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Abstract—We study the problem of the initiation and subsequent growth of a shear band in a
thermally softening viscoplastic prismatic body of square cross-section and containing two sym-
metrically placed thin layers of a different viscoplastic material and an elliptical void at the center.
The yield stress of the material of the thin layer in a quasistatic simple compression test is taken to
be either five times or one-fifth that of the matrix material. The body is deformed in plane strain
compression at a nominal strain rate of 5.000s *. Thesc deformations are assumed to be symmetrical
about the centroidal axes.

It is found that shear bands initiate from the ends of the major axes of the ellipsoidal void and
propagate in the direction of the maximum shear stress. These bands are arrested by the strong
virtually rigid material of the thin layer, but pass through the weaker material of the thin layer
rather easily. Other shear bands originate from points where the thin layers meet the free boundaries
and propagate into the matrix material along the dircetion of maximum shearing when the material
of the thin layer s stronger, but propagate into the thin layer when its material is weaker than the
matrix material. The band in the weaker material of the thin layer bifurcates into two bunds that
propagate into the matrix material in the direction of the maximum shearing stress,

1. INTRODUCTION

According to a recent paper of Johnson {(1987), Henry Tresca (1878) observed hot lines in
the forny of a cross during hot forging of a platinum bar. Tresca pointed out that these
were the lines of greatest shding, and also thercfore the zones of greatest development of
heat. Subsequently, Massey (1921) reported the appearance of these hot lines during the
hot forging of o metal at a relatively low temperature of 680 C. Masscey noted that “when
diagonal “shpping’ takes place there ts great friction between particles and a constderable
amount of heat is generated™. The rescarch activity in this arca has increased significantly
since the time Zener and Hollomon (1944 reported 32 gem wide shear bands during the
punching of & hole in a steel plate and attributed this to the destabilizing effect of thermal
softening in reducing the slopu of the stress-strain curve in nearly adiabatic deformations.
The hot lines of Tresca and Massey are now referred to as shear bands. Most of the
analytical (Recht, 1964 Staker, 1981 ; Clifton, 1980 ; Molinuri and Clifton, 1987 ; Burns,
1985: Wright, 1987 Anand ¢f ol 1987 Bai, 1981, Coleman and Hodgdon, 1985) and
numerical (Clifton er of., 1984 Merzer, 1982 Wu and Freund, 1984 Wright and Batra,
1985, 1987 ; Wright and Walter, 1987 ; Batra, 1987a, 1988) works aimed at understunding
factors that enhance or inhibit the initiation and growth of shear bands have involved
analyzing overall simple shearing deformations of a viscoplastic block. A material defect
has been modeled by introducing (i) a temperature perturbation, (ii) a geometric defect
such as a notch or a4 smooth variation in the thickness of the specimen, or (iii) assuming
that the material at the site of the defect is weaker than the surrounding material. The
experimental observations of Moss (1981), Costin ¢r al. (1979), Hartley et al. (1987) and
of Marchand and Duffy (1988) have contributed significantly to our understanding of the
initiation and growth of shear bands in stecls deformed at high strain rates.

Recently, LeMonds and Needleman (19864.b), Needleman (1989), Batra and Liu
(1989, 1990), Anand er of. (1988). Zhu and Batra (19906) and Batra and Zhang (1950)
studied the phenomenon of shear banding in plane strain deformations of a viscoplastic
solid. Whereas Needleman (1989) studied a purely mechanical problem, other works have
treated a coupled thermomechanical problem. We note that LeMonds and Needieman and
Anand ef al. neglected the effect of inertia forces on the ensuing deformations of the body.
[n all of these works the entire body or the portion of the body whose deformations were
analyzed had only one defect in it.
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Here we study the plane strain thermomechanical deformations of a thermally softening
viscoplastic solid containing an eliiptical void and two thin layers placed symmetrically
about the horizontal centroidal axis. These horizontal layers may be thought of as repre-
senting planes of chemical inhomogeneity. The voids can form during manufacturing.
However, the symmetrical situation considered herein is to simplify the problem. The
constitutive relations for the matrix material and the material of the thin layers are the
same. except that the flow stress for the material of the thin layer in a quasistatic simple
compression test equals either five times or one-fifth that of the matrix material. The points
on the free edges where the thin layer and the matrix materials meet, as well as the void
vertices on the major axes of the ellipsoid, act as nuclei for the initiation of shear bands. It
thus becomes an interesting exercise to investigate where the shear bands initiate first and
the interaction amongst them. We note that the problem formulation incorporates the
effect of inertia forces, strain-rate sensitivity and heat conduction. However, the overall
deformations of the body are assumed to be adiabatic. The nonlinear partial differential
equations expressing the balance of mass, lincar momentum and internal energy are solved
numerically for a prescribed set of initial and boundary conditions.

