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Abstract-We study the problem of the initiation and subsequent growth of a shear band in a 
thermally softening Gcoplartic prismatic body of squ;lre cross-section and containing two sym- 

metrically placed thin layers of a ditferrnt viscoplastic malerial and an elliptical void al the center. 
The yield stress of the material of the thin layer in a quasistatic simple compression test is taken to 
be either five times or one-fifth that of the matrix material. The body is deformed in plane strain 
compression at a nominal strain rate of S.OU0 s ‘. These deformations areassumed to be symmetrrcal 
about Ihe centroidal axes. 

It is found that shear bands initiate from the ends of the major axes of the ellipsoidal void and 
propaente in the dircctlon of the maximum shear stress. These bands are arrested by the strong 
virtually rigid material of the thm Iaycr. but pass through the weaker material of the thin layer 
rather easily. Other shear bands origmue from points whcrc the thin layers meet the free houndarlcs 
and propapatc into the matrix mntrrial along Ihe dir&on of maximum shearing when the mat&t 
of Ihe thtn layer is stronger, but propagate into the thin layer when its matcriai is weaker than the 
matrix matrrt;tl. The band in tbs \\cahcr malcriai of the thin layer bifurcates into two b;mds that 
propag~tc into the matrix m;ttcri;tl in the directictn of the maximum shearing slrcss. 

I. INTKODUCTION 

According to ;I rcccnt paper of Johnson ( I OH?‘). Henry Trcsca ( I X7X) observed hot lines in 
the form of a cross during hot forging of ;t pl~~tiI~ll1~~ bar. Trcsca pointed out that thcsc 
wcrc the lines of grcatcst sliding. and also thcrdbrc the zones of grcatcst dcvelopmcnt of 
heat. Suhscqucntly. Massey ( I97 I ) rcportcrl the appcarancc of thcsc hot lines during the 
hot forging of ;I mctnl at ;I rckltivcly low tcmpcr;iturc of 6X0 C. M~~sscy noted that “when 
diagonal ‘slipping’ takes place thcrc is great friction bctwccn particles and ;I consitlcrnblc 
amount of hc;tt is gcncratcd”. The rcscarch activity in this arca has incrcascd si~nit~c~lntly 
since the time Zener and ll~)ll~)~l~l~~~ (194-t) reported 32 /cm wirlc shear bands during the 
punching of‘ ;I hole in :I steel plate and attributed this to the destabilizing ctfect of thermal 
softening in reducing the slope of the stress-strain curve in nearly adiabatic deformations. 
The hot lines of Trcsca and Miisscy arc now rcferrcd to as shear bands. Most of the 
analytical (Rccht, 1964; Stakcr. I981 ; Clifton, 1980; Molinari tind Clifton, 1987; Burns, 
1985; Wright, 1987; Anand et (II., 1987; Bai, 1981 ; Coleman and Hodgdon. 1985) and 
numcricrtl (Clifton et ~1.. 1984; Mrrzrr, I98 2; Wu and Freund, 1984; Wright and Batra, 
1985. 1987; Wright and Wnlrcr, 1987; Hatra, 1987it. 1988) works aimed at understanding 
factors that enhance or inhibit the initiation and growth of shear bands have involved 
itnalyzing overall simple shcuring deformntions of a viscoplastic block. A material defect 
has been modeled by introducing (i) a temperature perturbation, (ii) a geometric defect 
such as a notch or ;t smooth variation in the thickness of the specimen, or (iii) assuming 
that the matcriul nt the site of the defect is weaker than the surrounding material. The 
experimental obscrvutions of Moss (1981). Costin L’I al. (1979). Hartley it ~1. (1987) and 
of blarchand and Duffy (1988) have contributed significantly to our understanding of the 
initiation and growth of shcitr bands in steels deformed at high strain rates. 

