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IMPULSIVELY LOADED CIRCULAR PLATES 

R. C. BATRAt and R. N. DUBEY 

Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada 

Ahatraet-The dynamic behaviour of elastic-plastic circular plates, with deflections in the range where both 
bending moments and membrane forces are important, is investigated. The formulation is restricted to two dimen- 
sional and axisymmettic responses. The effect of shear deformations, rotary inertia and material strain rate 
sensitivity is not considered. The equations of motion are solved for small deformations from the initial flat 
configuration of the plate. The inthrence of the curvature of the deformed surface, on the ensuing deformations is 
considered by ~n~p~~g that the successive defo~ations take place wt.t. the convected axes. Thus, a kine- 
matically admissible velocity field compatible with the aforementioned solution is used for predicting the response 
of the plate to large deformations. The superposition of the successive increments in displacement and strain is 
carried out by referring each to the ftxed global axes. Using this technique, the deformed shape of the plate and the 
initial velocity as a function of central deflection are computed and compared with the corresponding experi- 
mental findings. 
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radius of the plate 
transformation coefficients 
reference and current configuration 
incremental strain tensors with respect to global and convected axes 
radial, circumferential, thickness and transverse shear strain increments 
in~rnen~ strain energy of deformation 
change in kinetic energy during small deformation 
length of line element in the reference and deformed configuration 
incremental displacement components with respect to global and deformed axes 
radial, circumferential and axial incremental displacement components 
work done by the prescribed forces during the small deformation 
incremental true stress, nominal stress and Kirchoff stress tensor 
radial, circumferential, axial and transverse shear stress increments 
increment in hydrostatic pressure 
Young’s modulus of plate material 
metric tensors in reference and current configurations 
strain hardening parameter 
half the plate thickness 
elastic moduli 
direction ratios of local normal to the yield surface 
components of unit normal to the yieid surface 
co-ordinate of a point with respect to cylindrical axes 
surface area 
time 
volume enclosed by surface S 
initial transverse velocity 
curvilinear co-ordinates of the point in reference and current states 
coordinates with respect to convected axes 
d~ensionle~ variables r/a, z/a 
Lame constants 
%4/H 
density of plate material 
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general&d stress 
yield stress in simple tension 
Christoffel symbols 
total central deflection 
total deflection at a point 

1. INTRODUCI’ION 

THE study of the existing literature on the dynamic deformation of disks reveals that most 
efforts have been concentrated on investigating the plate response in which either the 
membrane forces [l-3] or the bending moments [4-6] have been considered important. 
Whereas both these approaches over-estimate the final deformations, the accuracy of the 
membrane solution improves with the increase of deflection and that of the bending 
deteriorates. Recently, it has been demonstrated [7-91 that a significant improvement on 
the prediction of the plate behaviour subjected to impulsive loading can be achieved if the 
combined effect of bending moments and membrane forces is included in the analysis. 
However, these approaches seem to be directed towards estimating the final central 
deflection rather than the deformed profile of the plate. The rigid perfectly plastic solution 
of Refs. [l, 23 considering membrane forces postulate a conical shape with a dimpling 
tendency (zero thickness) at the centre. The present investigation is aimed at predicting 
the ultimate deformed shape by considering elastic-plastic deformations and the combined 
effect of bending moments and membrane forces. 

Both mathematical and physical considerations suggest the use of the incremental 
theory. The motivation to this effect is provided, in part, by the reasoning given in [16] 
that the total stress-strain laws have a limited applicability when considering work hard- 
ening of solids. Also, the use of incremental theory would help to account for the con- 
tinuously varying curvature of the deformed surface. The dif&ulty encountered in the 
superposition of these small deformations is overcome by transferring each increment in 
displacement and strain to the global axes. This approach enables us to maintain the 
compatibility in the stress-strain relation by assuming that only the stress in the thickness 
direction to be zero rather than both the stress and strain to be zero. 