2. FORMULATION OF THE PROBLEM

We use a fixed set of rectangular Cartesian coordinate axes to study the plane strain
deformations of a thermally softening viscoplastic body being deformed in simple com-
pression. The cross-section of the body, shown in Fig. 1, has an ellipsoidal void at the center
and two thin layers of a different viscoplastic material placed symmetrically about the
horizontal axis. The deformations of the body are assumed to be symmetrical about the
two centroidal axes. Accordingly, only the deformations of the material in the first quadrant

“H e

Fig. 1. The cross-section of the prismatic body studied. (a) Location of points for Figs 3 through
5. {b) Location of points for Fig. 8.
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are analyzed. Equations governing these deformations are:

(pJ) =0, ey
pol, = Ty 2
Po e = —Qx41+7‘nl.r.r' (3)

Equations (1). (2) and (3) express. respectively, the balance of mass, linear momentum and
internal energy. Here p is the present mass density of a material particle whose mass density
in the reference configuration is p,. J is the determinant of the deformation gradient x,,.
r, the velocity of a material particle in the x-direction, x, gives the position at time ¢ of
the material particle X,. T, is the first Piola~Kirchoff stress tensor, e is the specific internal
energy. @, is the heat fux measured per unit area in the reference configuration, and

D, =(t,+0v,)2 S

is the strain-rate tensor. Furthermore, a superimposed dot indicates material time derivative,
a comma followed by index x(/) implies partial differentiation with respect to X, (). and
a repeated index implies summation over the range of the index.

The balance laws are supplemented by the following constitutive relations:

Ta = (pu/p)s,; Xy 0, = —B(p/pa— 15, +2uD,. (5)
2 = [oo/ /L +BI)" (1 —ab), (6)

= /2b,D,, M

D, = D,~(1/3)Dud,. (8)

O, =(polmq. Xy ¢ = —k0O,, 9

¢ = cl+ B(plpy—Dpip’. (10)

In these equations, the material parameter B may be regarded as the bulk modulus, o, is
the yickd stress in a quasistatic simple compression test, parameters b and m describe the
strain-rate hardening of the material, x is the thermal softening parameter, ¢ equals the
temperature change of a material particle from that in the reference configuration, & is the
thermal conductivity and ¢ is the specific heat. Both & and ¢ are tuken to be constants and
we have neglected stresses caused by the thermal expansion.

Equations (1) through (10) hold in the regions occupied by the matrix and the layer,
the only difference being either

o, layer = 50, matrix (11a)
or
a, layer = (1/5)a, matrix. (11b)

The values of other material parameters are the same for the matrix and the layer.
Define s by
s = a+[B(p/po—1)—(2p/3) tr D]L, (12a)
= 2ub. (12b)

Equations (12). (5) and (6) give
(172trs?)"? = (a0/ /DU —a0) (1 +bI)" (13)

which can be regarded as the equation of a generalized von Mises yield surface when the
flow stress. given by the right-hand side of (13), at a material particle depends upon its
strain rate and temperature. Alternatively, equation (5) can be interpreted as representing
a non-Newtonian fluid whose viscosity depends upon the strain rate and temperature.
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We introduce non-dimensional variables as follows:

=00, $S=so0,, B=Bs, T=To,.
do=ty Ho T=1ti. b=b,.
0y =g, (pyc). =00, =210,
X=xX'H. p=ppo. B=ki(pyioH). (14)

Here 2H is the height of the block and r, is the velocity imposed on its top and bottom
surfaces. Substituting for ¢,,. ¢, and ¢ from (5) through (10) into the balance laws (1)
through (3). rewriting these in terms of non-dimensional variables, and dropping the
superimposed bars, we arrive at the following set of nonlinear coupled field equations for
p.v.and 0:

(pJ) = 0. (15)
pvi, = —Bp,+[(1/ /3D +bIY"(1 —20)D,] . (16)
plh = B0, + (1, /3D = 20)(L+b1y"D,D,,. (17)

where v = pyra 7, is a non-dimensional number, The value of v signifies the effect of inertia
forces relative to the flow stress of the material. For the itial conditions we take

