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Abstract

A wide range of microelectromechanical systems (MEMSs) and devices are
actuated using electrostatic forces. Multiphysics modeling is required, since
coupling among different fields such as solid and fluid mechanics,
thermomechanics and electromagnetism is involved. This work presents an
overview of models for electrostatically actuated MEMSs.
Three-dimensional nonlinear formulations for the coupled electromechanical
fluid—structure interaction problem are outlined. Simplified reduced-order
models are illustrated along with assumptions that define their range of
applicability. Theoretical, numerical and experimental works are classified

according to the mechanical model used in the analysis.

1. Introduction

Recent technological developments have opened up promising
research opportunities and engineering priorities in microme-
chanics. It is now possible to manufacture mechanical parts
such as resonators, sensors, gears, and levers on a micron
lengthscale, and to produce tiny needles to inject fluid into a
living organism without stimulating nerve cells. The use of
existing integrated circuit technology in the design and pro-
duction of microelectromechanical systems (MEMSs) allows
these devices to be batch-manufactured, thereby reducing the
production cost. The thorough understanding, prediction, and
control of MEMSs behavior at the microscale are critical is-
sues. Multiphysics modeling is required, since coupling among
different fields such as solid and fluid mechanics, thermome-
chanics and electromagnetism is involved.

MEMSs find wide applications as sensors and actuators.
The analysis of methods of actuation and sensing has been a
topic of interest over the past several years. Different actuation
and sensing properties such as piezoresistive, piezoelectric,
electrostatic, thermal, electromagnetic, and optical have been
used. Comparisons among MEMSs based on these properties,
and of fabrication methods, can be found in [1-3]. There is

no one optimal sensing and actuating method, and the choice
mainly depends on the particular application.

Electrostatics is often the preferred sensing and actuating
technique [1]. An electrostatically actuated MEMS is generally
an elastic perfect conductor suspended above a stationary rigid
perfect conductor (see e.g. [4]) with a flat top surface. A
dielectric medium, usually air, fills the gap between them.
The overall system behaves as a variable gap capacitor. An
applied DC voltage is used to induce displacements of the
deformable body, and a consequent change in the system
capacitance. Typical applications are transistors, switches,
micro-mirrors, pressure sensors, micro-pumps, moving valves
and micro-grippers; see e.g. [5—11]. When an AC component is
superimposed on the steady voltage to excite harmonic motions
of the system, resonators are obtained. These devices are
used in signal filtering, and chemical and mass sensing; see
e.g. [12-19].

The applied electrostatic voltage has an upper limit
beyond which electrostatic force is not balanced by the
elastic restoring force in the deformable conductor that
eventually snaps and touches the lower rigid plate, and the
MEMS collapses. This phenomenon, called pull-in instability,
has been observed experimentally [20, 21]. The critical
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Figure 1. Sketch of the lumped spring—mass system.

displacement, and the critical voltage associated with this
instability, are called pull-in displacement and pull-in voltage,
respectively. Their accurate evaluation is crucial in the design
of electrostatically actuated MEMSs. In particular, in micro-
mirrors [8] and micro-resonators [22] the designer avoids this
instability in order to achieve stable motions; however, in
switching applications [6] the designer exploits this effect to
optimize the performance of the device.

A simple lumped spring—mass system for estimating pull-
in parameters is proposed in [21] (see figure 1). The elasticity
of the deformable body is lumped into the spring stiffness
Kk, FS is the spring restoring force, ¢ is the applied voltage,
F°¢ is the electrostatic force, m is the mass of the movable
electrode, gy is the initial gap between the two conductors, u is
the displacement of the movable electrode, A is the electrode’s
area, € is the dielectric constant of the dielectric medium
between the two electrodes, and g = go + u is the actual gap.
F* exceeds F*® near the pull-in unstable condition, and the pull-
in parameters are
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The pull-in voltage gz_ﬁpl so obtained usually exceeds
that observed experimentally for many applications [23].
Moreover, the lumped spring—mass model does not incorporate
inherent nonlinearities of the electrostatic and the restoring
forces [11, 24], resulting in poor estimates of the pull-in gap
gpr and the pull-in voltage op1.

