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Abstract-The thermomechanical problem involving simple shearing of a finite slab made of an 
isotropic and viscoplastic material is studied with the objective of finding the e&t of the strain 
hardening parameter, strain-rate hardening parameters, thermal softening coeflicient and thermal 
conductivity on the initiation and growth of adiabatic shear bands. The body is placed in a hard 
loading device, i.e. the velocity is prescribed at its top and bottom smfacu. A shear band is presumed 
to have fonned if the addition of a perturbation in the temperature at the onset of plastic flow 
results in a localization of the shear strain. The critical strain at which the band begins to form is 
found and its dependence on various material parameters is investigated. 

INTRODUCTION 

IN 1944 Zener and Hollomon[ l] recognized the destabilizing effect of thermal softening in 
reducing the slope of the stress-strain curve in nearly adiabatic deformations. They pos- 
tulated that a negative slope of the stress-strain curve implies an intrinsic instability of the 
material. Thus the strain at which the shear strain localization may initiate corresponds to 
the peak in the stress-strain curve. They observed 32 pm wide shear bands in a steel plate 
punched by a standard die and estimated the maximum strain in the band to be 100. 
Recht[2], assuming that the instability occurs at the peak in the stress-strain curve and this 
curve is independent of the strain rate, derived values of strain rate necessary to produce 
shear strain localization and compared these values for different materials. Staker[3] used 
the same instability criterion but included the dependence of the flow stress upon strain 
rate also. Assuming parabolic strain and strain-rate hardening laws, he concluded that 
important material parameters are the specific heat, slope of the temperature dependence 
of the flow stress, and parameters indicating the strain hardening capacity of the material. 
The thermal conductivity, yield strength and strain-rate sensitivity do not enter in as a first- 
order effect. 

Instead of presuming that the material becomes unstable at a stress maximum, 
Clifton[rl] and Bai[S] studied the growth of inlinitesimal periodic perturbations superimposed 
on a body deformed by a finite amount in simple shear. Both investigators included the 
effect of strain hardening, strain-rate sensitivity, thermal softening and heat conduction. 
Bai also included the effect of inertia forces. Bai’s instability criterion is essentially insensitive 
to strain-rate hardening parameters and for a parabolic type strain hardening material gives 
the same value of critical strain as that derived by Staker[3]. Burns[6] used a dual asymptotic 
expansion to account for the time dependence of the homogeneous solution in the analysis 
of the growth of superimposed infinitesimal perturbations. He showed that the growth rate 
of small perturbations is controlled by the ratio of the slope of the homogeneous stress vs 
strain curve to the rate of change of the plastic flow stress with respect to the strain rate. 
However, ,this growth rate was not large enough for Litonski’s[7j constitutive relation to 
account for the experimental observations of Costin et uZ.[8]. Costin et al. observed 37O- 
500 pm wide shear bands during dynamic torsion tests involving strain rates of 500 s- 1 on 
short specimens of 1018 cold-rolled steel. Similar observations on twelve ductile materials 
have been reported by Johnson et a1.[9] and Lindholm and Johnson[lO]. 

Mener[ll], by using a material model due to Bodner and Partom[lZ], studied the 
problem of twisting of a thin tubular specimen having a notch in its periphery. He concluded 
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that the thermal conductivity played a key role in dete~ning the width of the shear band. 
On the other hand Wu and Freund[l3], by using a different material model, studied 
wave propagation in an infinite medium and concluded that the thermal conductivity has 
essentially no effect on the width of a shear band. 

Clifton et a/.[141 used both numerical and perturbation techniques to study the 
initiation and growth of shear bands. They used a power law model and reported that the 
thermal conductivity had virtually no effect on their results, They did not compute the band 
width explicitly. Also the rate of growth of the nonuniformity increased strongly with 
decreasing strain-rate sensitivity. 