M. =1 v(x.,0)=0 Hx.0)=0. (18)

That is, the body is initially at rest at a uniform temperature and has constant mass density.
The pertinent boundary conditions for the material analyzed in the first quadrant are

ry= =hr), T\, =0 and @, =0, onthetopsurfiace AB, (1Y)
T=0, T, =0 and @, =0, onthe nghtsurlace BC, (20)
ry=0, T,=0 and @, =0, onthebottom surface CD, (21
TNV, =0 and Q,V, =0, onthesurface DE of the void, (22
ey =0, T,y =0 and @, =0, on theleft surface EA. 2hH

These boundary conditions simulate the situation when the top surface is moving downward
with a speed A(1), there is no friction between it and the loading device, the right surface is
traction free, the void has not coalesced and the entire boundary is thermally insulated.
The boundary conditions (21) and (23) are due to the presumed symmetry of the defor-
mations about the v, and x, axes. When and where the void coalesces, boundary condition
{22) is replaced by (21). For the loading function 21(r), we take

Ity =1.0.005, 0<
=, r = 0.005. (24)

At the common interface between the matrix and the reinforcing layer, the velocity
field, surface tractions, the temperature and the normal component of the heat flux are
assumed to be continuous.

3. COMPUTATION AND DISCUSSION OF RESULTS

3.1. Compurational aspects

We use the updated Lagrangian method [e.g. see Bathe (1982)] to solve the problem.
That is. in order to find the deformations of the body at time ¢+ A, the configuration of
the body at time 7 is tuken as the reference configuration. The field equations (15) through
(17) and the associated boundary conditions (19) through (23) are first reduced to a sct of
coupled nonlincar ordinary differential equations by using the Galerkin method and the
lumped mass matrix [e.g. sce Hughes (1987)]. For this purposc. the spatial discretization of
the domain consisting of four-noded isoparametric quadrilateral elements is employed.
Figure 2 depicts the mesh used in the reference configuration. The number of ordinary
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Fig. 2. The tinite clement discretization of the domain analyzed.

differential equations equals tour times the number of nodes because at each node, the mass
density, the two components of the velocity and the temperiature are unknown. The initial
conditions (18) imply that the initial mass density at each node point equals one, and the
mitial values of the two velocity components and the temperature equal zero at all nodes.

These ordinary differential equations are integrated by using the IMSL subroutine
LSODE. In the subroutine, the option to integrate a stiff set of equations is employed.
The subroutine adjusts the time step adaptively until a solution of the coupled nonlincar
differential equations hus been computed to the desired accuracy.

The finite element code developed earlier by Batra and Liu (1989) has been modified
to study the present problem. After cach time increment, the new surface of the void is
computed and examined to see if any node on the void surface has either reached or crossed
the horizontal axis of symmetry. If a node on the void surface has crossed the horizontal
axis, computations are repeated from the previously computed solution but with a smaller
value of the time step. As soon as a node on the void surface reaches the horizontal axis,
the boundary conditions on the node are changed to those given by (21).

In the results presented below, we have used the following values of various material
and gecometric parameters:

h=10,000s. a,=333MPa, k=4922Wm~"''C ', m=0.025

c=4730kg ' C-'. po=7860kgm-’. B=128GPa.
H=35mm, ve=25ms"'. a=0.0025C " (295)
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Thus the average applied strain rate equals 5000 s ', #, = 89.6 C and v = 0.015. We note
that in the simple shearing problem. Batra (1988} observed that the inertia forces play a
noticeable role when v = 0.004. Hence, the inertia forces will very likely play a significant
role in the present problem.

3.2. Discussion of results

3.2.1. Layver material stronger than the matrix material. In order to understand which
points in the body are deforming severely, we have plotted the development of the maximum
principal logarithmic strain ¢, the temperature rise § and the effective stress s,. equal to the
right-hand side of eqn. (13). at several material points near the major and minor axes of
the ellipsoidal void and at points where the “reinforcing layer™ and the matrix material
meet. The logarithmic strain ¢ is defined as

e=1Ini, > —In4i, (26)

where 4] and 43 are the eigenvalues of the right Cauchy-Green tensor G,y = X,,x, ;4 or the
left Cauchy-Green tensor B, = x,,x,,. The equality in the second relation in (26) holds
because the deformations are nearly isochoric, i.e. 4,4, = 1. Figures 3a. 3b and 3¢ depict,
respectively. the evolution of &, 8 and s, at eight material points near the major axis of the
ellipsoidal void and also at a material point far removed from it. The coordinates, in the
stress free reference configuration, of these points are given in the figure captions and their
approximate locations are shown in Fig. la. The material points 1, 2 and 3 arc a little bit
off of the horizontal axis, points 1, 4. 5 and 6 lie on a straight line making an angle of ncarly
45 with the horizontal axis, points 1, 7 and 8 are on an almost vertical linc, and point 13
is near the horizontal centroidal axis but far removed from the void tip. The temperature
risc ¢ and the maximum principal logarithmic strain ¢ at point 13 increase very slowly as
the block continues to be compressed. The temperature at the other cight points considered
rises rapidly in the beginning and then increases stowly. The values of ¢ at points 1 and 2