2. FORMULATION OF THE INCREMENTAL PROBLEM 

The strain increment during a small incremental deformation from some reference con- 
figuration B, of the body to the deformed state B is taken as 

deij = ~Gij-gij) (2.1) 

where 

Gij = afafgg,, 

a: = E 
axa 

(2.2) 

(2.3) 

and gij, g,, are the co-variant metric tensors with respect to the curvilinear axes (Xi) in 
B, in the reference and deformed states respectively and du’ represents the displacement 
components in going from BO to B. To the first order of approximation, equation (2.1) is 
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simplified [lo] to 

deij = gdui,j+ dUj,i). (2.4) 

Here comma denotes co-variant differentiation with respect to the axes in B,. If during the 
continuing deformations of the material body, the additional incremental displacements 
di? are measured with respect to the axes Xi, embedded in the body and deformed by the 
whole preceding strain, the corresponding strain increments are expressed by a relation 
similar to equation (2.4). That is 

do, = ~dui,j + d~j,i) (2.5) 

where the differentiation is to be performed with respect to the convected axes. The 
following transformations 

du’ = af dij’ (2.6) 

deij = a;a; ders (2.7) 
where 

af = *i+d(du7 
8X' 

(2.8) 

enable us to find the resulting global components of the incremental displacements and 
strains. So far, no mention has been made regarding the variation in the forces (or the 
stresses) induced as a result of the deformation. The evaluation of these stress increments 
requires a complete knowledge of the previous stress distribution in the body. For instance, 
corresponding to the following stress state 

8’ = sii = ,ii (2.9) 

in the current configuration, where a’j, sij, ?j are, respectively, the true stress, nominal stress 
and the Kirchoff stress tensors ; the variation in the stresses because of the small deformation 
of the body are given by [l l] 

#j = +ij_ajk$ 
,k (2.10) 

and [12] 

‘ii_ *ij ij .k 
d -T -dU,k (2.11) 

where dot stands for material derivative that is the time derivative following the element. 
The equation (2.10) is also the necessary and sufficient condition that the angular equation 
of equilibrium be satisfied The equations of motion for the incremental deformation are 

d$j,i = p dfi’. (2.12) 

Also during the small incremental deformation, the work dW done on a volume Vof the 
material medium by the prescribed loads on its surface S with local unit normal n,, can be 
expressed as 

dW = [ ni(s”+$dsij)dujdS 
JS 

= s p(ii’+ + diij) du . d Y+ J 
s 

($j + f ds”) duj,i d V; 
V V 

(2.14) 
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In this simplification, Green’s theorem and equation (2.12) have been used. The first 
integral on the right hand side represents the work done against the inertia forces and the 
second gives the increase, in strain energy of deformation. Since the work done against the 
inertia forces is equal to the change dKE in kinetic energy, therefore, 

dW = dKE+dE,. (2.15) 

An interesting case arises when an initial axisymmetric transverse velocity has been 
imparted to the entire body and no loads are prescribed on its surface except on the portion 
where zero displacements have been specified. For this type of loading 

dW=O 

and 

dE, = -dKE. (2.16) 

That is, the deformation would cease as soon as all the kinetic energy given to the system 
has been transformed into the strain energy. 

3. MATERIAL PROPERTIES 

In order to separate the physics of deformation from the changes in geometry, it is 
desirable to define a stress increment which is unaffected by the rigid body motion. The 
Jaumann derivative of the Kirchoff’s stress (which is associated with axes embedded in the 
material but not deforming with it and vanishes in the absence of deformation) is suitable 
for defining the stress increments in the constitutive equation. The fixed components, 
Dz’j/Dt of the Jaumann derivative of the Kirchoff stress as given by Oldroyd [ 131, are : 

D+i 
- = fii + aiko_/ + ajko: 
Dt 

(3.1) 

where wij = 3(~&~-ti~,~) is the skewsymmetric velocity gradient tensor. The constitutive 
equation for an elastic-plastic solid is taken in the form [12] 