Recently, Wright and Batra[ 15-l 7’J and Batrail 81 described the results of computations 
that simulate the formation of a shear band from a local temperature inhomogeneity in 
simple and dipolar materials. The cons~tutive relation was derived by mo~ying the dipolar 
theory of Green et at.[19] to include rate effects. For simple materials this constitutive 
relation reduces to one that is very similar to that proposed by Litonski[7] and Lindholm 
and Johnson[lO]. Whereas Litonski, and Lindhohn and Johnson suggested constitutive 
relations valid for simple shearing deformation of a ductile material, that proposed by 
Wright and Batra is easily amenable to a general state of stress. Wright and BatraIlS-171 
and Batra[ 181 studied the simple shearing of a block made of an isotropic and viscoplastic 
material and perturbed the homogeneous solution by adding a temperature bump just prior 
to the occurrence of the peak stress. The stress field was calculated so that every material 
point was on the yield surface corresponding to its new temperature when all other variables 
were held fixed. The full set of non-linear coupled governing equations was solved numeri- 
cally. In Ref. [I81 Batra used a similar method to study the interaction among shear bands 
in simple and dipolar materials. 

Herein, for simple materials, we study the effect of various material parameters on the 
initiation and growth of adiabatic shear bands by adding the temperature perturbation in 
the configuration when the body just starts deforming plastically. Since this point is far 
from the peak in the stress-strain curve, our results should reflect the dependence of the 
rate of growth of the perturbation upon the material parameter being changed. We should 
add that the complete set of coupled non-linear equations are solved numerically by the 
Galerkin-Crank-Nicolson method. The computed results show that for the problems 
studied in which the non-dimensional thermal length varied from 0 to 0.063, the thermal 
conductivity has no noticeable effect on the strain at which the shear strain localization 
occurs. In all but one of the cases studied, the stress-strain curve had a peak in it and a 
narrow region near the center eventually deformed very rapidly with the rest of the material 
essentially not deforming at all. For the exceptional case noted earlier, the #mbination of 
the values of material parameters was such that the stress-strain curve had no peak in it. 
In this case no localization of deformation occurred even when the amplitude of the initial 
temperature perturbation was increased to three times its value for other cases. This 
seems to confirm that the peaking out of stress is a necessary condition for the shearing 
deformation to localize. 

~O~U~TION OF THE PROBLEM 

We study the simple shearing defo~tio~ of a ~~-i~~te, isotropic and viscoplastic 
body bounded by the planes Y = f H and consider deformation fields of the type 

x = X+u(Y, r), y= K 2= 2, 8 = 8(Y, f). (1) 

Thus, with respect to a rectangular Cartesian set of axes, (x, y, z) denote the current 
coordinates of a material point that occupied the place (X, Y, 2) in a stress-free reference 
configuration. The functions u and 8 give, respectively, the displacement of the material 
point in the x-direction and its temperature change from that in the reference configuration. 
In the absence of body forces and external sources of heat, the balance of linear momentum 
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and internal energy may be written as 
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pii = s,, (2) 

pB = sti, -q.?. (3) 

Here p is the mass density which stays constant since the deformations considered are 
isochoric and the effect of temperature changes on the mass density is being neglected, s is 
the shearing stress in the x-direction on a plane _Y = constant, e is the specific internal 
energy, q is the heat flux, a superimposed dot indicates material time derivative, and a 
comma folfowed by y signifies partial differentiation with respect to y. We assume that the 
shear strain has an additive decomposition 

Y = 4y = Yt+Yp (4) 

and that a loading or yield function Sexists such that 

f@, 4 ?;p) = K (5) 

where f is a monotoni~Ily decreasing function in i, and K is a measure of the work 
hardening of the material. The criterion for elastic and plastic Ioading is 

f(s, 6, 0) Q K, elastic (6) 

f(s, 8, 0) > K, plastic. (7) 

In the latter case, the sign of jr is the same as that of s and its absolute value can be found 
uniquely from eqn (5) because of the assumed monotonicity off. The reader is referred to 
Wright and Batra[ 15, 17J for further discussion of the yield surface. 