MAX. STRAIN

AVERACE STRAIN

Fig. 3a. The maximum peincipal logarithmic strain versus the average strain at points | 2, 3. 4. 5.

6. 7. 8 and | 3. Coordinates. in the stress free reference configuration, of these points arc: [(0.1001.

0.0001), 2(0.1200, 0.0001), 3(0.1400, 0.0001), 40,1141, 0.0141), 5(0.12%83, 0.0283). 6(0.1707, 0.0707).
7(0.1001. 0.0200). 8(0.1001, 0.0300), 13(0.8001. 0.0001).
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Fig. 3b. The temperature rise versus the average strain at points | through 8, and (3.
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Fig. 3c. The cffective stress versus the average strain at points | through 8, and {3,

near the void tip increase at first and the consequent temperature rise makes the material
surrounding these points softer. The severe deformations of this material make the void
coalesce. This is indicated by the drop in the value of ¢ at point 1. The coalescence of the
void results in a redistribution of deformations in the material surrounding point {. The
rapid growth of ¢ at the void tip (point 1) when the average strain equals 0.044 is indicative
of the eventual development of the shear band there. The plot of the effective stress in Fig.
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3¢ indicates that the effective stress at a material point is lower if its temperature is higher,
in conformity with the constitutive relation employed. Even when the strain at material
point | rises rapidly. the low value of the effective stress there gives rise to moderate values
of the plastic working and the temperature rise does not increase significantly.

In Fig. 4, we have plotted the evolution of ¢ and ¢ at ponts 9, 10, 11, 12 and 13. The
first four points are near the vicinity of the point where the void surface intersects the
vertical axis. Both the temperature rise and the value of the maximum principal logarithmic
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Fag da. The maxanum principal logarithame strain versus the average strain at points 9 through 13
Coordinates, m the stress free reference configuration of these points are: 9(0.0001, 0.0101),
HOO.0500, 6.0101), THO.0354, 0.0454), [2(0.0001, 0.0601). 13(0.8001, 0.0001).
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Fig. 4b. The temperature rise versus the average strain at pomts 9 through 13,
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strain at these points are approximately an order of magnitude lower than those at point |
near the void tip.

In order to delineate the difference between the deformations of the matrix material
and the material of the hard layer. we show in Fig. 5a the evolution of ¢ at six points
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Fig. Sa. The maximum principal logarithmic strin versus the average strain at points 27 through
R Coordinites, in the stress free reference conliguration, of these points are: 27(0,.9999, 0.4850),
28014500, GAR50), 29(0.9000, 4 48504, 30009999, 046500, 3 (0.9500, (1.46501, I12{0.9000, (1.4650).
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Fig. 5b. The maximum principal logarithmic strain versus the average strain at points 30 through

37. and point {3, Coordinates of points in the stress {ree reference configuration not given in

previous figures are: 33(0.9645, 0.4296) 33(0.9293, 0.3943), 15(0.8919, 0.3589). 36(0.9999, 0.4150),
3I7(0.9999, 0.3650).
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near the common interface between the matrix and the reinforcing layer. Points 27, 28 and
29 are in the layer and points 30. 31 and 32 are in the matrix. The deformation of points
27, 28. 29, 31 and 32 is miniscule as compared to that of point 30, whose deformation is
comparable to that of the point near the void tip. Also the maximum principal logarithmic
strain & rises monotonically at point 30. Because of the very large values of the effective
stress in the hard layer, the plastic working and the resulting temperature rise in it are more
than that at adjoining points in the matrix material. Because of the larger deformations of
the matrix material near point 30, eventually the temperature rise at point 30 exceeds that
at point 27 in the hard layer. To explore the direction of propagation of the deformation
from point 30, we have plotted in Fig. 5b the maximum principal logarithmic strain versus
the average strain at points 30 through 37 and point 13. Points 30, 36 and 37 are on a
vertical line near the right traction free surface, and points 30, 33. 34 and 35 are on a line
that makes an angle of 45 with the vertical. The values of ¢ at points 31, 32 and 37 are
comparable to that at point 13 in the matrix material. Recall that point 13 is near the
horizontal centroidal axis and far removed from the void tip. The values of ¢ at points 31,
32 and 37 are considerably smaller than that at point 30. indicating thereby that the
deformation ensuing at point 30 neither propagates horizontally nor vertically. The large
values of ¢ at point 36 are indicative of the fact that a small material region surrounding
point 30 is deforming severcly. Since the values of £ at points 33, 34 and 35 are comparable
to that at point 30 and generally decrease as we move away from point 30, we may conclude
that the deformation propagates along the line joining these points, i.c. along the line
making an angle of 45 with the vertical. The plots of £ at points situated near the upper
interface between the reinforcing layer and the matrix material are similar to those at points
27 through 35 and are not included hercin.