The rest of the paper is organized as follows. In section 2
we formulate the three-dimensional (3D) nonlinear problem
and cite available studies. In section 3, simplified distributed
models are illustrated, along with numerical and experimental
results. Section 4 gives a brief survey of additional effects
appearing at the nanoscale in the miniaturization of MEMSs.
Section 5 gives a summary of works in a table.
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2. Three-dimensional problem

2.1. Coupling in MEMSs

The following example to illustrate the coupling phenomenon
in MEMSs is taken from [25]. Consider the electrostatically
actuated cantilever microbeam shown in figure 2. Air fills the
gap between the two conductors and the medium surrounding
the device. When a potential difference ¢ is applied between
the top deformable electrode and the bottom immovable plate,
electrostatic charges are induced on surfaces of the conductors
(figure 2(a)). These charges generate an electrostatic pressure
(see section 2.4). As a consequence, the movable electrode
deforms against the viscous fluidic force (see section 2.5), the
charges redistribute on surfaces of the conductors, and the
electrostatic force changes (figure 2(b)) till the system reaches
an equilibrium configuration.

2.2. Problem statement and geometry

We model the deformable conductor as a solid elastic body
undergoing finite deformations. The deformable and the
fixed rigid body are considered as perfect conductors. From
an electric point of view air is modeled as a homogeneous
isotropic dielectric, while, from a mechanical point of view,
it is regarded as a compressible Newtonian fluid. We
assume that the temperature does not change during the
motion. Deformations of movable conductors are stated in the
Lagrangian description, while air motion and electrostatic field
are stated in the Eulerian description, see e.g. [26].

The notation is illustrated in figure 2. We denote the
reference configuration of the deformable conductor by €2.
A point p €  is called a material point. The motion is
indicated by x, and the reference map by p. The present
configuration at time ¢ is €, = x(£2,¢), and points in the
present configuration are x = x(p, t). The outward normal
to 02 at p is denoted by n(p), and the outward normal to 9€2,
at x by m(x). The part of the boundary 92 where essential
boundary conditions are prescribed is I'y. The part of 92
where natural boundary conditions are assigned is I'y. The
configuration of the immovable conductor is €29. At time ¢ air
occupies an unbounded portion of the ambient space &, defined
by Q, = £—Q,. Points in €, are identified by x, as is done for
points of the present configuration of the deformable electrode.
For a planar deformable conductor (e.g. a plate) we identify the
point x with the pair (X, z), where X is the projection of x on
the fixed conductor plane, and z = x -e is the component along
the normal e of the fixed conductor plane. A point located
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Figure 2. Simple example to illustrate electromechanical coupling in electrostatic MEMSs.
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on the movable planar conductor boundary closer to the fixed
conductor is characterized by (X, g).

The material description of a spatial field (-) is denoted
by (-)m. Spatial gradient and divergence are indicated by
grad and div respectively. Material or referential gradient and
divergence are denoted by Grad and Div. A superimposed dot
means material time derivative.

2.3. Mechanical deformations

An electrostatically actuated MEMS can undergo large
deformations depending on its geometry and applied voltage.
Here we outline governing equations for large deformations of
a MEMS wherein the deformable electrode is modeled as a 3D
continuum.

The equilibrium equations in the Lagrangian description
of motion are [26]

ool = DivFS, (1a)

S=s". (1b)

Equations (1a) and (1b) are the balance of linear momentum,
and the balance of moment of momentum respectively. S
is the second Piola—Kirchhoff stress tensor, u = x — p the
displacement field, F = 1 4 Gradu the deformation gradient,
1 the second-order identity tensor, oo the mass density in the
reference configuration, and T means transposition.
For an elastic material, the constitutive equation for S
is [26]
S =S(F) (@)
where S represents the response function for the material.

