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Abstract
We consider geometric and material nonlinearities when studying
numerically the transient three-dimensional elastic deformations of a plate
with piezoceramic elements perfectly bonded to its top and bottom surfaces,
and analyze the effect of the shape and the size of the piezoceramic actuators
on increasing the buckling load of the plate. The applied compressive edge
load is assumed to increase linearly with time and the plate is taken to have
buckled when the maximum transverse deflection at a point equals three
times the plate’s thickness.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Whereas in the past material systems and structures were
designed based on their passive response to applied loads,
recently the construction and operation of space structures have
generated an interest in using piezoelectric materials and shape
memory alloys (SMAs) to form ‘smart’ structures. Some of
the piezoceramics (PZTs) attached to a structure can be used
as sensors and others as actuators to control their deformations
and/or to produce a desired response. The SMA actuators
can generate actuation strains of 8% when energized by a
relatively low energy and the PZT actuators generally require
high electric fields to produce noticeable actuation strains.
However, the response time of a PZT is in microseconds,
and that of SMA actuators is much larger than that of a
PZT. Here we investigate the use of PZTs in enhancing the
dynamic buckling load of a homogeneous orthotropic elastic
plate. The plate’s material is modeled as neo-Hookean and that
of the PZT by a constitutive relation that expresses the second
Piola–Kirchhoff stress tensor as a second degree polynomial
in the electric field and the Green–St Venant strain tensor,
e.g. see Yang and Batra [1]. Thus the effect of large electric
fields applied to the PZT elements can be adequately modeled.
The motivation for this is provided by the experimental work
of Crawley and Anderson [2] who observed a nonlinear
relationship between the applied voltage and the normal strain
induced in an unconstrained PZT plate for electric fields
exceeding 100 V mm−1. We use the three-dimensional

theory and account for the effect of inertia forces, geometric
nonlinearities (nonlinear strain–displacement relations) and
material nonlinearities in ascertaining the buckling load of a
rectangular plate. The plate is loaded on two opposite edges
by axial loads that increase linearly with time while the other
two edges are traction free. The problem is analyzed by the
finite element method with the computer code developed by
Batra and Liang [3].

The flexural rigidity of a plate and hence its buckling load
can be passively increased by adding stiffeners to it. However,
situations such as esthetics, limited availability of space,
packaging requirements, interference with other structural
components or weight may restrict the use of stiffeners.
In these cases, it may be more beneficial and sometimes
absolutely necessary to resort to active methods, such as the
one studied here, to enhance the buckling load for the plate.

Previous work on the enhancement of the buckling load
of an elastic rectangular plate by using PZT elements includes
that of Chandrashekhara and Bhatia [4], Murali Krishna and
Mei [5], and Thompson and Griffin [6]. Chandrashekhara and
Bhatia [4] used the first-order shear deformation theory, linear
kinematics, linear constitutive relations for the PZT and the
material of the plate and assumed that the plate buckles when
its centroidal transverse deflection equals the plate’s thickness.
The axial loads applied on two opposite edges of the plate were
taken to increase linearly with time. Their numerical results
computed for a square thin plate with the length/thickness
ratio of 100 showed that the actuation of the PZT elements
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increased the buckling load by 4.6%. Murali Krishna and
Mei [5] also used the finite element method to analyze the
problem but employed the von Karman large deflection plate
theory and PZT and PVDF (polyvinylidene fluoride film)
actuators. They showed that the voltage to be applied to
the PZT elements in order to buckle the plate with all four
edges clamped was higher than that required when all edges
were simply supported. Thompson and Griffin [6] employed
titanium–nickel SMA actuators to control the buckling of a
stiffened aluminum plate. They used the commerical code
ABAQUS, modeled the structure by plate/shell elements and
the actuators by beam elements. The change in the buckling
load was found to be almost proportional to the magnitude of
the actuation level, and an 8% strain in the SMA actuators
enhanced the buckling load by 14%.