Here we make the fo~lo~ng choice of constitutive functions 

4 = -ke,, (9) 

II/” 
K=K(J l+- ( > *II (10) 

f= s/(1 -a@)(1 +6&J” (12) 

where p is a constant shear modulus, c, is the specific heat at constant volume, k is the 
thermal conductivity, JI is the plastic strain in a slow isothermal reference test for which 
the stress-strain curve (neglecting elastic strains) is given by eqn (IO), parameter u describes 
the thermal softening of the material and material parameters b and m give its strain-rate 
sensitivity. From eqn (8) it follows by using standard thermodynamic arguments [17] that 

Therefore 
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Before stating the initial and boundary conditions we introduce non-dimensional 
variables (indicated by superimposed bars in eqn (15)) as follows : 

Y = fV> u = Hh, 

1 _ 
t z--t 

it0 ’ 
Y = 5 tc = K@R, lj = h/7, 6Hjo = v, 

G = atlo, 6 = by,, P = pH*$h, I; = k/(pc&,H*). (15) 

Here &, is the average strain rate imposed in the problem. Dropping the overbars, the 
complete set of equations in non-dimensional variables may be written as 

1 
it = - s,y 

P 

B = ke.W+3jp 

s = Pi(~,,‘---*3P) (16) 

Whereas we have assumed that all of the plastic work is converted into heat, some authors 
(e.g. Sulijoadikusumo and Dillon[ZO]) assume that only about 90% of the plastic work is 
transformed into heat. Farren and Taylor[21] found that in tensile experiments on steels, 
copper and along, the heat rise represented 86.5,90.5--92 and 95%, respectively, of the 
plastic work. In eqns (16) u is the particle velocity in the x-direction. The boundary 
conditions 

v(+l, 2) = +1, e,,(-t 1, t) = 0 (17) 

ensure that the overall appfied strain rate is Q. and the defo~ations are adiabatic. For the 
initial conditions we take 

U(Y, 0) = Y, NY, 0) = 0, e(y, 0) = O.l(l --_v~)~ eV5”* (18a) 

S(Y, 0) = (1 ---a&y, o))(i +by. (W 

Thus the initial perturbation in the temperature is introduced when the materia1 just starts 
deforming plastically and the initial stress distribution is adjusted so that all of the material 
points are on their corresponding yield surfaces. 

We seek solutions of eqns (If+(18) such that u is antisymmetric in y, and s and 6 are 
symmetric in y. Thus we can study the problem on the domain [O, 1] and replace boundary 
conditions (17) by 

u(O,. 0 = 0, e*,K4 0 = 0, V(l, t) = 1, e,,(i, t) = 0. (19) 

REB’ONSE TO PER~R~ATIONS 

The details of integrating the governing equations (16) under side conditions (I 8) and 
(19) by the Galerkin-Crank-Nicolson method are given in Ref. [ 181. The domain [0, I] was 
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divided into 20 su~om~ns (finite elements) with nodes at 0, 0.0025, 0.01, 00225, 0.04, 
0.0625,0.09,0.1225,0.160,0,2025,0.2500,0.3025,0.3600,0.4225, 0.4900,0.5625,0.6400, 
0.7225, 0.8100, 0.9025, 1.0. The uniform time increment At = 5 x 10e6 was used in the 
Crank-Nicolson method. 

The following values of material parameters that correspond to a typical hard steel 
were chosen : 

p = 7860 kg m-‘, k=49216Wm-‘“C-* . , p = 80 GPa, 

x0 = 333 MPa, a = 0.00552”C- ‘, c, = 473 J kg- r “C- ‘, (20) 

m = 0.025, n = 0.09, $0 = 0.017, b = lo4 s. 

For this choice of parameters, B. = 89.6% Also we took j. = 500 s- ’ and H = 2.58 mm. 
As pointed out by Wright and Batra[I5], implicit in eqns (16) are two relative length 

scales, namely a thermal length (k/p~&,H~)‘~~ and viscous length (b/H) (K,/~)“‘. The effect 
of a change in these as well as in the values of parameters describing thermal softening, 
work hardening, and rate hardening of the material is studied, The viscous length was 
varied by altering the value of the material parameter b while keeping the values of all other 
parameters unchanged. Figure 1 shows the shear stress, the temperature change and the 
plastic strain rate at the center vs the time elapsed. Since the average strain rate in the 
specimen is kept fixed at 500 s- ‘, the average strain yaV1 plotted as abscissa in Fig. 1 and 
other figures is related to the elapsed time Ar in seconds by yaVs = 500 AZ. We note that the 
shear stress in the specimen was initially nonuniform. However, after a brief interval during 
which the field variables essentially regain their balance, the shear stress becomes uniform 
throughout the slab and stays uniform up to the time results plotted hert. It is obvious 

