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Abstract
We propose a new 1–3 piezoelectric composite comprised of armchair
single-walled carbon nanotubes imbedded in a piezoceramic matrix which we
call a NRPEC (nanotube reinforced 1–3 piezoelectric composite). Values of
effective piezoelectric and elastic moduli of the NRPEC determined through
a micromechanical analysis are found to be significantly higher than those of
the 1–3 piezoelectric composite comprised of piezoelectric fibers imbedded
in an epoxy matrix. The performance of the NPREC as a constraining layer
in an active constrained layer damping (ACLD) treatment of a laminated
composite beam has been studied by the finite element method. Both in-plane
and out-of-plane actuations by the constraining layer of the ACLD treatment
have been considered, and its length has been optimized by implementing a
controllability criterion. The computed controllability measure and the
frequency response reveal that the proposed constraining layer performs
better than the 1–3 piezoelectric/epoxy composite layer.

1. Introduction

The discovery of carbon nanotubes (CNTs) [1] has created
enormous interest among researchers to predict their elastic
properties. Treacy et al [2] experimentally found that the
CNTs have axial Young’s modulus in the terapascal (TPa)
range. Subsequently, many theoretical models have been
developed to find elastic properties of CNTs. For example,
Lu [3] estimated elastic properties of CNTs and nanoropes
using an empirical force constant relation. Ru [4] assumed
that a single-walled CNT (SWCNT) can be modeled as a
shell and estimated its bending stiffness. Li and Chou [5]
computed elastic properties of CNTs by linking structural
mechanics and molecular mechanics (MM) approaches. Shen
and Li [6] assumed a SWCNT to be transversely isotropic with
the axis of transverse isotropy coincident with the tube axis
and derived values of the five independent elastic constants
by using an energy approach and a MM potential. Whereas
investigations [1] through [6] assumed the thickness of a
SWCNT, Sears and Batra [7] derived it by simulating simple
tensile and torsional deformations of a SWCNT, and assuming
its response for infinitesimal deformations to be equivalent to
that of a linear elastic, homogeneous and isotropic cylindrical

tube of mean diameter equal to that of the SWCNT. They
also computed values of Young’s modulus and Poisson’s ratio,
and found that values of the thickness and Young’s modulus
were essentially independent of the chirality of a SWCNT
but depended upon the MM potential used to simulate its
deformations. In contrast to Shen and Li’s [6] assumption that
the axis of transverse isotropy coincided with the geometric
axis of a CNT, Batra and Sears [8] have proposed that it be
a radial line. Tserpes and Papanikos [9] developed a three-
dimensional (3D) finite element (FE) model for predicting
Young’s modulus and the shear modulus of SWCNTs. Wang
et al [10] employed a higher order Cauchy–Born rule to
estimate mechanical properties of CNTs.

The exceptionally high specific elastic moduli of
SWCNTs are being exploited to fabricate CNT-reinforced
composites and estimate their mechanical properties. For
example, Thostenson et al [11] have processed a CNT-
reinforced composite, and Thostenson and Chou [12] have
estimated its elastic moduli through a micromechanical
analysis. Odegard et al [13] have modeled the nanotube,
the polymer surrounding the tube, and the nanotube/polymer
interface as a fiber, and used a micromechanics method to
estimate the effective elastic moduli of the CNT-reinforced
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composite. Linan et al [14] have synthesized a CNT-reinforced
ceramic composite. Gao and Li [15] have employed a
shear lag theory for estimating effective properties of capped
CNT-reinforced polymer composites by replacing the tube
by an equivalent solid fiber. Wuite and Adali [16] have
studied the performance of laminated beams made of CNT-
reinforced polymer layers with different angles of orientation
of CNTs. For this, they derived elastic properties of aligned,
randomly oriented and agglomerated CNT-reinforced polymer
composites by employing a micromechanics method while
considering the nanotube fibers to be infinitely long, straight
and solid. Song and Youn [17] numerically predicted the
effective elastic properties of CNT-reinforced polymer based
composites. They also demonstrated experimentally how
to treat or functionalize the CNT surface to improve the
interfacial bonding between the CNT and the matrix and
to disperse CNTs uniformly in the epoxy resin. Zhan and
Mukherjee [18] fabricated a CNT-reinforced ceramic matrix
composite using the spark-plasma-sintering technique. Xia
et al [19] also fabricated the CNT-reinforced ceramic matrix
composite and studied their toughening mechanisms. Since
CNTs are being used as reinforcements for developing both
polymer and ceramic matrix composites, they may also
be used for developing new high performance piezoelectric
composites. For example, recently Ramaratnam and Jalili [20]
reinforced PVDF (polyvinylidene fluoride) with single-walled
and multi-walled CNTs and demonstrated the feasibility of
this composite as a sensor material with improved sensing
capability. They also speculated that this piezoelectric
composite will have enhanced actuating capability over that of
PVDF. However, the effective piezoelectric properties of this
composite have not been reported.

Piezoelectric materials (PZTs) have been used for
distributed sensors and actuators in smart structures [21–43]
by exploiting their inherent properties of direct and converse
piezoelectric effects. For reliable and efficient control of
smart structures, it has been established that when PZTs are
used as the constraining layer in an active constrained layer
damping (ACLD) treatment, vibrations of smart structures are
attenuated much better than when they are directly bonded
to the same structures [31–45]. Hence, the performance
of two 1–3 piezoelectric composites can be compared by
investigating the ACLD of smart structures with constraining
layers comprised of these composites and keeping everything
else unchanged.