In order to clucidate the evolution of a shear band, we have plotted in Figs 6 and 7
contours of the second invariant 7 of the deviatoric strain-rate tensor D, the maximum
principal logarithmic strain £, and the temperature rise € at two different values of the
average strain, The contours of 7 describe how a material particle is deforming at a given
instant, contours of & give the accumulated deformation until that time, and contours of
{) describe the total energy dissipated into heat till that time and the resulting temperature
rise. We note that the contour plot routine interpolates the data at numerous points in the
domain from that supplicd at discrete points. Figure 6 shows the contours of /, & and 0
when y,,, = 0.0248. It follows trom the contours of 7 that the material near the void tip and
points P and Q on the traction free right edge where the reinforcing layer meets it is
deforming severely. As described carlier, these intense deformations propagate along lines
inclined at +45° to the horizontal. The contours of £ and @ reveal that the material
surrounding the aforestated lines has undergone severe deformations. Even though the
strain riate and the strain in the layer arc negligible as compared to their maximum values
in the matrix material, the stress in the layer is high. Conscquently, the plastic work done
and the resulting temperature rise in the layer are not that small. The contours of 1, £ and
0 at an average strain of 0.0308 plotted in Fig. 7 arc evidence of the narrowing down of the
rapidly deforming region. Three bands, two initiating from points P and Q. and the third
from the void tip, have formed. The maximum values of £ and  equal 0.134 and 133 C,
respectively, We note that if a block of rigid/perfectly plastic material with flow stress equal
to 333 MPa were deformed homogeneously in simple compression to an average strain of
0.0308, the temperature rise would equal 2.6 C assuming that all of the plastic work done
has been converted into heat. Thus, the significant temperature increase within the band
significs the intense deformation therein.

3.2.2. Layer material weaker than the matrix material. We first investigate the devel-
opment of shear bands initiating from points P and Q that arc on the right traction free
surface and the common interfaces between the layer and the matrix material. For this
purpose, we have plotted in Fig. 8a the growth of the maximum principal logarithmic strain
£ at points 31 through 38, Points 31, 32, 33 and 34 are on the layer side and points 35. 36,
37 and 38 are on the matrix side of the common interface between the layer and the matrix.
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The first four points lie on a horizontal line in the layer, and the last four points lie on a
different horizontal line in the matrix. Amongst these eight points, the growth of ¢ at point
31 is the maximum. The relative magnitude of ¢ at these points indicates that the severe
deformation initiating from point 31 propagates horizontally to point 32 within the softer
laver. Similarly, the severe deformation initiating from point Q propagates horizontally
within the soft layer. Recall that in the previous case, the severe deformations occurred at
the matrix particles on the common interface and propagated into the softer matrix material.
Since the values of ¢ at point 34 are quite small as compared to that at points 31 and 32,
the severe deformation either did not propagate horizontally from point 32 to point 34, or
there was not enough time for it to arrive at point 34. Which one of these two alternatives
is valid can be derived from the plots of ¢ at points 37 through 43. All of these points are
in the matrix. Because the flow stress in a quasistatic simple compression test for the matrix
material is five times that for the material of the layer, the strain rates and hence the strains
in the matrix material are small relative to those in the layer. We note that points 37, 38
and 39 are on a horizontal line, 37, 40 and 43 are on a vertical line and 37. 41 and 42 are
on a line that makes an angle of 45" with the vertical. For comparison purposes, the values
of & at point 13 which is near the horizontal centroidal axis and far removed from the
ellipsoidal void are also plotted. The values of ¢ at these points indicate that the likely
direction of propagation of the shear band from point 37 is along the line joining it to
points 41 and 42. Similarly, the severe deformations initiating from point Q on the upper
interface between the layer and the matrix material will propagate horizontally first into
the soft layer and then into the matrix material along a line that makes an angle of 45" with
the vertical line. In order to sce whether these two bands propagate independently of cach
other or not, we have plotted in Fig. 9 the contours of the maximum principal logarithmic
strain at successively increasing values of y,,,. At y,,, = 0.013, shear bands have initiated
from the void tips on the major axis of the clliptical void as well as points on the free edge
where the layer meets the matrix material. Whereas the band originating from points on
the free edge propagates into the softer layer material, those initiating from the void tips
propagate into the matrix. The two bands initiating from points P and Q cssentially coalesce
immediately into one because of the small thickness of the layer. Also due to the competing
effect of the maximum shear stress in the +45” directions and the relatively negligible
thickness of the layer, the band propagates horizontally into the layer.