Baz and Tempe [7] have designed a closed-loop computer-
controlled system employing a titanium–nickel SMA helical
spring to increase the buckling load of a long slender beam
loaded by an axial compressive load at the rate of 0.0917 N s−1.
Thompson and Laughlan [8] experimentally showed that
the buckling load of graphite–epoxy strips can be increased
from 19.8 to 37.1% by using PZT actuators. DeFaria and
deAlmeida [9] employed the von Karman nonlinear strain–
displacement relations and linear constitutive relations for both
the PZT and beam material. They developed a strategy to
exploit the PZT actuation so that the response of a slightly
crooked beam is very close to that of a perfect beam. Berlin
and Sussman [10] stabilized the first buckling mode through
the use of tendons. Meressi and Paden [11] analytically proved
that PVDF actuators mounted continuously along the length of
a column could be used to stabilize the first mode of the column.
Jefferis [12] used an electromagnet to achieve the same goal.
Berlin [13] demonstrated the use of induced-strain actuation
to control the buckling of a thin steel column and thereby
achieved an increase of 5.6 times in the load bearing capacity
of the column. Berlin et al [14] have also established the
effectiveness of networked arrays of MEMS-based sensors and
filamentary PZT actuators to control the buckling instability of
a column for loads up to 2.94 times the critical buckling load.

In contrast to the dynamic buckling problem studied
here in which the applied axial loads increase linearly with
time, other investigators (e.g. see [15]) have considered axial
impulses of finite duration applied to the edges of the plate.
Typically, the axial velocity or the axial load in the form of
a half sine wave is considered. The amplitude and the time
period of the sine wave are varied till the plate buckles. The
dynamic buckling load is determined by adopting the stability
criterion of Budiansky and Hutchinson [16], according to
which the structure is unstable if one of the characteristic
values associated with its deformations increases rapidly with
the amplitude of the applied load. Cui et al [17] determined the
deflection of a rectangular elastic–plastic plate loaded by axial
loads of fixed duration and defined the buckling load as the
one for which the slope of the deflection versus the load curve
suddenly increased. These authors also give a brief historical
perspective of the dynamic buckling of plates.

Dynamic loads can rarely be represented by a half sine
wave or a half rectangular wave of short duration; they usually
increase suddenly and then slowly die out. Here we assume
that the applied load increases linearly with time and the plate
buckles during the time the load is increasing.

X1, x1

X3, x3
P(t)

PZT
substrate

X2, x2

A B
P(t)

Figure 1. Schematic sketch of the problem studied.

Results presented herein show that PZT elements bonded
to the top and the bottom surfaces of a rectangular plate when
suitably activated can enhance the buckling load of a graphite–
epoxy plate by 58.5%.

2. Formulation of the problem

We use rectangular Cartesian coordinates to describe the
transient electromechanical finite deformations of a system
consisting of a plate with PZT elements perfectly bonded to
its top and bottom surfaces; a schematic sketch of the problem
studied is shown in figure 1. In the referential description
of motion, and in the absence of body forces and distributed
charges, equations governing these deformations are

TiL,L = ρ0üMδiM, i = 1, 2, 3; L = 1, 2, 3 (1)

DL,L = 0. (2)

Here TiL is the first Piola–Kirchhoff stress tensor, sometimes
also called the nominal or the engineering stress tensor, ρ0

is the mass density in the reference configuration, uM is the
displacement of a point, DL is the electric displacement, a
superimposed dot indicates the material time derivative, δiL
is the Kronecker delta, and a comma followed by an index L
signifies partial differentiation with respect to the position XL
occupied by a material point in the reference configuration.
A repeated index implies summation over the range of the
index. The lower and upper case indices denote the component
of a tensor with respect to coordinates in the present and the
reference configurations, respectively. Equation (1) expresses
the balance of linear momentum in the absence of body forces,
and equation (2) the balance of electric charges when there are
no distributed charges present. However, as is usually done,
the inertia term associated with the balance of electric charge
has been neglected. Because we have used the referential
description of motion, the equation expressing the balance of
mass is not needed to find the displacements of a point; it will
be required if the present mass density is to be determined.

Balance laws (1) and (2) are to be supplemented by
constitutive relations. The material of the plate is assumed
to be homogeneous and orthotropic and is modeled as neo-
Hookean. That is

SLM = CLMPQEPQ (3)

where S is the second Piola–Kirchhoff stress tensor, E
the Green–St Venant strain tensor, and C the fourth-order
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elasticity tensor with nine independent components for an
orthotropic material. Since SLM = SML and EPQ = EQP ,
each can be expressed as a six-dimensional vector. In this
notation, C will be a 6 × 6 symmetric matrix. Batra [18] has
compared the response predicted by four linear constitutive
relations such as equation (3) for finite deformations of
isotropic elastic materials. He showed that the analog of
constitutive relation (3) for isotropic materials predicts a
stiffening behavior. That is, in simple extensional and shearing
deformations, the tangent modulus increases with an increase
in a measure of the deformation. For the problems studied
herein, this stiffening of the material is negligible because the
maximum strain induced in the structure is less than 11%.
The PZT is modeled as a homogeneous transversely isotropic
material with the axis of transverse isotropy along the unit
vector a. We anticipate applying large electric fields W to it
along the direction a. Thus we incorporate second-order terms
in E and W in its constitutive relation. Yang and Batra [1]
have derived the following second-order constitutive relations
for a PZT that is stress free in the reference configuration:

S = (2c1I1 + c3I2 + e1I3 + 3λ1I
2
1 + 2λ3I1I2 + λ4I

2
2

+λ5II1 + λ7II2 + 2ν1I1I3 + ν2I
2
3 + ν7II3 + ν9II4

+ν14I2I3)a ⊗ a + (2c2I2 + c3I1 + e2I3 + 3λ2I
2
2 + λ3I

2
1

+2λ4I1I2 + λ6II1 + λ8II2 + 2ν2I2I3 + ν4I
2
3 + ν8II3

+ν10II4 + ν14I1I3)1 + (c4 + λ5I1 + λ6I2 + ν5I3)

(a ⊗ E · a + a · E ⊗ a)

+2(c5 + λ7I1 + λ8I2 + ν8I3)E + (e3 + ν9I1 + ν10I2

+ν11I3)(a ⊗ W + W ⊗ a)

+3λ9E
2 + ν12W ⊗ W + ν13(a ⊗ E · W + W · E ⊗ a

+W ⊗ E · a + a · E ⊗ W )

−π = (2ε1I3 + e1I1 + e2I2 + 3µ1I
2
3 + µ2II3 + ν1I

2
1

+2ν2I3I1 + ν3I
2
2 + 2ν4I3I2

+ν5II1 + ν6II2 + ν11II4 + ν14I1I2)a

+2(ε2 + µ2I3 + ν7I1 + ν8I2)W

+2(e3 + ν9I1 + ν10I2 + ν11I3)E · a

+2ν12E · W + 2ν13E
2 · a, (4)

where

I1 = a · Ea, I2 = tr E, I3 = a · W

II1 = a · E2a II2 = tr E2 II3 = W · W

II4 = a · EW + W · Ea.

(5)

Here π is the polarization vector that is related to the electric
displacement D, the electric field W and the electric potential
φ through

πL = DL − ε0JXL,iXK,iWK, WK = −φ,K (6)

where ε0 is the permittivity of the free space, J = det(xi,K),
x is the present position of the material point that occupied
place X in the reference configuration, and a comma followed
by index i denotes partial differentiation with respect to xi .
Furthermore, in equations (4) and (5), 1 is the identity tensor,
c1, . . . , c5, λ1, . . . , λ8, ν1, . . . , ν14, e1, e2, e3, µ1 and µ2 are
material constants, a · b denotes the inner product between
vectors a and b, and the tensor product, a ⊗ b, between them

is defined as (a ⊗ b)c = (b · c)a for every vector c. The neo-
Hookean relation for the PZT is obtained from equations (4)
and (5) by keeping terms linear in E and W . We note that
Batra and Yang [19] have derived second-order constitutive
relations for porous PZT materials.

Tensors S and T are related to each other through

TiK = xi,LSKL (7)

and to the Cauchy or the true stress tensor σ by

σij = J−1xi,Lxj,MSLM. (8)

The Green–St Venant strain tensor, E, is expressed in terms of
the mechanical displacements u = x − X as follows:

EKL = (uK,L + uL,K + uM,KuM,L)/2. (9)

We note that the classical infinitesimal theory follows from
equations (1)–(9) by neglecting in them the contributions from
the second-order terms in uM,K and WK . In the linear theory,
the three stress tensors S, T and σ coincide with each other.

The perfect bonding condition at the common interface
$int between the PZT and the plate can be stated as

[[uK ]] = 0, [[TiL]]NL = 0 [φ] = 0

[DL]NL = 0 at $int

(10)

where N is a unit normal to $int, and [f ] denotes the jump
in the values of f across the interface. Equations (10)
imply that the mechanical displacements, surface tractions,
the electric potential and the normal component of the electric
displacement are continuous across the common interface$int.