Here we propose a new 1–3 piezoelectric composite,
which we call a NRPEC (nanotube reinforced piezoelectric
composite), made of a monolithic ceramic PZT reinforced
with SWCNTs aligned in the thickness direction, find effective
properties of the NRPEC with a micromechanical analysis, and
investigate its performance as the material for the constraining
layer in the ACLD treatment of a smart beam. It is found
that with everything else kept fixed, the NRPEC constraining
layer damps out vibrations quickly than a constraining layer
comprised of an epoxy matrix reinforced with PZT fibers when
both layers have the same weight, length and volume fraction
of reinforcing fibers.

Figure 1. Schematic sketch of a lamina made of SWCNT-reinforced
1–3 piezoelectric composite (NRPEC).

2. Effective properties of the NRPEC

We envisage that in the NRPEC lamina, SWCNTs aligned
along the thickness direction, are uniformly distributed; see
figure 1. Previous researchers [16, 17] have considered
continuum structures equivalent to SWCNTs as either hollow
tubular or solid fibers for finding values of material constants.
Also, in [15] Young’s modulus of the effective solid fiber
which is equivalent in mechanical response to a SWCNT is
determined from the relation between the elastic moduli of
the constituents, their volume fractions and the test value
of Young’s modulus of the composite. Young’s modulus
of the effective solid fiber so computed equaled that of a
SWCNT found by other techniques. Thus if one replaces
the solid circular fiber by one of square cross-section of area
equal to that of the circular fiber, it is reasonable to assume
that elastic properties of the fiber of square cross-section
will be nearly equal to those of the SWCNT. Here such an
approximation has been made, and equivalent fiber has been
assumed to be transversely isotropic with axis of transverse
isotropy coincident with the axis of the fiber. Values of elastic
moduli of the fiber are taken to be those derived by Shen and
Li [6].

As was done by Smith and Auld [46] for the 1–3
piezoelectric composites in which PZT fibers of square cross-
section are imbedded in an epoxy matrix, we use the mechanics
of materials approach to derive effective properties of the
proposed NRPEC. We note that the PZT/epoxy composite
proposed by Smith and Auld [35] is useful for controlling
thickness mode oscillations of thin plates. The representative
volume element considered for deriving the effective properties
is comprised of a SWCNT fiber surrounded by the PZT matrix
of the same volume fraction as that in the actual composite.
Henceforth we consider only plane strain deformations, and
determine effective mechanical properties and piezoelectric
coefficients of the NRPEC which quantify induced normal
stresses due to the applied electric field Ez across the thickness
of the NRPEC lamina to use it as a distributed actuator for
laminated composite beams.

Constitutive equations for a SWCNT and a PZT for plane
strain deformations in the xz plane can be written as

{σ n} = [Cn]{∈n} and {σ p} = [Cp]{∈p} − {ep}Ez

(1)
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where ({σ }) is the stress, ({∈}) the strain, [C] the matrix
of elastic constants, and {ep} the matrix of piezoelectric
coefficients. Superscripts n and p stand for the SWCNT and
the PZT, respectively. In equation (2), for the constituent
phase r , σ r

x and σ r
z represent normal stresses on the x and

z planes, respectively; σ r
xz is the transverse shear stress; ∈r

x ,
∈r

z and ∈r
xz are the corresponding infinitesimal strains; Cr

i j

(i, j = 1, 2 and 5) are elastic constants, and ep
31 and ep

33 are
piezoelectric coefficients of the PZT. It should be noted that
same symbols without superscript are used to denote quantities
for the NRPEC.

The existence of perfect bonding between the fiber and
the matrix is described by the following iso-field or continuity
conditions [46, 47]:

[ σ n
x σ n

xz ∈n
z ] = [ σ p

x σ
p
xz ∈p

z ] = [ σx σxz ∈z ]. (3)

These express the continuity of surface tractions at the
fiber/matrix interface, and the equality of the axial strain in
the thickness or the z-direction. Employing the mechanics
of materials approach [46], stresses and strains in the
homogenized composite are expressed in terms of those of the
constituent phases as follows:

{σ } = [C1]{∈n} + [C2]{∈p} − {e1}Ez,

[C3]{∈n} − [C4]{∈p} = {e2}Ez and

{∈} = [V1]{∈n} + [V2]{∈p}
(4)

in which,
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(5)

Here and below, vn and vp represent volume fractions of
SWCNTs and the PZT matrix, respectively. Substitution from
equation (3) into equation (4) yields the following constitutive
relation for the proposed NRPEC:

{σ } = [C]{∈} − {e}Ez, (6)

where [C] and {e}, the effective elastic and the effective
piezoelectric coefficient matrices of the NRPEC, are given by

[C] = [C1][V3]−1 + [C2][V4]−1,

[V3] = [V1] + [V2][C4]−1[C3],
[V4] = [V2] + [V1][C3]−1[C4] and

{e} = {e1} − [C1][V3]−1[V2][C4]−1{e2}
+ [C2][V4]−1[V1][C3]−1{e2}.

(7)

Comparing equation (6) with the constitutive relation (1) for a
PZT, the effective piezoelectric coefficients e31 and e33 of the
NRPEC can be identified as e31 = e(1) and e33 = e(2). The
effective mass density of the NRPEC is given by the rule of
mixtures.