Equations (la), (1b) and (2) are supplemented with the
following boundary conditions:

u=u on [y, Pn=t on I, 3)
and initial conditions
u(p, 0) = uy(p), u(p, 0) = vo(p), C))

where P = FS is the first Piola—Kirchhoff stress tensor, and t
is the surface traction per unit undeformed area. Furthermore,
uy and v, give, respectively, the initial displacement and the
initial velocity fields.

The traction exerted at the point x of the boundary 9€2, is
comprised of the electrostatic traction f°(x)m(x) and of the
traction t*(x) exerted by air. We note that the electrostatic
traction acts along the normal to the boundary as a consequence
of the assumption that the body is a perfect conductor. We
refer to f© as the electrostatic pressure. On the other hand, the
fluidic traction does not, in general, act along the normal due to
air viscosity. The traction exerted by air equals Tm, where T
is the fluid Cauchy stress tensor. The traction in the reference
configuration at point p and time 7 is given by

i(p. 1) = [(detF)(f*1+ TF "n] (p. ). 5)

In order to solve the initial-boundary-value problem defined
by equations (1a), (1b), (2), (3) and (4), we need an explicit
form of the material response function S in (2), and of the
electrostatic pressure f° and the fluid Cauchy stress tensor

T in (5). The response function S depends on the deformable
electrode’s material, while the electrostatic and fluidic tractions
are coupled to the electrostatic and fluid problems described
below. Similar multiphysics problems are encountered in
aeroelasticity [27].

2.4. Electrostatic force

Because of the very high speed of electric waves as compared
to that of the mechanical waves, we presume that inertia
effects in the electric field are negligible. The boundary-value
problem for the electrostatic potential ¢ formulated in the
present configuration is (see e.g. [28])

divgrad¢ =0 in Q,, (6a)
p=9 on 0%, (6b)
=0 on 382, (6¢)
¢ —>0 as ||x|| — oo. (6d)

The electrostatic potential energy U* stored in &, for the
two-conductor system is given by

€ _
U® = 5 / grad¢ - gradeg d$2,, 7
where € is the dielectric constant of air. The electrostatic
pressure at the point x in the present configuration is given by

£200 = =5 [eradg - gradg] (). ®)
Using the relation

Grad¢g,, = F Tgradqﬁ,

for the material description of the electrostatic pressure at the
observation point p in the reference configuration, we get

€

fa@) = 5

[Gradd)m - (F'F)” Grad¢m] ®.
Using potential theory, the solution of the boundary-value
problem (6a)—(6d) can be written as a boundary integral [29]:

¢(x) = / G(x,y)o (y)dy:(y) +cr, (10)
992,Ud%0

where x and y are the observation and the source points on
082, U 0%, o is the surface charge density, G the Green
function, and dy; the area element. The constant cy is
determined from the potential at infinity. Equation (10) gives
the electrostatic potential in the present configuration of the
system. The area element dy, is expressed in terms of the
corresponding area element dy by (see [26])
dy? = (detF)*(n - (F"F)"'n) dy?. (11)

Therefore, equation (10) can be written in the Lagrangian
description of motion as

¢m(p) = / Gm(p’ P(Y))Um(P(Y))(det F)
IQUINY
x y/n- (FTF) 'ndy(y) +cr. (12)
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2.5. Viscous damping

The equilibrium equations in the Eulerian description of
motion for the air are [26]

b+ pdivy = 0, (13a)
pv = divT, (13b)
T=1". (13¢)

Equations (13a), (13b) and (13c¢) are the balance of mass, the
balance of linear momentum and the balance of moment of
momentum, respectively. T is the fluid Cauchy stress tensor, v
the fluid velocity field, p the fluid mass density in the present
configuration, and a superimposed dot indicates the material
time derivative.