Rrcsntly, LeMonds and Ncrdlcm;tn (1986a.b). Nccdlcman (1989). Batra and Liu 
(1989. 1990). Anand P[ rrf. (1988), Zhu and Batm (1990) and Batrrt and Zhang (1990) 
studied the phcnomcnon of shear banding in plant strain dsformations of a viscoplastic 
solid. Whcrcns Ncedlcman (1989) studied a purely mechanical problem. other works have 
trcutcd a coupled thcrmomcchanicul problem. WC note that LeMonds and Nsedleman and 
Anand (‘r 111. ncglccted the cll&t of inertia forces on the ensuing deformations of the body. 
In all of thcsc works the entire body or the portion of the body whose dcformalions were 
nnalyzcd had only one defect in il. 
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Here we study the plane strain thermomechanical deformations of a thermally softening 

viscoplastic solid containing an elliptical void and two thin layers placed symmetrically 

about the horizontal centroidal axis. These horizontal layers may be thought of as repre- 

senting planes of chemical inhomogeneity. The voids can form during manufacturing. 

However, the symmetrical situation considered herein is to simplify the problem. The 

constitutive relations for the matrix material and the material of the thin layers are the 

same. except that the How stress for the material of the thin layer in a quasistatic simple 

compression test equals either rive times or one-fifth that of the matrix material. The points 

on the free edges where the thin layer and the matrix materials meet, as well as the void 

vertices on the major axes of the ellipsoid, act as nuclei for the initiation of shear bands. It 

thus becomes an interesting exercise to investigate where the shear bands initiate first and 

the interaction amongst them. We note that the problem formulation incorporates the 

effect of inertia forces, strain-rate sensitivity and heat conduction. However, the overall 

deformations of the body are assumed to be adiabatic. The nonlinear partial differential 

equations expressing the balance of mass. linear momentum and internal energy are solved 

numerically for a prescribed set of initial and boundary conditions. 

?. FORMULATION OF THE PROBLEM 

We USC a fixed set of rectangular Cartesian coordinate axes to study the plane strain 

deformations of a thermally softening viscoplastic body being deformed in simple corn- 

prcssion. The cross-section of the body, shown in Fig. I. has an ellipsoidal void at the center 

md two thin layers of a ditkrcnt viscoplastic material placed symmetrically about the 

horizontal axis. The deformations of the body are assumed to bc symmetrical about the 

two ccntroidal axes. Accordingly, only the deformations ofthc material in the tirst quadrant 

Fig. I. The cross-section of the: prismatic body studied. (a) Location of points for Figs 3 through 
5. (b) Location of points for Fig. X. 
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are analyzed. Equations governing these defo~ations are : 

(km. = 0, (11 

Jw;, = T ,1.x. (2) 

PO t = -Q*.z + ?;,1’,,, . (3) 

Equations (I). (2) and (3) express. respectively. the balance of mass. linear momentum and 
internaf energy. Here p is the present mass density of a material particle whose mass density 

in the reference configuration is po. J is the determinant of the deformation gradient x,.., 

t‘, the velocity of a material particle in the .r,-direction. X, gives the position at time f of 
the material particle X;, T,, is the first Piola-Kirchoff stress tensor, e is the specific internal 

energy. QX is the heat flux measured per unit area in the reference con~~uration, and 

Q, = (C,<, + (;.l)i2 (4) 

is the strain-rate tensor. Furthermore. a superimposed dot indicates material time derivative, 

a comma followed by index r(j) implies partial differentiation with respect to X, (x,). and 

a repeated index implies summation over the range of the index. 

The balance laws are supplemented by the following constitutive relations : 

TX = (r,,/r~)~,J,,,. Q,, = - &P/P,, - 1% + W,,. (5) 

3/c = [o,,/JX]( t +bl)“( 1 -zO), (6) 

I-‘ = (l/2)D,,D,,, (71 

Q, = If,, - (l/3f&,&,. (8) 

(2, = (i’oll’)(/,.~z.,. y, = -k(!,. (9) 

1; = cd + .!I( p/p,, - I )/i/p?. (10) 

In thcsc equations, the material paramctcr U may bc regnrdcd as the bulk modulus, cr,, is 

the yicltl stress in ;I quasistatic simple compression test, parameters h and ))I dcscribc the 

strain-rate hnrdcning ol’ the material, x is the thermid softening parameter, 0 equals the 

tcmpcraturc change of ;I matcrinl pnrticlc from that in the reference configuration, k is the 

thermal conductivity and c is the specific heat. Both k and c are taken to be constants and 

we have nrglcctctl strcsscs caused by the thermal expansion. 