Rather than using the mechanics of materials approach
to deduce effective moduli of the NPREC, one could use
the principle of equivalent energy, or the Mori–Tanaka
method, or the self-consistent method, or Eshelby’s approach;
e.g. see [47–50].

3. Finite element model of the ACLD of thin
composite beams with constraining layer made of
NRPEC

In order to investigate the performance of the proposed NRPEC
as a candidate material for distributed actuators of smart
structures, we develop a FE model of the ACLD of laminated
composite thin beams with the constraining layer comprised of
the NRPEC. Figure 2 shows a cantilever laminated composite
beam composed of N layers and integrated partially with
the ACLD treatment on its top surface. The material of
each layer is assumed to be homogeneous, orthotropic and
linear elastic, and that of the constrained layer of the ACLD
treatment homogeneous, isotropic and linear viscoelastic. With
appropriate controls, the activated constraining layer should
enhance transverse shear deformations of the viscoelastic layer
leading to improved energy dissipation of the overall beam.
The length, the width and the thickness of the beam are denoted
by L , b and h, respectively, while the length of the ACLD
treatment by La . The thicknesses of the constraining and the
constrained layers equal h p and hv respectively. The mid-plane
of the substrate composite beam is taken as the reference plane
for analyzing infinitesimal deformations of the overall system.
The origin of the global coordinate system (x, z) is located on
this reference plane such that x = 0 and L denote end faces of
the beam, and a first-order shear deformation theory (FSDT)
is used to study its deformations. In figure 2, kinematics
of deformation in the x-direction based on the FSDT are
illustrated. The variable u0 represents the translational x-
displacement of a point (x , 0) on the reference plane (z = 0);
θx , φx and γx denote rotations in the xz plane of a normal to the
mid-plane of the substrate beam, the viscoelastic layer and the
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Figure 2. Schematic representation of a laminated composite beam
integrated with the ACLD treatment with the NRPEC constraining
layer.

piezoelectric composite layer, respectively. Also, as shown in
figure 2, the thickness coordinate (z) of the top and the bottom
surfaces of the kth layer of the overall beam are denoted by
hk+1 and hk , respectively. The axial displacement u of a point
in the overall beam is expressed as

u(x, z, t) = u0(x, t) +
(

z −
〈

z − h

2

〉)

θx (x, t)

+
(〈

z − h

2

〉

− 〈z − h N+2〉
)

φx (x, t)

+ 〈z − h N+2〉 γx (x, t) (8)

in which, the bracket 〈 〉 defines the appropriate singularity
function. Note that equation (8) is for a zigzag beam theory
and represents three piecewise continuous expressions for axial
displacements in the substrate beam, the viscoelastic layer
and the constraining layer. Since, the transverse actuation of
the constraining layer of the ACLD treatment can influence
flexural vibrations of the beam, the transverse normal strain
in the overall beam is also considered. The variation of
the transverse displacement (w) across the thickness of the
substrate beam, the viscoelastic layer and the constraining
layer are assumed to be affine in the thickness coordinate z.
Thus similar to the expression (8) for the axial displacement,
the transverse displacement of a point is written as

w(x, z, t) = w0(x, t) +
(

z −
〈

z − h

2

〉)

θz(x, t)

+
(〈

z − h

2

〉

− 〈z − h N+2〉
)

φz(x, t)

+ 〈z − h N+2〉 γz(x, t) (9)

in which w0 equals the transverse displacement of a point
on the reference plane; θz , φz and γz are the generalized

displacements representing gradients with respect to z of the
transverse displacement in the substrate beam, the viscoelastic
layer and the constraining layer, respectively. We note that
displacements u and w within the N layers of the laminated
substrate beam are continuous. Thus the continuity of
displacements at a point on an interface between two adjoining
layers of the beam is satisfied. However, because of possibly
different elastic moduli of their materials surface tractions
may not be continuous. For a thin beam the discontinuity
in surface tractions across an interface does not generally
introduce noticeable errors unless magnitudes of their elastic
moduli significantly differ. Because of possibly different
values of θx and φx in the beam, the viscoelastic layer, and
the constraining layer, surface tractions can also be continuous
across an interface between two adjoining layers.

For ease of analysis, the generalized displacements are
grouped into the following two vectors:

{dt } = [ u0 w0 ]T and

{dr } = [ θx θz φx φz γx γz ]T .
(10)

The non-vanishing components of infinitesimal strains at a
point in the kth layer are the normal strains ∈k

x and ∈k
z along the

x- and the z-directions, respectively, and the transverse shear
strain ∈k

xz . For displacement fields (8) and (9), we have

{∈k
b} = {∈bt} + [Z1]{∈br },

∈k
xz = ∈st +[Z4]{∈sr }, k = 1, 2, 3, . . . , N

{∈k
b} = {∈bt} + [Z2]{∈br },

∈k
xz = ∈st +[Z5]{∈sr }, k = N + 1

{∈k
b} = {∈bt} + [Z3]{∈br },

∈k
xz = ∈st + [Z6]{∈sr }, k = N + 2

(11)

in which the strain vector {∈k
b}, the generalized strains {∈bt},

{∈br }, ∈st , {∈sr }, and the transformation matrices [Z1], [Z2],
[Z3], [Z4], [Z5] and [Z6] are given by