For a compressible Newtonian ideal gas, the constitutive
equations for T and the fluid pressure 7 are [30]

T = — (7 + 211divv) 1 4 2uD, (14)

7 = pRT, (15)

where g is the shear viscosity, D = Symgradv the fluid
stretching or the strain-rate tensor, R the ideal gas constant,
T the absolute temperature, and we have employed Stoke’s
approximation [30]. Symgradv equals the symmetric part of
gradv. By substituting (14) into (13b) one obtains the Navier—
Stokes equation:
. Mmoo .

pv = —grad (n — Edwv) + div(ugradv). (16)
Equations (16), (13a) and (15) are completed with the
following boundary conditions:

v(x, 1) = X(p(x, 1), 1) on 92, 17)
v=0 on 9, (18)
v— 0 as ||x|| — oo, (19)
and initial conditions
v(x,0) =0, p(x,0) = po(x), (20)

where we assumed that the fluid is initially at rest. Boundary
conditions (17) and (18) state that the relative velocity between
the electrodes and the fluid is zero.

2.6. References for results

Numerous computer algorithms based on the finite-element
(FE) formulation of the above-stated 3D problem have been
developed [31-34] and used to simulate MEMSs [35, 23].
In [36] a meshless numerical formulation has been proposed
to analyze MEMS:s. In [37, 38] a potential theory formulation
in the Lagrangian description of motion (equation (12)) of
the electrostatic problem for two-conductor systems comprised
of deformable bodies has been numerically solved. The
Lagrangian description of motion has been used in [25, 39]
to numerically solve the MEMS multiphysics problem with
coupling between the electrostatic and the mechanical fields;
in [40] the coupling of hierarchical fluid models with the
electromechanical domain has also been included. In [41]
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there is presented an algorithm for extracting the pull-in
parameters of electrostatic actuators based on iterating the
displacement of a pre-chosen degree-of-freedom of a node of
the actuator. Different computational techniques to optimize
the 3D algorithms are reported in [42].

Results of numerical simulations can be found in
[43, 23, 44]. In [43], corrections to ideal models of fixed—
fixed microbeams due to fringing fields, the assumption of
plane-strain deformations and anchor compliance are studied,
while in [44] pull-in parameters of micromachined cantilevers
are extracted including the effects of residual stresses and
somewhat realistic boundary conditions. In [23], effects
of partially electroded conductors, of axial stress, nonlinear
stiffening, charge redistribution and fringing fields are included
in the simplified lumped mass—spring models of fixed—fixed
and cantilever microbeams.

3. Reduced-order models

In order to alleviate the computational expense associated with
the 3D analysis, considerable efforts have been devoted to the
development of reduced-order distributed models for MEMSs.
Approximations can be made in any one of the three domains
of the multiphysics MEMS analysis: mechanical, electrical and
fluidic.

The deformable electrode can be modeled as a beam
or as a plate depending upon its geometry. Theories of
beams (1D) and plates (2D) can be derived intrinsically
(see e.g. [45, 46]), or can be deduced from the full 3D
theory (see e.g. [45, 47-50]). Beam theory is generally
applicable to slender bodies whose cross-sectional dimensions
are significantly smaller than their lengths [51]. Plate theory
is applicable to a flat body whose thickness is significantly
smaller than the width and the length [S1]. Beam theory
is also applicable to plate-like bodies undergoing cylindrical
bending deformations; in this case the body is usually referred
to as a wide beam. String and membrane theories can be
viewed as further simplifications of beam and plate theories,
respectively, that are suitable when the body rigidity due to
in-plane stretching dominates over the bending stiffness [52].
This generally is valid for extremely thin prestressed bodies.