Equations (If through (IO) hold in the regions occupied by the matrix and the layer, 

the only difference being eithrr 

o,, layer = 5f3,, matrix (I la) 

or 

CT,, layer = (l/S)a,, matrix. (1 lb) 

The values of other material paramctcrs are the same for the matrix and the layer. 

Dctine s by 

s = ~+[B(&P~- I)-(2~/3) tr Djl. (I24 

= 2jrD. (12b) 

Equations (12). (5) and (6) give 

(I/:! tr s’)li’ = (a,,/J3)(1 -a@(1 -t”hl)” (13) 

which can be regarded as the equation of a generalized von Mises yield surface when the 
flow stress. given by the right-hand side of (I 3). at a material particle depends upon its 

strain rate and temperature. Alternatively, equation (5) can be interpreted as representing 
a non-Newtonian fluid whose viscosity depends upon the strain rate and temperature. 
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We introduce non-dimrnsional variables as follows : 

u = a cr,,. s = s cr,,. B = B rs,,. T = T 0,). 

;;,, = c,, H. T = r,:,, . b = h;:,,. 

u,, = a,,,‘(p,,c). 6= 01 o,,. 1 = rtl,,. 

s = s!H, p = p,p(,, p = k.(p,,cy,,H’). (14) 

Here 2H is the height of the block and r0 is the velocity imposed on its top and bottom 
surfaces. Substituting for o,,. 4, and c from (5) through (IO) into the balance laws (I) 
through (3). rewriting these in terms of non-dimensional variables. and dropping the 

superimposed bars. we arrive at the following set of nonlinear coupled field equations for 

p. I*, and 0: 

(pn* = 0. (15) 

pu:, = - Bp.,+[( li,h)( I +ho”‘( I -rO)D,,],,. t 16) 

Ill) = [ICl,,, +( I,.,@)( I -x0)( I +h/)“‘D,,D,,. (17) 

where \’ = C~J: IT,, is ;I non-ciinlcnsional number. The vnluc of I’ signities the ctrcct of inertia 
forces rclativc to the Ilow stress of the material. For the initial conditions \vc take 

/‘(S.(I) = I. v(s.0) = 0. O(s.0) = 0. (IS) 

That is. the body is initi:llly ;I( rest at ;I uniform tcmpcrxturc and h:ls constant IWSS density. 

The pcrtincnt boundary conditions for the niatcri;Il analyxd in the lirst quadr:int ;lrc 

I’! = -//(I), 7’, 2 = 0 aIltl Q? = 0. 011 the top sirrfxc AIS. (I’)) 

7, , = 0, 7’:, = 0 a11rl Q, = 0, 011 I hc right surfxc IK’. (‘0) 

I‘! = 0, I’, : = 0 :111tl QJ = 0. 011 lhc bottorii surfxc (‘I>. (21) 

7;,x, = 0 ;lIltl Q,!Vl. = 0. 011 Ihc surfxc 1111 of the void, (22) 

(‘I = 0, I’, , = 0 a11tl Q, = 0. 011 lhc Icli surliicc EA. (23) 

These boundary conditions simulate the situation when the top surfxc is movingclownw;lrtl 

with ;I speed /t(l), thcrc is no friction bctwccn it and the loading &vice, the right surfxc is 
trxtion fret, the void h:ls not conlcsccd and the cntirc boundary is thermally insulated. 
The boundary conditions (71) ;IIKI (22) ;Irc due to the presumed symmetry of the dcfor- 

mations :tbout the .v, and .v: xws. When ;inct whcrc the void ccx~Icsccs, boundary condition 
(22) is rep&xl by (2 I ). I-or the IoxIing function /I(I). WC take 

/I(l) = /,0.005. 0 < I 6 0.005, 

= I, I 2 0.005. (21) 

At the common interface between the matrix and the reinforcing layer, the velocity 

field, surface tractions, the temperature and the normal component of the heat flux are 
assumed to be continuous. 