Dz'j 
- = KW(& _&) 
Dt 

with 

(3.2) 

(3.3) 

where 

Kijkl = elastic moduli in the current state having the symmetry property with respect 
toijandkl,iandj,kandl 

H = positive scalar measure of the current rate of work hardening 
Pi[i = plastic part of strain rate, and 

mij = components of unit outward drawn normal to the local yield surface. 
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The linear stress strain relation for elastic solids, derived from equation (3.2) by making H 
infinitely large is 

D+ 
- = K*jk$5kl. 
Dt 

(3.4) 

In finding the stress increments during an incremental deformation, it seems appropriate 
to use approximations similar to that made in the previous section in order to simplify 
the expression for the strain increments. Therefore, suppressing the time element and com- 
bining equations (3.2) and (3.3), the stress increments are expressed as: 

. . . . 
DrlJ = K’Jkl de,, - K’Jk’mk, 

mrsKrSPq de, 

H + mrsKnpqmpq * (3.5) 

Using equations (3.1) and (2.1 l), the increments in true stresses during the small deforma- 
tion can be determined from 

d& = Drib _ 8’ duk,k _ 8’ doi _ &k doi. (3.6) 

Since no assumption has been made regarding the form of K,, or the yield surface, this 
formulation is applicable to a wide class of solids. However, for an isotropic elastic solid 

Kijkl = &ijgkl+ p(gi&!jl+ gilgjk) (3.7) 

where A, p are the Lame constants. For an incompressible elastic-plastic solid 

duk Sk = 0 (3-g) 

and relation (3.6) gives the increment in deviatoric stresses. 

4. ASSUMPTIONS 

In the study of the dynamic behaviour of circular plates, following assumptions have 
been made or implied. 

(i) The dynamic load is supposed to be such that at some given time, an axisymmetric 
velocity field is instantaneously imparted to the entire plate, save at the edges where the 
velocity is zero and thereafter the plate is subjected only to the edge forces. 

(ii) The plate thickness is small as compared to its radius. 
(iii) Linear elements initially normal to the middle surface preserve this normality 

with respect to the axes embedded in the body. 
(iv) The increment in nominal stress normal to the middle surface is negligible in com- 

parison with the increments in the inplane stresses. 
(v) The effect of the transverse shear strains and rotary inertia are negligible. 
(vi) The plate material is homogeneous, isotropic, incompressible and obeys Von Mises 

yield criterion. 
(vii) The elastic deformations are assumed to follow Hook’s law and for plastic be- 

haviour, the approximation made by Witmer et al. [9] that is the plastic stress-strain 
relationship is adequately represented by a linear strain hardening curve is employed. 

(viii) Bauschinger effect is ignored. 
(ix) The effect of strain rate on the material properties is neglected. 
(x) The effects due to constraints at the edges are not considered. Therefore, ideal 

boundary conditions are assumed. 
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5. FORMULATION OF THE PROBLEM 

It is convenient to think of the plate as being flat and free from stresses and strains. Let 
o(Xi) be a right-handed frame of reference, the origin 0 being taken at the centre of the 
middle surface containing the x,0x, plane and x3 axis as vertical and pointing downwards. 
Wherever convenient, xi, x2, x3 will be replaced by cylindrical polar co-ordinates r, 8, z 
respectively. For the latter triad of axes, the only non-zero metric tensors and christoffel 
symbols are [14] : 

11- -1 
1 

g 11 - -g 9 g2, = g22 = r2, g33 = g33 = 1 

and 

r1 =--I 1 
22 > r:, = r;r = - 

r’ 

(5.1) 

(5.2) 

In view of the assumptions, the components of the unit normal to the local yield surface 
are taken as 

where 

and 

"2ij = 

m2(1+k:+k$ = 1 

l+k,+k, = 0 

(5.3a) 

(5.3b) 

(5.3c) 