For relatively small gaps between the two conductors
with respect to the in-plane dimensions of the deformable
conductor, the two conductors can be considered to be locally
parallel to each other. The electrostatic pressure can be
expressed using the parallel-plate approximation [4, 28] as

€d?

ffx = —W,

2D
where x = X + g(X)e is a point on the movable conductor
separated by a gap g(X) from the fixed conductor. In this
approximation, fringing fields emanating from the top and the
lateral surfaces of the movable conductor are discarded. For
narrow geometries, fringing fields can be taken into account
by correcting the parallel-plate approximation using Palmer’s
formula [53], the Mejis—Fokkema formula [54], or those given
in [55, 56]. Estimates of the electrostatic pressure based on
the parallel-plate approximation are not influenced by spatial
derivatives of the function g and are suitable only when
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go/L < 1, where L is the length of the deformable conductor.
For larger gaps, more accurate estimates can be developed
by considering the slope and the curvature of the deformable
electrode [57, 58].

The Navier—Stokes equation (16) can be considerably
simplified under the hypotheses of go/L < 1, slow motions
with the dominant motion in the gap direction [1]. In this
case the inertia term on the left-hand side of equation (16) can
be discarded, and on the right-hand side the terms involving
derivatives of the in-plane velocity with respect to the gap
direction and velocity component along the gap direction can
be neglected. As a result the fluidic pressure m can be
determined through the Reynolds equation of lubrication [59]:

d(rg)

12
Y

(&, 1) + div(g’mgradm)(X, 1) = 0, (22)

where div and grAad are the divergence and the gradient
operators with respect to in-plane coordinates. Because of the
assumption that the distance gy between the two electrodes is
much smaller than the characteristic length L, the pressure
is uniform in the gap direction z, i.e. aw/dz = 0 [59].
For relatively large gaps, a solution of the full Navier—Stokes
equations is required to find accurate estimate of the air
damping [40]. In order to account for rarefication effects, the
viscosity may be replaced by an effective viscosity depending
on the Knudsen number [1, 60]. Different boundary conditions
for the Reynolds equation have been studied to improve the
accuracy of the approximation [61]. Problems for perforated
conductors have also been studied [62].

We summarize below prior studies classified according to
the mechanical model used in the analysis. The description of
mathematical models has been omitted because of a limitation
on the number of pages.

3.1. Beams

In [12, 63-65, 15, 66, 67] the pull-in instabilities of wide
rectangular microbeams in vacuum are studied. In [15], the
linear Euler—Bernoulli beam theory in conjunction with the
parallel-plate approximation is used. The Euler—Bernoulli
beam theory is valid for thin beams undergoing small
deformations.  Pull-in instability is determined using the
Rayleigh—Ritz method. In [65], the linear Euler—Bernoulli
beam theory is also used, but the parallel-plate approximation
is corrected using Palmer’s formula that accounts for fringing
fields emanating from the beam top-surface. The finite-
difference method is used to determine pull-in parameters
and approximate empirical formulas are provided. In [66],
the string theory and the plate approximations are used, and
closed-form expressions for pull-in parameters are derived.
In [12, 67], the deformable conductor is modeled as a von-
Karman plate undergoing cylindrical deformations, and the
parallel-plate approximation is used to find the electrostatic
pressure. The von-Karman plate theory results in a nonlinear
governing equation since it accounts for mid-plane stretching
and allows for studying moderately large displacements.
The importance of mid-plane stretching on microbeam’s
deformations was pointed out in [68]. In [12], the pull-in
instability is studied using the shooting method. In [67],
reduced-order models and perturbation techniques are utilized

to analyze the pull-in behavior. An overview of reduced-order
modeling techniques for MEMSs can be found in [69]. In [63],
plane deformations of the movable electrode are modeled
using a nonlinear beam theory, and the electrostatic pressure is
determined by solving with the finite-element method (FEM)
the full 2D electrostatic problem. In [64], a linear beam theory
is used to describe the motion of the deformable electrode,
and the electrostatic pressure is found by solving the 3D
electrostatic problem with the finite-difference method.

The static behavior of wide microbeams in vacuum after
pull-in instability is studied in [70]. The device is modeled as
in [15] and the finite-difference method is used to analyze the
problem.