The plate and the PZT particles are assumed to be initially
at rest and stress free in the reference configuration. Thus
initial displacements and velocities of all material particles are
zero. With reference to the schematic sketch and the coordinate
axes depicted in figure 1, we apply the following boundary
conditions:

Ti1 = −p(t)δi1 on plate surfaces X1 = 0, L1

Ti2 = 0 on plate surfaces X2 = 0, L2

u3 = 0 at points on lines AB, BC,CE

and EA of the plate

DLNL = 0 on the plate and PZT surfaces X1 = 0,

L1, and X2 = 0, L2 (11)

φ = 0 on the PZT surfaces bonded to the plate

φ = φa on the top surface of

the upper PZT layer

φ = φb on the bottom surface of

the lower PZT layer.

That is, the square plate is supported on edges AB, BC, CE
and EA, and is loaded on the two opposite surfaces by in-
plane time-dependent axial compressive loads with the other
two surfaces of the plate free of in-plane tractions. The surfaces
of the plate bonded to the PZTs are electroded with electrodes
of negligible thickness. All surfaces, except where electric
potentials are prescribed, are electrically insulated. Note that,
at points on lines AB and CE, the displacement in the X3

direction and surface tractions in the X1 and X2 directions
vanish. At points on linesBC andEA, the displacement in the
X3 direction and surface tractions in the X2 direction vanish.

927



R C Batra and T S Geng

3. Numerical solution and discussion of results

The aforementioned problem is solved numerically by using
the finite element method. The domain occupied by the plate
and the PZT layers is divided into the union of disjoint eight-
node brick elements. Following the procedure used to derive
the Galerkin formulation of the problem, e.g. see [20], we
obtain from equations (1) and (2) the following set of coupled
nonlinear ordinary differential–algebraic equations:

Md̈ = F ext(t)− F int(d(t), φ(t)) (12a)

Pint(d(t), φ(t)) = Pext(t). (12b)

Here M is the mass matrix, d the vector of nodal mechanical
displacements in both the plate and the PZT layers, φ the vector
of nodal electric potentials in PZT elements only, F ext and F int

are vectors of nodal forces equivalent respectively to externally
applied surface tractions and internal stresses and electric fields
developed in the body at time t , Pint is the nodal charge vector
equivalent to the internal polarization in PZT elements, and
Pext is the externally applied nodal charge vector. A finite
element code based on equations (12) has been developed and
validated by Batra and Liang [3]. It uses the 2×2×2 integration
rule to evaluate the element mass matrix and the element load
vectors. The mass matrix is lumped by using the row-sum
technique. Equation (12a) is solved by the central-difference
method which is explicit, conditionally stable and, for linear
one-dimensional problems, gives exact time periods for the
waves. After every time step, the nonlinear equations (12a)
are discretized and we set

-t = 1.8/ωmax. (13)

The maximum frequency, ωmax, of the discretized structure
is computed after every time step. Within each time step, the
nonlinear algebraic equations (12b) are solved by the Newton–
Raphson iterative method.

Recalling that the size of the time step varies as the solution
evolves, we used the following relation (14) to compute nodal
displacements at time tn+1 from a knowledge of their values at
time tn:

d(tn+1) = -t2M−1

[
(F ext(tn+1)−F int(tn−1))

-t1+-t2
2

+

(
1

-t1
+

1

-t2

)
d(tn)+

d(tn−1)

-t1

]
. (14)

Here-t1 = tn− tn−1 and-t2 = tn+1 − tn. Values of d(−-t1)
are found from those of d(0), ḋ(0) and d̈(0) by using a one-
step method with d̈(0) computed from equation (12a). We
used Batra and Liang’s [3] finite element code to study the
buckling problem.

3.1. Buckling of a column

In an attempt to delineate the difference in the buckling loads
under quasistatic and dynamic deformations, and to establish
our methodology of determining the buckling load in transient
deformations, we first study the problem for a slender column.
The 40 mm × 1 mm × 1 mm steel column modeled as an
isotropic material with Young’s modulus E = 200 GPa, the
shear modulus G = 79 GPa, and the mass density ρ =

Table 1. Dependence of the buckling load for a pinned–pinned
column upon the loading rate.