The last equation implies plastic incompressibility. Using these equations along with (5.1), 
(5.2), (3.6) and (3.5), the physical components of incremental true stresses are given by : 

dcr,, = 

doe0 = 

db,, = 

do,, = 

34~1 I de,, + ~1 z de, + al 3 de,,) + dp - 2~ dqz 

2&i, de,,+cz2 de,+c2, de,,)+dp 

2~(~13de,,+a23de,+a~~de,,)+dp-2a,=do,, 

(5.4a) 

(5.4b) 

(5-k) 

where 

m26 
= l-(1+ 

6 
a2, = 1 -m2kf(l +&) 

6 
ua3 = I-m2k:(1+6); 

6 
42 = -m2k1(l +6) 

6 
43 = -m2k2(l+6); 

6 
u23 = -m2klk2tl +6j 

(5.44 

(5.5) 

&E. 
H' 

dq, = -do,, = ;(F-y) 
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and dp is the increment in hydrostatic pressure. Similarly, combining equations (2.4) with 
(5.1) and (5.2), the physical components of strain increments are: 

de,, = fi 
r 

(5.6a) 

(56d) 

The equations of motion (2.12) for an incremental deformation from the initial flat 
configuration of the plate take the form : 

W,,) + aW,z) + da, - dose = o 

ar aZ I 

(5.7a) 

aW,J da, aZ(dw) 
7+y = p- at2 . 

(5.7b) 

Since the deformations considered are infinitesimally small, it is reasonable to assume that 
the plate would be in the elastic state after the first incremental deformation. Nondimen- 
sionalizing the co-ordinates by writing 

jI=f and <=t 

and using equations (5.4)-(5.6), the equations (5.7a) and (5.7b) are reduced to 

1 az(dW) -!%!-(~dU)+f!?.&$-- 
2 xafl 

and 

where the increment in hydrostatic pressure has been evaluated from 

ds33 = 0. 

Elimination of du from equations (5.9a) and (5.9b) results in 

pa2 aZ(dw) -L-- -- 
P at2 

L2 dw+pa2 a4(dW) Ld2(dw) = 0 
2P apat a<2 

(5.8) 

(5.9a) 

(5.9b) 

(5.10) 

(5.11) 

where 

ia a 
L=jj-@Bdg. 



912 R. C. BMW and R. N. DUBEY 

The initial conditions for this problem can be expressed as 

-1 

%W = v 

at 
0 

(8.5.0) 

dw(B, 570) = 0 

du (B, LO) = 0 

(5.12a) 

(5.12b) 

(5.12~) 

and the boundary conditions during the incremental deformations are : 

dw(l,O,t) = 0 

du (0, 5, t) = 0 

(5.12d) 

(5.12e) 

-1 %-W = o 

afi (OX.0 

(5.12f) 

and 

or 

ww 

du (1, r, t) = 0 (5.12h) 

akw 
-1 a/l =O (1.0) 

(5.12k) 

according as the edges are simply supported or rigidly clamped respectively. A solution of 
equation (5.11) which satisfies the requirements (5.12b)-(5.12f) is 

dw = sin[:/($) ] t [Jo(nj3){B cos n5 - A sin n5) -MO(n)] 

du = sin[%~(~)r][J,(nB)jAcosnC+PsinnS)1 

(5.13a) 

(5.13b) 

where J,,, stands for Bessel function of order m. The two constants A and B are related 
because of the interaction between bending and stretching of the plate. The boundary 
conditions (5.12g) is satisfied if 

3Job) = Jz(4 (5.14a) 

and for the rigidly clamped edges, the conditions (5.12h) and (5.12k) are fulfilled if 

J,(n) = 0. (5.14b) 

Since both (5.14a) and (5.14b) have infinite roots, equations (5.13) would yield the dis- 
placement components for each root of these equations. However, motivated by the theo- 
retical predictions [3] of the radial displacements for an impulsively loaded membrane and 
the favourable results obtained by Wierzbicki [8] by considering only the first mode of 
deformation, it is reasonable to assume that only the fundamental mode for which n has 
the value 2.2164 and 3-8317 respectively persists. 