Transient and forced oscillations in vacuum of wide rect-
angular beams are presented in [16, 71-75]. In [16, 71, 73], the
modeling framework of [12] and reduced-order models [67]
are used. In [16] perturbation techniques are employed to study
primary resonances. In [71] and [73], secondary resonances are
explored; perturbation techniques are utilized in [71], while a
thorough nonlinear analysis is performed in [73]. In [74], a
nonlinear beam theory is used to describe large deformations
of the deformable electrode and the electrostatic pressure is
computed by solving the full 2D electrostatic problem using
the FEM. In [76], alternative configurations of the movable and
fixed electrodes are examined using reduced-order models and
the framework of [12]. In [72], the model of [65] is analyzed
using a numerical method based on the radial basis functions.

In [18], the model of [12] is extended to microbeams
with variable cross sections, and the pull-in instability is
analyzed by studying small vibrations in vacuum. In [77],
the findings of [18] are generalized to forced and transient
nonlinear oscillations. In [77], the parallel-plate approximation
is used, while in [18] the Palmer formula is adopted. In
both [18] and [77] the differential quadrature method is used
to find an approximate solution of the nonlinear governing
equations.

In [78], the effects of fringing fields on the pull-
in parameters of narrow rectangular beams in vacuum are
analyzed. The parallel-plate approximation is improved by
considering fringing fields emanating from the lateral and the
top surfaces of the deformable electrode that is modeled using
the von-Karman plate theory. The pull-in parameters are
extracted by using both the meshless local Petrov—Galerkin
method [79-81] and the Rayleigh approximation based on a
one-degree-of-freedom system. In [82], the model of [78] is
used to analyze small vibrations. The resonance frequencies,
in general, do not monotonically decrease with an increase in
the voltage applied between the two conductors [12, 82].

In [83-86], a dynamic analysis of wide microbeams
incorporating the combined effects of the electrostatic pressure
and the fluidic traction is performed. In [84, 86], the
microbeam is modeled with the linear beam theory, the
parallel-plate approximation is used for the electrostatic
pressure, and the lubrication theory for the air pressure.
In [84], a neuro-network-based method for model reduction
is proposed to rapidly analyze the system transient response,
while in [86] the Galerkin method is used to study small
vibrations. In [83, 85], rarefication effects due to low pressure
are also considered, and the transient response is studied using
reduced-order models. In [85], thermal effects on the transient
response are also studied.
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Table 1. Summary of the electromechanical models presented in the paper. Abbreviations FE, BE, FD, DQ and ROM are used for finite
element, boundary element, finite difference, differential quadrature, and reduced-order-model, respectively.

Mechanical model

von Karman Kirchhoff Linear Nonlinear
3D analysis plate plate membrane  beam Linear beam
Electrostatic force  Parallel plate [93, 94] [90,91] [95,96] [12,67,16,71] [15,70, 84]
— (cntd) [92,60] [28,97] [73, 76, 77] [86, 83, 85]
Fringing fields [18, 78, 82,23] [65,72,43]
3D analysis [25, 39] [87-89] [63, 74] [64]
Viscous damping Squeeze film [60] [84, 86, 83, 85]
3D analysis [40]
Solution technique ~ FE/BE/FD [32,34,35,23] [87-89] [63, 74, 78] [65, 64, 70]
Meshless [25, 39, 40] [97] [78] [72]
ROM [93,94] [60] [83, 85] [67,16,71,73] [15]
— (cntd) [76, 78, 82, 23]
Shooting/DQ [95,96,28] [12,18,77]

3.2. Plates

Static deformations of microplates in vacuum are studied
in [87, 88]. The von-Karman plate theory is adopted to model
large deflections of the microplate, and the boundary-element
method is used to solve the electrostatic problem and compute
the electrostatic pressure. The same modeling framework is
used in [89] to analyze transient deformations of microplates
in vacuum.

In [90-92], microplates in vacuum are studied using
a linear plate theory and the parallel-plate approximation.
In [90], closed-form expressions for pull-in parameters
are established using a reduced-order model. In [91],
thermoelastic damping is considered and numerical estimates
of quality factors are established using perturbation techniques.
In [92], a different configuration of electrodes with the
actuation voltage applied across a confined fluid is studied
using reduced-order models.