from the stress-strain curves plotted in Fig. 1 that with the increase in the value of b the 
peak stress increases but this peak occurs at a lower value of average strain, The amount 
by which the peak moves to the left decreases with every IO fold increase in the value of b 
suggesting that eventually an increase in the vsfue of b witi not affect the strain at which 
the peak stress occurs. The central plastic strain rate increases rather slowly first, but begins 
to increase rapidly as the peak in the stress-strain curve is reached and eventually increases 

- b*t 
___,-____ .I _ ‘,,R) 

-.-.-.- b, ,@, 

--_____ *. m 

---- b.KKxx) 

AVERAGE STRAIN 

I 1 
0 a05 
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Fig. 1. ERct of the value of material parameter b on the evolution of the central stress, aentral 
plastic strain rate and the central tcm~ratun. 
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at an infinite rate when the average strain in the specimen is well past that corresponding 
to the peak stress. This point is indicated by F on the stress-strain curves. The temperature 
at the center first increases linearly but soon begins to increase at a faster rate and eventually 
grows extremely rapidly. Since the shear stress decreases once the peak is passed, the rate 
of increase of temperature is not as fast as the rate of increase of the plastic strain rate. For 
the same value of average strain, a higher value of b results in a higher value of 0. We 
should add that unlike the shear stress, the temperature, plastic strain, plastic strain rate, 
and particle velocity fields are not uniform throughout the thickness of the slab. Figure 2 
depicts the cross-plots of the plastic strain rate, temperature change and the particle velocity 
for different values of b. The values of time elapsed or the average strain for different curves 
are not quite the same. This is due to the fact that computed results were printed for 
identical values oft but the explosive growth in central plastic strain rate occurs at different 
times. Except for a narrow region near the center, the temperature distribution within the 
specimen is unaffected by a change in the value of material parameter b. As expected the 
deformation has localized, and the majority of the block away from the center moves as a 
rigid body. 

Following Wright[22] we define the width of a shear band as twice the distance of the 
point from the center where the value of the plastic strain rate drops to one-tenth of its 
maximum value at the center. We note that during the development of the shear band, the 
plastic strain rate is maximum at the center. At a time later than the one when a dramatic 
rise in the growth rate of the central plastic strain rate occurs, the value of the plastic strain 
rate at a node adjoining the center of slab becomes greater than that at the center. This is 
due to the grid being not as fine as is perhaps required for the proper resolution of the 
deformation field. Notwithstanding this shortcoming, one can still investigate the effect of 
the viscous length on the band width. For all five values of the viscous length, the band 
width came out to be 116 pm. In each case, the central plastic strain rate had reached a 
value of 80 times the applied average strain rate of 500 s- ‘. Numerical experiments with a 
mesh that was finer near the center yielded the same value of the band width and gave 
a maximum value of the plastic strain rate at the center. We are currently developing 
a computer code that will refine the mesh adaptively and give a much better resolution of 
the deformation fields near the center of the slab. 

DISTANCE y FROM THE CENTER 

Fig. 2. Effect of the value ofmaterial parameter b on the distribution of particle velocity, temperature 
change and plastic strain rate within the specimen. 
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Fig. 3. Stress-strain curves and the evolution of the central plastic strain rate and temperature for 
diRerent values of m. 