The solution of the equations of motion for the subsequent incremental deformations 
becomes increasingly more cumbersome because of the curvature of the deformed surfaces 
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and the possibility of the onset of plastic flow in certain regions. Fortunately, the equations 
(5.13) can also be obtained by a simultaneous solution of 

dui,i = 0 (5.14c) 

de,, = 0 (5.14d) 

under the same boundary conditions. Owing to the natural tendency of the.particles to 
follow a continuous path, it is conceivable that during the incremental deformation, the 
motion of the particles would satisfy equations (5.14) with respect to the axes embedded in 
the material and deformed by the whole preceding strain. Therefore, the following displace- 
ment functions would also represent the incremental displacement components with 
respect to the deformed axes. 

dill = J,,(n/I)[B cos n< - A sin nc] -&J,(n) (5.15a) 

dfi = Jl(n/l)[A cos nt + B sin n<] (5.15b) 

To superimpose the incremental deformations, it is necessary to refer the local incremental 
strain and displacement components back to the fixed reference axes by employing the 
transformation laws (2.6) and (2.7). After the second stage of deformation, the expressions 
for the direct transformation of local components to the global axes become intricate and 
are difficult to handle. It is, therefore, advisable to successively refer the local components 
to the immediate previous stage of deformation. Some details of this method are given in 
Ref. [17]. 

6. BENDING AND STRETCHING 

The deflection of the plate is invariably accompanied by the stretching of the middle 
surface, the exception being the case when the surface is developable. Considering the geo- 
metry of the deformed surface, the increase in its radius Al is given by : 

Alternatively, it may be expressed as 

Al = 
s 

a (&,,),=0 dr (6.2) 
0 

where den is the increment in natural strain at any radius of the middle surface. Using 
equations (5.15a) and (5.15b), the expression (6.1) and (6.2) when combined together give 

(6.3) 

For small deformations, that is, if (a(dw)/&), = o << 1, (du/r),=, << 1, relation (6.3) simplifies 
to 

B2n2 ’ 
-1 [Jl(njl)]2 djI = A 

24 0 
(6.4) 

It shows that the deformations of the middle surface are proportional to the square of the 
central deflection. 
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7. YIELD CRITERION 

Plastic flow is assumed to commence at a point if the local stress distribution satisfies 
the condition 

5 = 00 (7.1) 

where o. is the yield stress in a simple tension and 3, the generalised stress is given by 

fY2 = 3[(% - %)2 + (%J - Q2 + (%z - %)21. (7.2) 

The direction ratios (5.3) of the local normal to the yield surface can, therefore, be expressed 
as 

k 1 = Wee - a,, - ~,,MG%, - oee - 4 

k, = (20,z - o,, - Q,)/(~G - bee - ozr). 

(7.3) 

(7.4) 

For workhardening solids, it is assumed that the yield surface maintains its shape, centre and 
orientation but expands uniformly about the origin. Hence the direction ratios of the local 
normal to the yield surface would remain unaltered during the loading. Also during re- 
versed loading, tensile yielding is assumed to start when 

fj = (7* (7.5) 

where Z* (greater than the lower static yield stress in simple tension) is the generalized 
stress in compression when the unloading begins. 