The pull-in instability and small vibrations of microplates
in vacuum are studied in [93, 94]. The von-Karman plate
theory is used to model large deflections of the deformable
plate and the parallel-plate approximation is used for the
electrostatic pressure. Rectangular geometries are considered
in [93], and circular in [94]. Numerical analysis is performed
with reduced-order models.

Pull-in instabilities of thin microplates using a linear
membrane theory and the parallel-plate approximation are
considered in [95, 96, 28, 97]. Due to symmetry in the
distributed electrostatic load and boundary conditions, simple
1D models of rectangular and circular micromembranes have
been adopted in [95, 96]. In [97], the governing partial
differential equations for 2D deformations have been solved
by implementing the pseudoarclength algorithm [98] in a
meshless method. In [28] the idealized MEMS is embedded
in a control circuit to analyze various schemes for controlling
the pull-in instability.

Small vibrations of microplates in air are studied in [60].
A linear plate theory is used to model the deformable electrode,
the parallel-plate approximation is adopted to compute the
electrostatic pressure, and the lubrication theory for rarefied
gases is employed to model the air dynamics. The analysis
is conducted through a combination of perturbation techniques
and the FEM.
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4. Miniaturization of MEMSs: additional effects at
the nanoscale

With the decrease in device dimensions from the microscale
to the nanoscale, additional forces on nanoelectromechanical
systems (NEMSs), such as the Casimir force [99, 100],
should be considered. The Casimir force constrains the
miniaturization of electrostatically actuated devices. At the
nanoscale, the Casimir force may overcome elastic restoring
actions in the device and lead to the bodies’ sticking during the
fabrication process.

For semi-infinite parallel-plate-like conductors, the attrac-
tive Casimir traction between them is given by [101]

hen?

ffx) = _W,

(23)
where 7 is Plank’s constant and ¢ the speed of light in vacuum.
Theoretical works devoted to estimating corrections to the
Casimir pressure given by equation (23) for geometries with
known and fixed departures from the parallel configuration
can be found in [102, 103]. However, equation (23) is
consistent with the assumptions introduced in the mechanical
and the electrostatic models when the small deformations plate
theory or a linear beam theory together with the parallel-plate
approximation is adopted.

Theoretical and experimental analysis of the stiction
phenomenon in NEMSs can be found in [104-108]. The
effect of the Casimir force on the pull-in parameters of NEM
switches is investigated in [109] through a reduced one-degree-
of-freedom model. In [110], the combined effect of the
electrostatic and the Casimir forces on rectangular membrane
strips is studied with a distributed 1D model, while in [111], a
2D distributed model is used to study different geometries. von
Karman microplates under the combined effect of the Coulomb
and the Casimir forces are studied in [112, 113].

The van der Waals forces, related to the electrostatic
interaction among dipoles at the atomic scale [114], depend
on material properties of the media, and are effective at shorter
distance than the Casimir force, when the separation is less
than the retardation length which corresponds to the transition
between the ground and the excited states of the atom [114].
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The van der Waals forces are, therefore, accounted for in
NEMS where interactions occur at the atomic scale [115-120].

The effect of van der Waals forces on the pull-in
voltage characteristics is studied in [115, 116], and in [117],
approximate analytical expressions for the pull-in parameters
are derived. Stiction in MEMSs due to van der Waals forces
has been studied in [118], and in [119], the effect on the pull-in
parameters of cantilever NEM switches is investigated.

In [120] the combined effect of the Casimir and the van
der Waals forces on the instability of torsional NEM actuators
has been investigated.

5. Summary

Table 1 summarizes the electromechanical models for the
electrostatically actuated MEMSs discussed above, and groups
investigators according to some of the main modeling features
and solution techniques.

In any review paper it is inevitable that some very
important and fundamental works have been overlooked.
Please accept our apologies if we have failed to notice your
work.
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