difference in the electric potential across the end faces of
a circular cylindrical PZT5A disk subjected to pure torques
at the end faces. Thus, such a disk can be used to gauge
torsional deformations of the surface to which its one end face
is perfectly bonded.
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