Another way to alter viscous effects in the materials is to keep b fixed but change the 
rate sensitivity exponent m. The effect of this change in the value of m is depicted in Figs 3 
and 4. Whereas an increase in the value of m from 0.005 to 0.015 resulted in higher values 
of the critical strains at which the peak P in the stress-strain curve occurs, subsequent 
increases in the value of m hardly changed the critical strain. However, the difference 
between the value of the average strains corresponding to point F when the explosive 
growth in the central plastic strain rate occurs and the point P increases with m. Our 
numerical results agree with the analytical results of Staker[3] and Clifton et a1.[14] if we 
restrict ourselves to m 2 0.015, a value typical for many metals. Clifton ef a1.[14] also noted 

- m*O.006, 7_=0.046 
--_--- I - aao, s* w366 

-‘-- m =0.015, h*W65 

------- m .-, h.‘“, 

---- rn*Qw ~w=ao746 

DISTANCE y FROM THE CENTER 

Fig. 4. Distribution of the temperature, particle v&city and plastic strain rate in the specimen for 
ditTerent values of m. 
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Fig. 5. Stress+rain curves and the evolution of the central plastic strain rate for different values 
ofn. 

that even though the criticaf strain may be insensitive to the value of m, sub~uent growth 
of the instability will be affected by its value. At early times, the central temperature is 
unaffected by m. Curves representing the evolution of the central temperature more or less 
coincide until the temperature at the center begins a sharp rise. This behavior differs from 
that when the values of b were increased. Figure 4 depicts the distribution of the plastic 
strain rate, temperature and particle velocity through the thickness of the slab. Note that 
these curves do not correspond to the time when the shear band had fully developed in each 
case. Achieving that goal would have required sorting through a tremendous amount of 
computer output. 

Figures 5 and 6 show results for different values of the strain-hardening exponent n. 
An increase in the value of fl increases the strain at which the peak P in the stress+train 
curve occurs and also the value of the strain at which the explosive growth in the central 
plastic strain rate occurs. Whereas Bai[S] and Staker[3] showed that the critical strain is 
proportional to n, our computed values of the critical strain divided by n gave 8.67, 11.4, 
12.14, and 12.67 for n = 0.03,0.05,0.07, and 0.09, respectively. They assumed a parabolic 
type (y&” hardening rule and we have represented this effect by (1 + $/Jl$. Since Efi,, << 1, 
our criterion will increase the flow stress more than the simple parabolic hardening rule will 
for the same amount of plastic deformation and identical values of n. In Fig. 6 are plotted 
the central temperature vs time or average strain, and the distribution of the particle 
velocity, temperature and plastic strain rate within the specimen. Again these plots of 
quantities vs the distance from the center are at dif&rent stages of the shear band develop 
ment for different values of n. These depict that qua~~tively there is no change in the 
way various field variables evolve in the specimen as the s~~n-h~d~ng exponent is 
increased. 

In Fig. 7 are plotted the shear stress at the center, the central plastic strain rate and 
the central temperatures vs the average strain for three different values of the thermal 
softening coefficient a. For u = 0.000552, no peak in the stress-strain curve occurred for 
strains up to 35%, and the central plastic strain rate grew at a snail’s pace, the central 
temperature increased linearly with average strain and the particle velocity (cf. Fig. 8) had 
a linear variation through the thickness of the specimen. The temperature was slightly 
higher at the center than it was at the edge. To see if the increase in the amplitude of the 
temperature perturbation given by eqn (18a) would result in shear-strain localization, two 
more cases with the central amplitudes equal to 0.2 and 0.3 were tried. In neither case 
did the defo~a~on localize. When similar numerical experiments were conducted with 
a = 0.00552, the defo~ation localized near the center at values of strain well below the 



Effect of material parameters on the initiation and giowth of adiabatic shear bands 

10.1 

GtZANCE y FROM THE CENTER 

DISTANCE y FROM THE CENTER 

Fig. 6. Temperature change vs average strain and the distribution of the temperature change, plastic 
strain rate and particle velocity within the slab for different values of n. 

ones at which the peak stress occurred. This supports the viewpoint that the existence of 
the peak in the stress-strain curve is a necessary condition for the deformation to localize. 