{∈k
b} = [ ∈k

x ∈k
z ]T , {∈bt} = [

∂u0
∂x 0

]T
,

{∈br } = [
∂θx
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∂γx

∂x θz φz γz

]T
,

∈st= ∂w0

∂x
,

{∈sr } = [
θx φx γx

∂θz

∂x
∂φz

∂x
∂γz

∂x

]T
,

[Z1] =
[

z 0 0 0 0 0
0 0 0 1 0 0

]

,

[Z2] =
[

h/2 (z − h/2) 0 0 0 0
0 0 0 0 1 0

]

,

[Z3] =
[

h/2 hv (z − h N+2) 0 0 0
0 0 0 0 0 1

]

,

[Z4] = [ 1 0 0 z 0 0 ] ,

[Z5] = [ 0 1 0 h/2 (z − h/2) 0 ] ,

and [Z6] = [ 0 0 1 h/2 hv (z − h N+2) ] .

(12)
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The constitutive relation for the material of the kth orthotropic
layer of the base beam is given by

{σ k
b } = [Ck

b ]{∈k
b} and σ k

xz = C̄k
55 ∈k

xz;
(k = 1, 2, 3, . . . , N) (13)

where

{σ k
b } =

{
σ k

x

σ k
z

}

, [Ck
b ] =

[
C̄k

11 C̄k
13

C̄k
13 C̄k

33

]

and C̄k
i j (i, j = 1, 3 and 5) are the transformed elastic

coefficients with respect to the global coordinate axes.
Employing the complex modulus approach for the viscoelastic
layer (k = N + 1), its constitutive relation is expressed by
equation (13) with C̄ N+1

i j (i, j = 1, 3 and 5) being complex
numbers [33, 34]. The constitutive relations (6) for the
converse and the direct piezoelectric effects of the proposed
NRPEC are written as

{σ k
b } = [Ck

b ]{∈k
b} − {e}Ez, σ k

xz = C̄k
55 ∈k

xz

and Dz = {e}T{∈k
b} + ε33 Ek; k = N + 2

(14)

in which Dz is the electric displacement along the z-direction,
and ε33 is the dielectric constant. The piezoelectric coefficient
matrix {e} and the applied electric field Ez are given by

{e} = [ e31 e33]T and Ez = −V/h p (15)

with V being the applied voltage difference across the
thickness of the constraining layer.

The principle of virtual work [33] is employed to derive
governing equations of the beam/ACLD system, and is
expressed as
N+2∑

k=1

∫

�

({δ ∈k}T{σ k} + δ ∈k
xz σ k

xz − δ{dt }Tρk{d̈t }
)

d�

−
∫

�

δV ε33V/(h p)
2 d� −

∫

A
p̄δw dA = 0 (16)

where ρk is the mass density of the material of the kth layer,
p̄ is the externally applied traction on the surface area A, and
� represents the volume of the kth layer. For the thin beam,
the rotary inertia has been neglected in estimating the kinetic
energy.

The system is discretized by three-noded isoparametric
bar elements. Following equation (10), the generalized
displacement vectors associated with the i th (i = 1, 2, 3) node
of an element are written as

{dti } = [ u0i w0i ]T and

{dri } = [ θxi θzi φxi φzi γxi γzi ]T .
(17)

Thus the generalized displacement vector at a point within an
element can be expressed in terms of the nodal generalized
displacement vectors {de

t } and {de
r } as

{dt } = [Nt ]{de
t } and {dr } = [Nr ]{de

r } (18)

where
{de

t } = [ {de
t1}T {de

t2}T {de
t3}T ]T,

[Nt ] = [ Nt1 Nt2 Nt3 ]T,

Ni = ni It , {de
r } = [ {de

r1}T {de
r2}T {de

r3}T ]T,

[Nr ] = [ Nr1 Nr2 Nr3 ]T and Nr = nr Ir

with It and Ir being 2 × 2 and 6 × 6 identity matrices,
respectively, and ni the shape function in natural coordinates
associated with the i th node. Using equations (10), (12), (17)
and (18), the generalized strain vectors at a point within an
element are expressed as

{∈bt} = [Btb]{de
t }, {∈br} = [Brb]{de

r },
∈st= [Bts]{de

t } and {∈sr } = [Brs ]{de
r }

(19)

in which the nodal strain–displacement matrices [Btb], [Brb],
[Bts] and [Brs ] are given by

[Btb] = [ Btb1 Btb2 Btb3] ,
[Brb] = [ Brb1 Brb2 Brb3 ],
[Bts] = [ Bts1 Bts2 Bts3 ]

and [Brs ] = [ Brs1 Brs2 Brs3 ].