When the body has been deformed to an average strain of 0.0177, the matrix material
has softened somewhat because of its being heated up. The shear band originating from
the void tip has propagated more into the matrix material. The two bands that had coalesced
into one and were propagating horizontally into the layer now start to bifurcate and
propagate into the matrix matertal in the directions of the maximum shear stress. This
bifurcation of the shear band into two bands becomes clearer in Fig. 9c. At y,,, = 0.02053,
the shear band that initiated from the void tip has merged with the one that bifurcated
from the band in the luyer. The other band bifurcating from the one in the layer continues
to travel in the —45 " direction into the matrix material. During subsequent deformations
of the body, all bands propagate more into the matrix material. When y,,, = 0.0273, the
bands originating from the void tip and the one diverted out of the luyer material have
merged and propagated to the top right corner of the block. During the ensuing defor-
mations, these bands do not quite narrow down into thin bands. Rather, the interaction
among various bands broadens the region that has deformed severely. Figure 9g shows
contours of the maximum principal logarithmic strain at y,,, = 0.0333. The contour of
& = 0.075 has propagated significantly into the matrix material from the void tip and also
into the softer layer and the surrounding matrix material near the points where the layer
meets the traction free edge of the matrix. Note that the maximum value 0.40 of ¢ equals
12 times the average strain of 0.0333.

Figure 10 depicts the contours of the temperature at various values of 7,,,. We recall
that the temperature risc at a point depends upon the total encrgy dissipated. At y,,, = 0.013,
even though the layer material near the free edge has deformed severely, it has not been
heated up much because of the rather low value of stresses in it. The contours of temperature
reinforce the picture given above of the growth of and the interaction among various bands.
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Also only the material near the void tip is heated up significantly. At y,,, = 0.0333, the
maximum temperature reached at a point near the void tip equals 157 'C. However, if the
body were made of a rigid/perfectly plastic material with a flow stress of 333 MPa and
deformed homogencously in simple compression to an average strain of 0.0333, the tem-
perature rise would equal only 2.85 'C, assuming that all of the plastic work done has been
converted into heat.

Finally, we note that in both cases studied above, contours of distinct values of & travel
at different speeds. The speed of propagation also depends upon the average strain reached
in the body.

Even though the deformations could be continued further, they were not mainly
because the CPU time required exceeded our allotment and it was felt that the deformations
had developed into well-defined shear bands.

4. CONCLUSIONS

We have studicd the problem of the initiation and growth of shear bands in plane
strain deformations of a thermally softening viscoplastic body containing a void and two
symmetrically placed layers made of a viscoplastic material that differs from the matrix
material in the value of the flow stress in a quasistatic simple compression test. When the
layer material is stronger than the matrix material, a shear band first originates from the
void tip. This band propagates into the matrix material at an angle of approximately 45°
to the horizontal. the axis of loading being vertical. Two bands also tnitiate from points
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where the layer meets the traction free boundary and these bands propagite into the matrix
material along +435 directions. When the void has coalesced. the severely deforming region
surrounding the band around the void tip starts receding. Eventually three bands form at
an average strain of 0.044 when the maximum principal logarithmic strain and the tem-
perature rise equal 0.134 and 133 C, respectively. However, when the layer material is
weaker than the matrix material, bands initiating from the void tip and the layer edges
propagate into the matrix and the layer, respectivelv. The band propagating in the layer
bifurcates into two bands that propagate into the matrix material in the direction of
maximum shearing stress. One of these bands eventually merges with that initiating from
the void tip. The severely deformed region in this case is quite different from the one when
the layer material is stronger than the matrix material.
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