8. COMPUTATION AND DISCUSSION OF RESULTS 

In order to verily the validity of the assumptions incorporated in the development of 
the theory, it is imperative to compute and compare results with the experimental findings 
or the predictions of the other theories. The first step in the numerical computation of 
results involves a proper choice of the increment in deformation. This is guided by the 
approximations made in simplifying the expression (2.1) for the strain increments and that 
involved in reducing (6.3) to (6.4). To safeguard against any error that might creep in because 
of these simplifications and also to minim& the computation time, the increment in defor- 
mation is gradually reduced till the difference in the two consecutive results is insignificant. 
An increment in deformation resulting in an increment in the central reflection of the middle 
surface of 0.2 times the thickness was used. Thus the constant B in equations (5.15) is deter- 
mined from (5.15a). The other constant A occurring in these expressions is then obtained 
from the relation (6.4) in which both the integrations can be evaluated numerically. The 
resulting increments in displacement and strain are calculated using equations (5.15) and 
(5.6) respectively. The corresponding values with respect to the global axes are then deter- 
mined by employing the transformation laws (2.6x2.8). The increase in the stresses at a 
point are evaluated with the help of the expressions (5.4). If the stress-state at a point satisfies 
the yield criterion (7.2), the values of k, and k, as determined from (7.3) and (7.4) are used. 
The stress-strain curve for the material of the plate fixes the value of 6. If the stress-state 
at a point is in the elastic region, 6 is taken as zero. The changes in the values of the nominal 
stresses, required for the purpose of estimating the strain energy of deformation, are calcu- 
lated from (2.10) and (2.11) in which everything else is known. For this purpose, the plate is 



Impulsively loaded circular plates 915 

considered to be made of a large number of small strips. The stress distribution throughout 
the strip is taken as uniform and equal to that at its centre. The number of divisions is 
adjusted to attain the desired accuracy. In the results stated here, the plate was divided into 
100 equal parts along the radius and 10 equal parts along the thickness. For perfectly 
plastic solids, the stress-state at a point is taken to be frozen once the plastic flow starts. 
However, because of the local rotations of the particles during the deformation, the incre- 
ment in nominal stresses would have non-zero though very small values. Thus the strain 
energy of deformation can be determined as a function of the central deflection. From 
equation (2.14), it follows that the central deflection can be related to the kinetic energy 
supplied to the plate. 

The co-relation between the theoretical predictions and the corresponding experimental 
tindings is restricted because of the assumptions of ideal edge conditions and the simul- 
taneous axisymmetric loading of the entire plate. Both these are difficult to be accomplished 
experimentally. Also during the deformation of the plate, the strain rate is varying from point 
to point and also with time. Its effects, if any, on the material properties has not been con- 
sidered in the analysis. These considerations, the use of kinematically admissible dis- 
placement field, neglect of shear deformations and of rotary inertia put some restrictions 
on the applicability of the theory. However, the analysis is flexible in the use of the yield 
criterion and also provides a solution to both the problems having different end conditions. 

Using this approach, the ultimate deflection profile and the central deflection for 
varying amount of input energy are computed for the case of simply supported plates 
tested by Florence [18]. The plates used in these experiments can be characterised by the 
following mechanical and geometrical parameters. 

TABLE 1 

Material 00 
(lb/in.‘) (lb-sec’/in?) 

Thickness 
2h 
(in.) 

Radius a 
(in.) 

CR. steel 
1018 79,000 7.32 x 1O-4 0.241 4.0 

The theoretical predictions taking perfectly plastic material response are presented 
in Figs. 1 and 2. The computed values compare favourably with those observed experi- 
mentally. For the case of rigidly clamped plates, the data? from experiments dealing with 
underwater explosions is used for comparison purposes in Fig. 3. The details of these experi- 
ments may be found in [15]. Whereas the correlation between the computed and observed 
profiles is quite good near the centre, the two differ close to the edges. This discrepancy 
can possibly be due to the assumption of ideal edge conditions. Since experimental evidence 
for the kinetic energy input vs. central deflection for rigidly clamped plates is scarce, the 
results are compared with the bending solution of Wang and Hopkins [4] for perfectly 
plastic material behaviour (E = 30 x lo6 psi, p = 7.52 x 10e4 lb sec2/in.-4, a = 10 in., 
2h = $ in. and crO = 60 x lo3 psi, KE/volume imparted to plate = $I$). Because of less 
amount of energy needed for initial elastic deformations, their considerations should give 
deflections more than those predicted by rigid-plastic theory. Since the membrane energy 

to = 10 in., 2h = 4 in., b,, = 49,000 psi, mild steel. 
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FIG. 1. Final deflection profile (simply supported plate). 
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FIG. 2. Central deflection as a function of initial impact (simply supported). 