(20)

Various sub-matrices appearing in equation (20) have the
following expressions:

Btbi =
[ ∂ni

∂x 0

0 0

]

, Btsi = [
0 ∂ni

∂x

]
,

Brbi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ni
∂x 0 0 0 0 0

0 0 ∂ni
∂x 0 0 0

0 0 0 0 ∂ni
∂x 0

0 ni 0 0 0 0
0 0 0 ni 0 0
0 0 0 0 0 ni

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and Brsi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ni 0 0 0 0 0
0 0 ni 0 0 0
0 0 0 0 ni 0

0 ∂ni
∂x 0 0 0 0

0 0 0 ∂ni
∂x 0 0

0 0 0 0 0 ∂ni
∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(21)

Substitution from equations (18) and (19) into equation (16)
gives the following open loop equations of motion for the
coupled beam and the ACLD treatment:

[Me]{d̈e
t } + [K e

t t ]{de
t } + [K e

tr ]{de
r } = {Fe

tp}V + {Fe} (22)

[K e
rt ]{de

t } + [K e
rr ]{de

r } = {Fe
rp}V . (23)

The element stiffness matrices [K e
t t ], [K e

tr ] and [K e
rr ], the

element electroelastic coupling vectors {Fe
tp} and {Fe

rp}, the
element load vector {Fe}, and the element mass matrix [Me]
appearing in equations (22) and (23) are given by

[K e
t t ] =

∫ Le

0

([Btb]T[Dtb][Btb] + [Bts]T[Dts ][Bts]
)

dx,

[K e
tr ] =

∫ Le

0

([Btb]T[Dtrb ][Brb] + [Bts]T[Dtrs ][Brs ]
)

dx ,

{Fe
tp} =

∫ Le

0
[Bt ]T{Dtp} dx,
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[K e
rr ] =

∫ Le

0

([Brb]T[Drrb ][Brb] + [Brs ]T[Drrs ][Brs ]
)

dx ,

{Fe
rp} =

∫ Le

0
[Br ]T{Drp} dx ,

{Fe} =
∫ Le

0
p̄[Nt ]T[ 0 1 ]T dx and

[Me] =
N+2∑

k=1

ρk(hk+1 − hk)

∫ Le

0
[N ]T[N ] dx .

Elastic stiffness matrices [Dtb], [Dtrb], [Drrb ], [Dts ],
[Dtrs ], [Drrs ] and electroelastic constant vectors {Dtp} and
{Drp} appearing in equations (22) and (23) are given by

[Dtb] =
N+2∑

k=1

∫ hk+1

hk

[C̄k
b ] dz,

[Dtrb ] =
N∑

k=1

∫ hk+1

hk

[Ck
b ][Z1] dz

+
∫ h N+2

h N+1

[C̄ N+1
b ][Z2] dz+

∫ h N+3

h N+2

[C̄ N+2
b ][Z3] dz,

[Drrb ] =
N∑

k=1

∫ hk+1

hk

[Z1]T[C̄k
b ][Z1] dz

+
∫ h N+2

h N+1

[Z2]T[C̄ N+1
b ][Z2] dz

+
∫ h N+3

h N+2

[Z3]T[C̄ N+2
b ][Z3] dz,

[Dts ] =
N+2∑

k=1

∫ hk+1

hk

C̄k
55 dz,

[Dtrs ] =
N∑

k=1

∫ hk+1

hk

Ck
s [Z4] dz

+
∫ h N+2

h N+1

C̄ N+1
55 [Z5] dz +

∫ h N+3

h N+2

C̄ N+2
55 [Z6] dz,

[Drrs ] =
N∑

k=1

∫ hk+1

hk

[Z4]TC̄k
55[Z4] dz

+
∫ h N+2

h N+1

[Z5]TC̄ N+1
55 [Z5] dz

+
∫ h N+3

h N+2

[Z6]TC̄ N+2
55 [Z6] dz,

{Dtp} =
∫ h N+3

h N+2

−{e}/h p dz and

{Drp} =
∫ h N+3

h N+2

−[Z3]T{e}/h p dz.

Since the matrix of elastic constants of the viscoelastic
layer is complex, the stiffness matrices of an element integrated
with the ACLD treatment are complex. For an element
not integrated with the ACLD treatment, the electroelastic
coupling matrices are null vectors and the element stiffness
matrices are real. As the stiffness matrices are composed
of two parts corresponding to the bending and the transverse
shear deformations, we employ a reduced order integration rule
(2 × 2) on terms representing the transverse shear deformation
to avoid the shear locking phenomenon generally prevalent in

the analysis of a thin beam by the FE method. The element
equations are assembled to obtain the following open loop
global equations of motion:

[M]{Ẍt } + [Ktt ]{Xt } + [Ktr ]{Xr } = {Ftp}V + {F} (24)

and [Krt ]{Xt } + [Krr ]{Xr } = {Frp}V (25)

where [M] is the global mass matrix, [Ktt ], [Ktr ] and [Krr ]
are the global stiffness matrices, {Ftp}, {Frp} are the global
electroelastic coupling vectors, {Xt } and {Xr } are the global
nodal generalized displacement vectors, and {F} is the global
nodal force vector. After invoking boundary conditions, the
global generalized degrees of freedom {Xr } are condensed out
to obtain the following equation of motion in terms of the
global nodal translational degrees of freedom {Xt}.

[M]{Ẍt } + [K ]{Xt } = {F} + {Fa}V (26)

where, [K ] = [Ktt ] − [Ktr ][Krr ]−1[Krt ] and {Fa} = {Ftp} −
[Ktr ][Krr ]−1{Frp}. Since the stiffness matrix of an element
augmented with the ACLD treatment is complex, the global
stiffness matrix [K ] is complex and the energy dissipation
characteristics of the beam are attributed to the imaginary part
of this matrix. Thus the global equations of motion (26) also
represent the passive (uncontrolled) constrained layer damping
of the substrate beam when no voltage difference is applied
across the constraining layer.