Dynamic load
Loading rate Buckling load amplification factor
(kN s−1) (N) (DLAF)

1000 220.8 8.59
200 89.6 3.49
100 66.6 2.59

20 43.4 1.69

7860 kg m−3 is loaded only on the top and bottom surfaces by
equal and opposite axial compressive tractions that increase
linearly with time t . The column was divided into 40 uniform
cubic elements along its length. The initial shape of the column
was taken to be a half sine wave with amplitude equal to 1%
of the thickness of the column. The axial load applied at the
ends of the column was assumed to increase linearly with time
t . The Euler buckling load for static deformations of the steel
column is 25.7 N. For the dynamic problem, the column was
assumed to buckle when the lateral deflection at the midspan
equaled three times the width of the column, or 3 mm for
the problem being studied. As shown below in table 1, the
buckling load computed according to this criterion was found
to strongly depend upon the rate of rise of the axial load.

The DLAF [21] equals the buckling load under dynamic
loading divided by the Euler buckling load under quasistatic
conditions. The computed results clearly indicate that the
DLAF decreases with a decrease in the rate of loading. In
order to assess the effect of inertia forces on the DLAF, we
artifically reduced the mass density of the column’s material
to 786 kg m−3, i.e. to 10% of its true value. In this case,
loading rates of 106, 2 × 105, 105 and 2 × 104 N s−1 resulted
in DLAFs of 4.42, 2.21, 1.84 and 1.56, respectively. Thus the
DLAF decreases monotonically as the effect of inertia forces is
diminished, and our criterion to ascertain the dynamic buckling
load is reasonable. Because of the geometric nonlinearities
considered, the buckling load for quasistatic loading need not
equal the Euler buckling load.

3.2. Buckling of an orthotropic plate

In the second example problem, a square graphite–epoxy plate
of side 10 mm and thickness 0.25 mm with fibers oriented
parallel to the X1 axis was divided into 20 × 20 × 2 uniform
elements. The values of nonvanishing elastic moduli are

C1111 = 152.35 GPa, C2222 = C3333 = 9.99 GPa

C2323 = C1313 = 7.1 GPa C1122 = C1133 = 3.92 GPa

C2233 = 3.07 GPa, C1212 = 2.5 GPa

and the mass density, ρ, equaled 1600 kg m−3. For
infinitesimal deformations, these correspond to

E1 = 150 GPa, E2 = E3 = 9 GPa

ν̃12 = ν̃23 = ν̃13 = 0.3 G12 = G31 = 7.1 GPa

G23 = 2.5 GPa.

Here E1 equals Young’s modulus in the direction of the
fibers,E2, E3 are Young’s moduli in the transverse directions,
G12, G23, G31 are shear moduli and ν̃12, ν̃23, ν̃13 are
Poisson’s ratios. For the simply supported plate loaded only
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on the surfaces X1 = 0, 10 mm by uniformly distributed
axial compressive forces along the X1 direction, the linear
elasticity theory gives a buckling load of 23 064 N m−1, e.g.
see [22]. In the numerical solution of the problem by the
finite element method, the initial shape of the midsurface of
the plate in the X1 and X2 directions was taken to be a half
sinusoidal curve with an amplitude equal to 0.33% of the
plate’s thickness. The plate was assumed to have buckled
when the transverse displacement (i.e. the displacement in the
X3 direction) equaled three times its thickness. For loading
rates of 3.2×107 and 1.6×107 N m−1 s−1, the buckling loads
were found to be 38 500 and 32 400 N m−1, respectively, which
resulted in DLAFs of 1.67 and 1.41.

3.3. Enhancement of the dynamic buckling load for a plate
with PZT elements

For the square graphite–epoxy plate described in section 3.2,
we now investigate the increase in the buckling load caused
by the bonding of 0.125 mm thick PZT-G1195 actuators to
its top and bottom surfaces, cf figure 1. The PZT layers are
poled in theX3 direction. The attachment of the PZT layers to
the graphite–epoxy plate will alter the buckling load. Nonzero
values assigned to material parameters for the PZT-G1195 are
listed below (see [22]):

c1 = 29 GPa, c2 = 38.1 GPa

c3 = −2 GPa c4 = −21 GPa

c5 = 35.9 GPa e1 = 13.4757 C m−2

e2 = −39.8583 C m−2 ρ = 7500 kg m−3

ν4 = −90.3 × 10−6 N V−2

ν12 = 30.54 × 10−6 N V−2

ε0 = 8.8419 × 10−12 N V−2

ε1 = 1.081 × 10−9 N V−2

ε2 = −2.225 58 × 10−9 N V−2.