Impulsively loaded circular plates 

t 

r.o- 
EXPERIMENTAL [ 151 

I.0 0.8 O-6 0.4 0.2 0 0.2 0.4 0.6 0.8 I.0 

911 

P 
FIG. 3. Final deflection profile (rigidly clamped). 

increases faster than that due to bending, the successive incremental deformations would 
require increasingly more energy. Therefore, a situation can be envisaged (comparable to 
point E in Fig. 4) when the actual energy of deformation is equal to that given by the pure 
bending theory based on rigid plastic behaviour. Below this stage, the latter analysis would 
underestimate deflections whereas greater values would be predicted for true deformations 
exceeding this particular situation. These considerations support the qualitative agree- 
ment between the results of present work and of Ref. [4]. 

12- 
PRESENT ANALYSIS 

- WANG R HOPKINS [4] 

I I 
0 4 8 12 I6 20 24 28 

INITIAL VELOCITY x 10e2 in./sec. 

FIG. 4. Central deflection as a function of initial uniform velocity (rigidly clamped). 
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A---IQcnenyeTcn AWHaMH’iecKOe IIOBeAeHEie yIlpyrO-IUlaCTH'leCKHX KpyrnblX IIJlaCTHHOK, C npor- 
R6aMEBTaKHXTOo6nacTIIX,rneKaK H3r~6HbteMOMeHTuTaK~MeM6paHH~eyCwwnnnnIoTCK3HawTe.w 

H~~M~.~~~M~~~~~~K~~~~~~~~~~~KAB~~M~~H~~MHOC~CHMM~T~WY~I(HMIIOB~~~HHIIM.H~~'MTMB~K)TCII 

A&OphIaIUiH cnBHra, 5iHeprrmr Bpauewfi H ryecTwTenbHocTb K CKOPOCTH nef$opMannn Marepriana. 
PeUEUOTCfl ypaBIieEUis ABH%eHHII .lJJISl MUlIdX ,Uel$OpIblarplti, HCXO~ H3 HaYaJlbHOii IlJIOCKOfi KOHc$H- 

ryp~H.PaCCMaTpHBaeTcnanHIlHHe K~HBH~HA~~o~MH~~~HH~~~o~~xH~HH~~oc~~~H)~~~~~~~M- 

aI@Ui, IIpeJUIOnaTaSl, 'IT0 IIOCJle~OBaTeJIbHble ,LW4$OpMa~H CnyYaIOTCK OTHOCHTCnbHO KOHBeKTIiBHYB 
O&i. 3aTeM,HCIIOJIb3yeTCSi KHHeMaTH'IeCKOe AOnyCKaeMOeUOne~KOpocTe~, COrnaCHOeC BbIIIleyIlObUlHy- 

Thud pemeHHeM, nnn O~C~HHII noeeflewen nnacT5iHKH np~ 6OnbUDiX ,qet#Opbfauwtx. AOBOJUITCR cyne- 

pno3mUIRnocnenoBsTenbHblxnp~paueH~P nnrrnepeMeuei&iH ne@opMawifi,nyre~ o~~ece~~nKa~or0 

nepehieuemn H ,qe$ophfawni K 3anaHHbIhf 06~14~ OCIIM. nonbsyncb 3~oP T~XHHYO~~, AaeTcn pacreT 

Ae@pMHpOBaHHOfi @OpMbl IInaCTHHKH H HaYanbHO~ CKOpOCTH, npennaBneHHaut 4yHKweB 

qeHTpanbHoronpoM6a.&uee,3T~ nennunnbt cpaBHsiea~Tcnc~00~ne~~~~yro~~~3Kcnep~bfeHTanbHbrbia 
pe3ynbraTaMH. 