4. Controllability of the ACLD treatment

In order to investigate the performance of the proposed
NRPEC, an optimal control problem is formulated to
determine the length of the ACLD treatment that maximizes
controllability for different modes of vibrations. Equation (26)
is first written in the following standard state space form

{Ẋ} = [A]{X} + {B}V (27)

where the system matrix [A], the control input matrix {B}, and
the state vector {X} are given by

[A] =
[

O I
−[M]−1[K ] O

]

, {B} =
[

Õ
[M]−1{Fa}

]

and {X} =
[ {Xt }

{Ẋt }
]

.

(28)
In matrices [A] and {B}, O is a null matrix, I an identity
matrix, and Õ a null vector. The controllability criterion
proposed by Hamden and Nayfeh [51] has been employed to
determine the optimal length of the treatment based on the
maximum value of the controllability measure. According to
this criterion, the gross measure of controllability of the i th
mode due to the control input is assessed by the norm of vector
μ defined by

μ = qT
i {B}/∥∥qi

∥
∥ (29)

where qT
i is the normalized left eigenvector of [A] for the i th

mode such that qT
i p j = δi j with p j and δi j being the right

eigenvector of [A] for the j th mode and the Kronecker delta,
respectively. For a given substrate beam, the control system
matrix [A] and the control input matrix {B} vary with the
change in the length of the ACLD treatment. Thus the optimal
length of the ACLD treatment equals its length that maximizes
the value of the controllability measure.
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Figure 3. Variation with fiber volume fraction of the effective
piezoelectric coefficient, e31, of the NRPEC and the PZT5H/epoxy
piezocomposite.

5. Closed loop model

In the active control strategy, we apply a voltage proportional
to the translational velocity of the point (La , 0) of the free end
of the ACLD treatment of the constraining layer. Thus

V = −kdẇ(La, 0) = −kd[U ]{Ẋ } (30)

where kd is the gain factor, and [U ] a row vector relating the
velocity of the point (La , 0) to the time derivatives of the global
nodal generalized translational displacements. By substituting
for V from equation (30) into (26), we obtain the following
equation of motion governing the closed loop behavior of the
overall beam/ACLD system

[M]{Ẍ } + [Cd ]{Ẋ } + [K ]{X} = {F} (31)

where [Cd ] = kd{Fa}[U ] is the active damping matrix.

6. Results and discussion

In the following sample problems we consider armchair
SWCNTs and the PZT5H as materials for fibers and the matrix,
respectively, and values of their material parameters are listed
in table 1. Both the SWCNTs and the PZT5H are taken to be
transversely isotropic with the axis of transverse isotropy along
the z-axis that is along the thickness of the NRPEC lamina.
Figures 3 and 4 illustrate, respectively, variation with the fiber
volume fraction of the effective piezoelectric coefficients e31

and e33 of the proposed NRPEC. The effective values of e31

and e33 for the 1–3 PZT5H/epoxy composite analyzed by
Smith and Auld [46] are also included in these figures. It is
clear that, at low fiber volume fractions, magnitudes of the
effective piezoelectric coefficients of the proposed NRPEC are
significantly higher than those of the PZT5H/epoxy. This is
because elastic moduli of both the fiber and the matrix of the
NRPEC are higher than those of the PZT5H/epoxy composite.
The effective elastic constants of the proposed NRPEC are also
higher than those of the PZT5H/epoxy composite as can be
seen from figure 5 where only C33 is plotted. Shen and Li’s [6]

Figure 4. Variation with fiber volume fraction of the effective
piezoelectric coefficient, e33, of the NRPEC and thePZT5H/epoxy
piezocomposite.

Figure 5. Variation with fiber volume fraction of the effective elastic
coefficient, C33, of the NRPEC and the PZT5H/epoxy
piezocomposite.

data indicates that magnitudes of elastic constants of SWCNTs
decrease with an increase in their diameter. Thus values of the
effective piezoelectric coefficient e31 and the elastic constant
C33 of the NRPEC decrease with an increase in the diameter of
the SWCNT (figures 3 and 5). It can be concluded from results
plotted in figure 4 that the effective value of e33 of the NRPEC
is independent of the diameter of the SWCNT.

Even though results in figures 3–5 are plotted for large
values of volume fractions of the SWCNT, in practice a
uniform distribution of CNTs is obtained only for a rather small
volume fraction of SWCNTs. The goal here is to show that
the performance of the NRPEC as a material for actuators is
superior to that of conventional piezocomposites. We neither
address fabricability nor cost of the NRPEC.

To demonstrate the performance of the NRPEC as a
material for distributed actuators of smart structures, the ACLD
of a cantilever laminated composite beam with the constraining
layer made of the NRPEC is investigated. Values of elastic
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Table 1. Material properties of the constituent phases of the NRPEC.

Material Source
C11

(GPa)
C12

(GPa)
C13

(GPa)
C33

(GPa)
C44

(GPa)
ep

31

(C m−2)
ep

33

(C m−2)

SWCNT
(10, 10) [6] 288 254 87.8 1088 442 — —
SWCNT
(20, 20) [6] 138 134 43.5 545 227 — —
SWCNT
(50, 50) [6] 55.1 54.9 17.5 218 92 — —
PZT5H [35] 151 98 96 124 23 −5.1 27
Spurr [35] 5.3 3.1 3.1 5.3 0.64 — —

Table 2. Non-dimensional natural frequencies
� = ωL2

√
ρ/(ELh2) of the substrate beam with negligible

thickness of the ACLD treatment.