(15)

With these values of material parameters, constitutive
relations (4) for the PZT contain second-order terms in the
electric field W but only first-order terms in the Green–St
Venant strain tensor E. There is no test data available to find
values of other material parameters. As shown in figure 1,
uniformly distributed axial tractions are applied on the surfaces
X1 = 0, 10 mm of the graphite–epoxy plate. Because of
the symmetry of the plate and the loading conditions about
the centroidal axes of the plate that are parallel to the X1

and X2 axes, only a quarter of the plate was analyzed. The
quarter of the graphite–epoxy plate was divided into uniform
brick elements of size 0.5 × 0.5 × 0.042 mm, and each one
of the two PZT layers into uniform brick elements of size
0.5×0.5×0.125 mm. A finer mesh could not be used because
of the excessive CPU time required to reach the buckled state
of the plate. A typical time step size used was 10−8 s and
the plate buckled at t � 3 × 10−4 s. The initial shape of
the plate was assumed to be sinusoidal in both the X1 and X2

directions as described in section 3.2. For the loading rate of
1600 GN m−1s−1 and no voltage applied to the PZTs, table 2

Table 2. Dependence upon the initial imperfection of the buckling
load for the graphite–epoxy plate with PZT layers affixed to its top
and bottom surfaces and loaded at the rate of 1600 GN m−1s−1.

Initial centroidal deflection

Plate thickness
× 100 Dynamic buckling load

kN m−1

0.33 403.6
0.66 387.6
1.0 377.8
1.33 360.6

lists the computed buckling load for the graphite/epoxy plate
with the two PZT layers.

For the amplitude of the initial sinusoidal shape of the
plate equal to 0.166% of the plate thickness, the plate buckled
with the centroidal deflection in a direction opposite to that of
the initial shape of the plate. In the results presented below,
the amplitude of the initial sinusoidal shape of the plate was
set at 0.33% of the plate thickness. We note that, within the
buckled plate, the maximum principal strain and the maximum
shear strain at any point were computed to be 7 and 11%,
respectively. Thus a neo-Hookean material model for the plate
should give acceptable results.

At the loading rate of 1600 GN m−1 s−1, the inertial effects
will play a significant role. Also, the CPU time required to
determine the buckling load is less at such high loading rates
since the time step size is determined by the time taken for an
elastic wave to travel through the smallest element in the mesh.
Since our goal is to establish the enhancement of the buckling
load by using PZT actuators, the value of the loading rate will
not affect much the percentage gain achieved by using PZT
actuators.

When a uniform electric potential φa of 10, 20 and 30 V
was applied only to the upper surface of the PZT layer bonded
to the grounded top surface of the graphite–epoxy plate, the
buckling load increased to 415.3, 456, and 403.8 kN m−1,
respectively. These represent an improvement of 2.95, 12.99
and 0.05% over that for the no actuation case. Figure 2
depicts the time history of the deflection of the centroid of
the graphite–epoxy plate for the four cases studied. It is clear
that, for φa = 20 and 30 V, the centroid of the plate deflects
in a direction opposite to that when φa = 0 and 10 V. This
exercise suggests that increasing the voltage difference applied
to the two surfaces of the upper PZT layer does not necessarily
increase the buckling load. Large electric fields applied across
a PZT plate can either depole it or change the direction of
polarization; these effects were not accounted for in our study.

In the preceding exercise, the upper PZT was actuated
irrespective of the direction of the deflection of the centroid
of the plate. An improvement in the buckling load can be
attained by applying a voltage difference to either the upper
PZT actuator or the lower one, depending upon which way
the plate deflects. For positive deflection (downwards) of the
centroid of the graphite–epoxy plate, an electric potential equal
to 107|uc|V was applied to the top surface of the upper PZT, and
for negative deflection of the centroid of the plate, an electric
potential of −107|uc| V was applied to the bottom surface of
the lower PZT layer. The displacement, uc, of the centroid of
the graphite–epoxy plate is measured in mm. As should be
evident from the results plotted in figure 3, the buckling load
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Figure 2. Time history of the deflection of the centroid of the
axially loaded square graphite–epoxy plate when a voltage of 10, 20
and 30 V is applied to the upper surface of the PZT layer bonded to
the top grounded surface of the plate.
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Figure 3. Time history of the deflection of the square
graphite–epoxy plate’s centroid when a voltage of ±107|uc| is
applied either to the bottom surface of the lower PZT layer or to the
upper surface of the top PZT layer.

is considerably enhanced, and it equals 639.7 kN m−1, which
is 58.5% larger than that when PZT layers are not activated.