The expressions for the critical strain derived by Staker[3] and Bai[S] imply that the 
critical strain is inversely proportional to the thermal softening coefficient a. When we 
halved the value of a from 0.005552 to 0.002776, the peak in the stress-strain curve occurred 
at an average strain of 0.055 1 instead of 0.15. Whereas we have solved a complete set of 
equations both Staker and Bai approximated the change in temperature caused by plastic 
working. As in the other cases studied, the dramatic growth in the central plastic strain rate 
occurs at a value of strain well past the peak in the stress-strain curve. The width of the 
shear band is hardly affected by the value of the thermal softening coefficient a provided 
that the deformation does localize. 

AVERAGE STRAIN 

Fig. 7. E&t of the value of the thermal softening co&cknt a on the growth of the central stress, 
plastic strain rate and temperature. 
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Fig. 8. Variation of the particle velocity, temperature and plastic strain rate within the specimen for 
different values of n. 

Finally we investigated the effect of the thermal length by changing the value of the 
thermal conductivity k. We note that for the values of p, f0 and H given in eqns (20), the 
non-dimensional thermal length decreases from 0.0631 to 0 when the values of thermal 
conductivity k are changed from 49.216 to 0. For values of k in this range, the stress-strain 
curves, plotted in Fig. 9, up to the peak stress are unaffected. However, beyond this peak 
the drop in the stress is slightly affected by the value of the thermal conductivity. Also the 
strain at which the explosive growth in the central plastic strain rate occurs increases slightly 
with an increase in the value of k. In Fig. 10 are plotted the variations of the plastic strain 
rate, temperature and particle velocity in the specimen. Again qualitatively there is no 
difference in these plots when the thermal conductivity is varied. 

For all four values of the thermal length used, the band width came out to be 116 m. 
In each case, the central plastic strain rate had reached a value of 80 times the applied strain 
rate. These results are in agreement with those of Wu and Freund[l3] but disagree with the 
conclusions drawn by Merzer[l 11. Note that the constitutive relation and the method of 

I.8 - k = 0.0 

is .._.. _ _..- k.41)2,6 

t -.-.- k - 24.808 

a’ A"E;y ,;’ 

0 0.05 
AVERAGE STRAIN 

Fig. 9. Effect of the thermal conductivity on the growth of the central shear stress, temperature and 
the plastic strain rate. 
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CIISTANCE y FROM THE CENTER 

Fig. 10. Distribution of the plastic strain rate, temperature change and the particle velocity in the 
specimen at four different values of thermal conductivity. 

studying the shear band development used herein are different from those employed by 
Merzer, and Wu and Freund. 

CONCLUSIONS 

The problem of shear strain localization in simple viscoplastic materials has been 
studied by using a constitutive relation proposed earlier by Wright and Batra[lS]. A shear 
band is presumed to have formed if the addition of a temperature bump at the center of the 
specimen in the configuration in which it just deforms plastically results in the localization of 
the deformation. The complete set of coupled non-linear equations is integrated numerically 
by using the Galer~n~r~k-~icolson method. 

These numerical experiments reinforce the belief that the existence of a peak in the 
stress-strain curve is a necessary condition for the shear band to develop. The non-dimen- 
sional thermal length with values between 0 and 0.063 has little effect on the critical strain 
at which the peak in the stress-strain curve occurs, the strain at which the plastic strain 
rate at the center begins an extremely rapid rise and the width of the band. The critical 
strain did not come out to be inversely proportional to the thermal softening parameter as 
has been approximated in some theoretical studies. Even though values of the rate-hardening 
exponent M greater than 0.015 did not increase the value of the critical strain, the strains 
at which dramatic growth in the band development occurs did increase with m. Thus from 
a practical viewpoint, higher values of the strain-rate hardening exponent m, the viscous 
length and the strain hardening exponent n would delay the development of a shear band. 

Finally we note that conclusions drawn herein are strictly applicable to the constitutive 
model used. 

Ac&notvle&ements-This work was supported by the AR0 contract DAACi 29-85-K-0238 to the University of 
Missouri-Roila. 

REFERENCES 

if C. Zentr and J. H. Hollomon, Effect of strain rate upon plastic flow of stee1. J. Appt. P&s. 15,22 (1944). 
2. R. F. Recht, Catastrophic ~0~~~ shear. J. Appl. Me& 31,189 (1964). 
3. M. R. Staker, The relation between adiabatic shear instability strain and material properties. Acza Meroll. 