Beams Source
1st
mode

2nd
mode

3rd
mode

(0◦/90◦/90◦/0◦) Present
FEM

0.9238 4.8872 11.4385

Ref. [52] 0.9241 4.8925 11.4400

(45◦/−45◦/
45◦/−45◦)

Present
FEM

0.2947 1.8147 4.9087

Ref. [53] 0.2962 1.8156 4.9163

moduli of an orthotropic layer of the graphite/epoxy substrate
beam, in the material principal directions, are

EL = 172 GPa, EL/ET = 25,

GLT = 0.5ET, υLT = 0.25

where EL and ET are Young’s moduli in the longitudinal and
the transverse directions respectively, and GLT and υLT the
shear modulus and Poisson’s ratio in the xz plane. Unless
otherwise mentioned, the orthotropic layers of the substrate
beam are of equal thickness with the length and the thickness
of the beam set equal to 0.5 m and 5 mm, respectively. The
complex shear modulus, Poisson’s ratio and the mass density
of the constrained viscoelastic layer are taken [34] as 20(1 +
i) MPa, 0.3 and 1140 kg m−3, respectively. Also, since the
performance of the proposed NRPEC will be compared with
that of the 1–3 PZT5H/epoxy composite with 40% PZT5H
fibers by volume, the thickness of the constraining layer made
of the NRPEC is chosen so that for a particular length the two
constraining layers have the same weight. Thus the thickness
of the constraining layer of the NRPEC is given by

h p

∣
∣
∣
∣
SWCNT/PZT5H

= (
ρN+2

SWCNT/PZT5H/ρN+2
PZT5H/Epoxy

)
h p

∣
∣
∣
∣
PZT5H/Epoxy

. (32)

In order to validate the FE model developed here,
a specimen is considered in which thickness (0.001 μm)
of the ACLD treatment is negligible as compared to the
0.005 m of the substrate beam. Presently computed natural
frequencies are compared in table 2 with those obtained by
other investigators [52, 53]. It is clear that the two sets of values
agree well with each other.

To determine the optimum length of the ACLD treatment,
we have displayed in figure 6 the variation with the length
of the ACLD treatment of the controllability measure, μ,
defined by equation (29) for the proposed NRPEC and the
PZT5H/epoxy constraining layers for controlling the first mode
of vibration of a symmetric cantilever cross-ply (0◦/90◦/0◦)
beam. It is clear that the maximum controllability is achieved
when the length of the ACLD treatment equals 70% of the
length of the substrate beam, and the maximum controllability
for the NRPEC is significantly higher than that of the
PZT5H/epoxy composite. This is attributed to the fact that
values of effective piezoelectric coefficients (e31, e33) of the
proposed NRPEC are larger than those of the PZT5H/epoxy
composite. We note the controllability of the constraining
layer decreases with an increase in volume fraction of the
SWCNTs. For controlling the second and the third modes of
vibration, the maximum controllability is achieved when the
length of the treatment equals 90% and 100% of the beam
length (cf figures 7 and 8) and for each case the controllability
of the NRPEC constraining layer is larger than that of the
PZT5H/epoxy composite. Similar results are obtained for
antisymmetric angle-ply laminated substrate beams. However,
for the sake of brevity, the variation with the length of the
ACLD treatment of the controllability measure for the first
three modes of vibration of the (−45◦/45◦/−45◦/45◦) beam
are displayed in figure 9. Values of La/L for the maximum
controllability of the first, the second, and the third modes of
vibration equal 0.65, 0.9 and 1.0, respectively.

In order to investigate the frequency response for the
ACLD of a cantilever laminated beam using the proposed
NRPEC with 20% fiber volume fraction of SWCNTs, the
length of the ACLD treatment is set equal to 65% of the
length of the substrate beam. For 1 mm thickness of
PZT5H/epoxy layer, the thickness of the NRPEC constraining
layer determined from equation (32) equals 0.582 mm. To
compute the frequency response functions, the beam is
harmonically excited by a force of 2 N at its free end. For
three values of the gain factor, figure 10 illustrates frequency
response functions for the transverse displacement, w, of
the free end (L , 0) of a symmetric cross-ply (0◦/90◦/0◦)
beam. Both uncontrolled (passive or gain factor equal
to zero) and controlled responses displayed in this figure
clearly reveal that the NRPEC constraining layer significantly
attenuates the amplitude of vibrations and enhances the
damping characteristics of the beam over those of the passively
damped (uncontrolled) beam. In figures 11 and 12 we have
compared the performance of the NRPEC with that of the
PZT5H/epoxy composite. It is known that the ACLD of smart
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Figure 6. Variation of controllability of the ACLD treatment with
length for controlling the first mode of vibration of a cantilever
cross-ply (0◦/90◦/0◦) beam with the constraining layer comprised of
the NRPEC and the PZT5H/epoxy piezocomposite.

Figure 7. Variation of controllability of the ACLD treatment with
length for controlling the second mode of vibration of a cantilever
cross-ply (0◦/90◦/0◦) beam with the constraining layer comprised of
the NRPEC and the PZT5H/epoxy piezocomposite.

structures is attributed to the transverse shear deformation
of the constrained viscoelastic layer. The increase in the
transverse shear deformation of the constrained viscoelastic
layer caused by the addition of the constraining layer depends
on the magnitudes of the piezoelectric coefficients of the
constraining layer. Since values of the effective piezoelectric
coefficients (e31, e33) of the proposed NRPEC are higher
than those of the PZT5H/epoxy composite, therefore the
NRPEC enhances the attenuation of vibrations of the beam.
Furthermore, the control voltage required by the NRPEC
constraining layer is less than that for the PZT5H/epoxy
composite (cf figure 12). Whereas Batra and Geng [35]
computed the energy required to annul vibrations of a plate,
we have not done so.