The 58.5% improvement in the buckling load resulted by
applying a maximum electric field of 30 kV mm−1 which is
quite large. We subsequently limited the maximum electric
field to 1 kV mm−1, and experimented with applying the
electric fields at the rate of 106, 107 and 108 ×|uc| V as stated
above. For these three cases, the buckling load was found to
increase by 1.14, 31.11 and 18.26%, respectively, suggesting
that for the present problem, applying electric potential equal
to 107|uc| V is the best option out of the three considered. In
each case the plate deflected in the same direction.

A close study of the time history of the evolution of the
centroidal deflection of the plate given in figure 2 reveals that
our definition of the dynamic buckling load differs slightly
from that of Budiansky and Hutchinson [16] and Cui et al
[17]. Whereas the definition adopted herein determines the

Table 3. Dependence of the buckling load on values of material
parameters ν4 and ν12.

Material parameters
Buckling load

−105ν4 −105ν12 kN m−1

9.03 0 601
0.0305 599
3.05 529
305 189

0 3.05 405
0.0903 334
9.03 529
903 407

buckling load uniquely, that of Budiansky and Hutchinson [16]
corresponds to the load when the centroidal deflection begins to
increase rapidly. The buckling load computed from Budiansky
and Hutchinson’s definition will be slightly smaller than that
obtained with the present definition. Cui et al [17] equate
buckling load to the point of intersection of the tangent to the
rapidly rising part of the deflection versus load curve with the
load axis. This will also give a smaller buckling load than
that obtained with the present definition. Irrespective of the
definition of the buckling load, the activation of the PZT layers
will enhance the axial load at which the plate buckles.

In the constitutive relation (4) for a transversely
isotropic PZT, there are eight terms with coefficients
ν2, ν4, ν7, ν8, ν11, ν12, µ1 and µ2 that multiply quadratic
terms in W . Because of a lack of test data to determine values
of these parameters we had set six of them equal to zero. In
table 3 we list the buckling loads for different values of the two
nonzero parameters.

With all of the quadratic terms in W neglected in
the constitutive relation (4), the buckling load equaled
322 kN m−1. Thus the consideration of the two quadratic
terms in the constitutive relation (5) generally enhances the
dynamic buckling load, and the buckling load increases with
a decrease in the magnitude of ν12. However, the dependence
of the buckling load on the values of ν4 is not monotonic.

3.3.2. Effect of the size of the PZT actuators. Batra and
Liang [23] found through numerical experiments the optimum
location of a rectangular PZT actuator to annul different modes
of vibration of a simply supported rectangular plate. The
difference in the electric potential across the two faces of
the PZT actuator is minimum if the centroid of the actuator
is located at the point where the amplitude of vibration is
maximum. Even though the plate does not necessarily undergo
a steady vibratory motion in the present problem, we postulate
that the PZT actuator is optimally located when its centroid
coincides with the centroid of the plate. This is because
the initial shape of the plate is assumed to vary sinusoidally
in both X1 and X2 directions with the maximum deflection
occurring at the center of the plate surface. Its buckled shape,
exhibited in figure 4(a), closely resembles that of a plate
vibrating in mode (1, 1). A comparison of the results plotted in
figures 4(b) and (c) reveals that the rotations of the normals to
the midsurface of the plate about the X2 axis is more than that
about theX1 axis. It is most likely due to null tractions applied
on the surfaces X2 = 0 and 10 mm. The four different shapes
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Figure 4. (a) The buckled shape of a square graphite–epoxy plate loaded on two opposite edges by uniformly distributed axial tractions that
increase linearly with time, (b) view from the X1-axis, (c) view from the X2-axis.

of the PZT actuators, namely square, cross, rectangular fully
extended in theX1 direction, and rectangular fully extended in
the X2 direction, are shown in figure 5. The buckling load of
the plate with the PZT patches bonded to its upper and lower
surfaces will vary with the shape and the size of the patches.
When used as actuators to enhance the buckling load, a voltage
difference of max(107|uc|, 125)V was applied across the two
faces of the actuators. Figure 6 evinces the enhancement in the
buckling load versus the fraction of the surface area of the plate
covered by the PZT actuators for the four shapes delineated
above. It is evident from these results that rectangular PZT
patches fully extended in theX2 direction are least effective in
enhancing the dynamic buckling load. Also, cross-shaped and
rectangular PZT patches fully extended in the X1 direction
are equally effective in increasing the buckling load during
dynamic deformations of the plate. When the surface area of
the plate covered by the PZT patches is at least 60%, the square
PZT patches enhance the buckling load most. Recalling that
the edge loads to the plate are applied in the X1 direction, the
computed results suggest that PZT patches extending along
the direction of the load are quite effective in enhancing the
buckling load of the plate.