29,683 (1981). 



1446 R. C. BATRA 

4. R. J. Clifton, Adiabatic shear in material response to ultrahigh loading rates. NRC National Material 
Advisory Board (U.S.) Report NMAB-356 (Edited by W. Hcrrmann er aZ.), Washington, DC (1980). 

5. Y. L. Bai, A criterion for thermoplastic shear instability. In Shock waves and High Strain-rare Phenomenon 
in Mefols (Edited by M. A. Meyers and L. E. Mm-r), pp. 277-284. Plenum Press, New York (1981). 

6. T. J. Bums, Approximate linear stability analysis of a model of adiabatic shear band formation. Q. Appl. 
Math. 43,65 (1985). 

7. J. Litonski, Plastic flow of a tube under adiabatic torsion. Bul/. Acud. Pal. Sci. 25,7 (1977). 
8. L. S. Costin, E. E. Crisman, R. H. Hawley and J. Duffy, On the localization of plastic flow in mild steel tubes 

under dynamic torsional loading. Inst. Phys. Con/. Ser. No. 47,90 (1979). 
9. G. R. Johnson, J. M. Hoegfeldt, U. S. Lindholm and A. Nagy, Response of various metals to large torsional 

strains over a large range of strain rates-Part 1: ductile metals. ASMEI. Errgng Meter. Tech. HIS,48 (1983). 
10. U. S. Lindholm and G. R. Johnson, Strain-rate effects in metals at large strain rates. In Mareriul ZJehenior 

under High Stresses und CUtruhigh Louding Rates (Edited by J. Mexall and V. Weiss), pp. 61-79. Plenum 
Press, New York (1983). 

11. A. M. Merxer, ModeBing of adiabatic shear band development from small imperfections. J. Mech. Phys. 
Solids 30,323 (1982). 

12. S. R. Bodner and Y. Partom, Mechanical properties at high rate of strain. Znsr. Phys. Conf. Ser. No. 21, 102 
(1975). 

13. F. H. Wu and L. B. Freund, Deformation trapping due to thermoplastic instability in one-dimensional wave 
propagation. .Z. Mech. Phys. Solids 32,119 (1984). 

14. R. 1. Clifton, J. Duffy, K. A. Hartley and T. G. Shawki, On critical conditions for shear band formation at 
high strain rates. Scripta Mefull. 18,443 (1984). 

15. T. W. Wright and R. C. Batra, The initiation and growth of adiabatic shear bands. Znr. J. Plarriciry 1,205 
(1985). 

16. T. W. Wright and R. C. Batra, Further results on the initiation and growth of adiabatic shear bands at high 
strain rates. J. Phys. 46,323 (1985). 

17. T. W. Wright and R. C. Batra, Adiabatic shear bands in simple and dipolar plastic materials. In Proceedings 
of the IUTAM Symposium on Mucro- und Micro-mechunics of High Velocity Deformution and Fracture, 
Tokyo (August 1985). 

18. R. C. Batra, The initiation and growth of, and the interaction among adiabatic shear bands in simple and 
dipolar materials. Int. J. Plusticity 3,75 (1987). 

19. A. E. Green, B. C. McInnis and P. M. Nagbdi, Elastic-plastic continua with simple force dipole. Int. J. Engng 
Sci. 6,373 (1%8). 

20. A. U. Sulijoadikusumo and 0. W. Dillon, Jr., Temperature distribution for steady axisymmettic extrusion, 
with an application to Ti-6Al-4V : Part 1. Thermul Stresses 2,97 (1979) ; Part 2,ZZnd. 2, 113 (1979) ; Part 3, 
Ibid. 3,265 (1979). 

21. W. S. Farren and G. I. Taylor, The heat developed during plastic extrusion of metal. Proc. R. Sot. AlW, 422 
(1925). 

22. T. W. Wright, Some aspects of adiabatic shear bands. In Metavtubility und Incompletely Posed Problems 
Edited by S. Antman, J. L. Ericksen, D. Kindtrlehrer and I. MBller), pp. 353-372. Springer, Berlin (1987). 