Figure 8. Variation of controllability of the ACLD treatment with
length for controlling the third mode of vibration of a cantilever
cross-ply (0◦/90◦/0◦) beam with the constraining layer comprised of
the NRPEC and the PZT5H/epoxy piezocomposite.

Figure 9. Variation of controllability of the ACLD treatment with
length for controlling the first three modes of vibration of a cantilever
cross-ply (45◦/45◦/–45◦/45◦) beam with the constraining layer
comprised of the NRPEC and the PZT5H/epoxy piezocomposite.

As illustrated in figure 13, contributions from the in-
plane and the transverse actuations of the proposed NRPEC
constraining layer for improving damping characteristics of
the beam can be ascertained by fixing the gain factor to
say 2000 and setting either e33 or e31 equal to zero. For
e31 = 0 and e33 �= 0, an applied electric field to the NRPEC
constraining layer in the z-direction induces transverse strains
in it. However, for e33 = 0 and e31 �= 0, the same electric
field causes in-plane deformations of the NRPEC constraining
layer. When both e31 and e33 are nonzero, the active damping
of the beam is attributed to both the in-plane and the transverse
deformations of the constraining layer. It is evident from
results presented in figure 13 that both the in-plane and the
transverse actuations of the NRPEC constraining layer occur
in unison and hence improve damping characteristics of the
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Figure 10. Variation with frequency of excitation of the transverse
displacement of the free end of a cross-ply (0◦/90◦/0◦) cantilever
beam with the ACLD treatment.

Figure 11. Comparison of the controlled responses for the ACLD of
the cantilever cross-ply (0◦/90◦/0◦) beam obtained by using the
NRPEC and PZT5H/epoxy piezocomposite.

beam. However, the contribution of the transverse actuation is
larger than that of the in-plane actuation. Frequency response
functions for the ACLD of antisymmetric angle-ply beams are
found to be similar to those illustrated in figure 10 for a cross-
ply beam, and for the sake of brevity are omitted.

Results presented above are for the NRPEC containing
20% volume fraction of uniformly distributed SWCNTs.
However, in practice, it has not been feasible to achieve this
thus far. With improvements in manufacturing technologies
and enhanced functionalization of SWCNTs, one may attain
this in future. When the SWCNTs are not aligned in the
thickness direction, then the deduction of effective moduli
by the mechanics of materials approach will give very
approximate values of the effective moduli and a more realistic
approach is to use a method adopted in [39–41]. We note
that Vidoli and Batra [54] have used a higher order shear
and normal deformation theory to analyze electromechanical

Figure 12. Variation with frequency of the control voltage for the
ACLD of the cantilever cross-ply (0◦/90◦/0◦) beam obtained by
using the NRPEC and the PZT5H/epoxy piezocomposite.

Figure 13. For three combinations of values of e31 and e33, variation
with frequency of the tip deflection of the cantilever cross-ply
(0◦/90◦/0◦) beam integrated with the ACLD treatment.

deformations of a PZT beam with the axis of transverse
isotropy not necessarily aligned along the thickness of the
beam.

We have assumed linear constitutive relations for the
NRPEC, the viscoelastic layer, and the material of the
beam. Batra and Liang [41] and Batra and Geng [35]
have incorporated material and geometric nonlinearities in
formulating three-dimensional problems for smart structures,
and analyzing the active control of their vibrations by the finite
element method.

7. Conclusions

We have proposed a new 1–3 piezoelectric composite
(NRPEC) comprised of single-walled carbon nanotube
(SWCNT) reinforcements and a monolithic piezoceramic
(PZT5H) matrix. A micromechanical analysis has been carried
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out to predict effective piezoelectric and elastic moduli of
the NRPEC. It is found that at low volume fractions of
SWCNTs, the effective piezoelectric and the effective elastic
moduli of the NRPEC are significantly higher than those
of the 1–3 PZT5H/epoxy composite. To investigate the
performance of the NRPEC as an actuator material for smart
structures, the active constrained layer damping (ACLD) of a
cantilever laminated composite beam has been studied. Both
in-plane and out-of-plane actuations of the constraining layer
have been considered. We have developed a finite element
model of a beam with the ACLD treatment incorporating
transverse deformations of the substrate beam, the constrained
viscoelastic layer, and the constraining layer to describe
dynamics of the system. A controllability criterion has been
implemented to determine the optimal length of the ACLD
treatment for annulling a desired mode of vibration of the
system. It is found that the controllability of vibration of
the ACLD treatment with the NRPEC constraining layer is
significantly larger than that of the PZT5H/epoxy composite
of the same mass. The frequency responses for the ACLD of
symmetric cross-ply and antisymmetric angle-ply composite
beams have revealed the improved attenuating capability of
the NRPEC constraining layer over that of the PZT5H/epoxy
layer. This is due to both in-plane and out-of-plane actuations
induced by the NRPEC constraining layer. Thus the distributed
NRPEC actuators can be used to control vibrations of
lightweight structures.
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