3.3.3. Effect of the plate thickness relative to that of the PZT
layers. For this study rectangular PZT layers fully extended
in the X1 direction and covering 90% of the surface area of
the plate were considered. Keeping the thickness of each PZT
layer fixed at 0.125 mm, the plate thickness was assigned the
values 0.25, 0.75, 1.5, 2.25 and 3 mm. In each case, the quarter
of the plate was divided into uniform 10×10×3 elements, and
the voltage applied to the PZTs equaled max(107|uc|, 125) V.
The corresponding enhancements in the buckling load were
found to be 29.76, 15.21, 7.34, 0.71 and 0.31%, respectively.
Thus an increase in the plate thickness relative to that of the
PZT layers diminishes the effect of the PZTs in enhancing the
buckling load.

3.3.4. Effect of the plate dimensions and boundary conditions.
For 10 × 10 × 0.125 mm, 50 × 50 × 0.625 mm, 100 × 100 ×
1.25 mm, and 150 × 150 × 1.875 mm substrate, the dynamic
buckling load per unit edge length was found to be proportional
to the length of a side of the plate, and the percentage gain
in the dynamic buckling load caused by the PZT actuators
remained unchanged. Also, the maximum principal strain and
the maximum shear strain induced in each one of the four plates
were the same.
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Figure 5. Four different shapes of PZT patches attached to the top
and bottom surfaces of a square plate.
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Figure 6. Enhancement in the buckling load of a square
graphite–epoxy plate with PZT actuators bonded to its upper and
lower surfaces versus the fraction of the surface area covered by the
PZTs.

Figure 7 depicts the buckled shape of the plate when two
opposite edgesAE andBC are simply supported and the other
two edges are traction free. It is clear that the deformed shape
looks like a saddle rather than the double sinusoidal curve
obtained when all four edges are simply supported.

4. Conclusions

We have used a three-dimensional geometrically nonlinear
theory to investigate the enhancement in the dynamic buckling
load of a graphite–epoxy square plate sandwiched between
two piezoceramic layers. The simply supported plate is
loaded on two opposite edges by equal and opposite in-
plane compressive time-dependent tractions with the other
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Figure 7. Buckled shape of the plate with two opposite edges
simply supported and the other two edges traction free.

two edges kept traction-free. The plate material is modeled
as neo-Hookean and the piezoceramic by a second-order
constitutive relation, i.e. the second Piola–Kirchhoff stress
tensor and the electric polarization are expressed as second
degree polynomials in the Green–St Venant strain tensor and
the electric field. The plate material is modeled as orthotropic
and the PZT as transversely isotropic with the axis of transverse
isotropy along the thickness direction. The transient problem
is analyzed numerically by using the finite element code
developed by Batra and Liang [3]. The plate is taken to have
buckled when its centroidal deflection equaled three times the
plate thickness.

The dynamic buckling load for the plate is found to
strongly depend upon the rate of rise of the applied tractions and
hence the inertia effects. With the maximum electric potential
difference applied to the PZT layers limited to 1 kV mm−1, the
buckling load is enhanced by 18.3% when the PZT elements
are activated. For a maximum electric field of 30 kV mm−1, the
buckling load increased by 58.5%. When only a part of the top
and bottom surfaces of the plate can be covered by PZT layers,
then square PZT elements provide a larger enhancement in the
buckling load than rectangular shaped or cross-shaped PZT
elements, provided that the covered surface area exceeds 60%.
Otherwise the cross-shaped and rectangular PZT elements
fully covering the square plate in the loading direction result in
higher buckling loads than the square shaped PZT actuators.

An increase in the plate thickness relative to that of the PZT
layers decreases the effectiveness of the PZTs in enhancing the
buckling load for the plate. Of course, design considerations
may limit the thickness of the PZT layers that can be used.

Even though we have not verified it, we believe that other
definitions of the dynamic buckling load will not alter the
qualitative nature of results but may change the magnitude of
the gain in the buckling load achieved by activating the PZTs.
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