3. COX1PlJTr\TION AND DISC’USSION OF RESCJLTS 

WC USC the updated Lagrangian method [e.g. see Bathe (19Y2)] to solve the problem. 
That is. in order to find the deformations of the body at time /+AI. the configuration of 
the body at time I is taken as the rcfcrcncc configuration. The field cquotions (I 5) through 
(I 7) and the associated boundary conditions (19) through (73) arc first reduced to ;I set 01 

coupled nonlinear ordinary ditrercntial equations by using the Galerkin method and the 
lumped mass matrix [c.g see Hughes (1987)]. For this purpose. the spatial discretization 01 
the domain consisting of four-nodcd isoparametric quadrilateral elements is employed. 
Figure 2 depicts the mesh used in the refcrencc conliguration. The number of ordinar> 
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ditTcrcnti:~l quations equals four times the number of nodes hccuus~ at each node. the mass 
density. the two components of the v&city and the tcmpcraturc arc unknown. The initial 
conditions (IS) imply that the initial mass density at each node point equals one. and the 
initial values of the two velocity components and the temperature equ:~I zero at ali nodes. 

Thcsc ordinary dilTcrcntial equations arc integrated by using the IMSL subroutine 
LSOIIE. In the subroutine, the option to intcgratc ;I stiti’ set of cqui\tioU is employed. 
The subroutine i~djusts the time step adaptively until a solution of the coupled nonlinear 

ditYcrential cquittions has been computed to the dcsircd accuracy. 
The tinite clement code dcvelopcd eurlicr by Ratra and Liu (1989) has been modified 

to study the prcscnt problem. After each time increment. the new surface of the void is 
computed and cxamincd to see if any node on the void surface has either reached or crossed 
the horizontal axis of symmetry. If a node on the void surface has crossed the horizontal 
axis, computations are repeated from the previously computed solution but with a smaller 

value of the time step. As soon as a node on the void surface reaches the horizontal axis, 

the boundary conditions on the node are changed to those given by (31). 
In the results presented below, we have used the following values of various material 

and geometric parameters : 

h = 10.OOOs. (Tg = 33.1 Mb. k = 49.2 Wm-’ C- ‘. 1~ = 0.03. 

C=373Jkg-’ ,C-‘. p,=7860kgm-I, B= 128Gh. 

H = 5mm. 13” = 75ms-‘. 2 = 0.00’5 c- ’ . (25) 
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Thus the average applied strain rate equals 5000 s - If O,, = 89.6 C and P = 0.015. We note 

that in the simple shearing problem. Batra (1988) observed that the inertia forces play a 

noticeable role when v = 0.004. Hence. the inertia forces will very likely play a significant 

role in the present problem. 

3.2. Discxssion of results 
3.2. I. Lurw mutrrial stronger than the matri.r mcttrriul. In order to understand which 

points in the dody are deforming severely. we have plotted the development of the maximum 

principal logarithmic strain E. the temperature rise 0 and the effective stress s,. equal to the 

right-hand side of eqn. (13). at several material points near the major and minor axes of 

the ellipsoidal void and at points where the “reinforcing layer” and the matrix material 

meet. The lo~~lrithmic strain E is defined as 

E = In i., 2: -In i., (26) 

where 2; and Es are the eigenvalues of the right Cauchy-Green tensor C,, = s~.,.x-,.~~ or the 

left Cauchy-Green tensor B,, = x,,,.~,,,. The equality in the second relation in (26) holds 

because the deformations are nearly isochoric. i.e. E.,i.: = I. Figures 3a. 3b and 3c depict, 

respectively. the evolution of 6, il and s, at eight material points near the major axis of the 

ellipsoidal void and also at a material point far removed from it. The coordinates, in the 

stress free reference configuration. of these points are given in the figure captions and their 
approaitwtc loci~tions arc shown in Fig. la. The material points I, 2 and 3 arc a littlc bit 

off of the hori~~)nt~ll axis, points 1.4. 5 and 6 lie on a straight lint making an angle of ncitrly 

4.5 with the horizontal axis, points I. 7 and 8 arc on an almost vertical lint. and point I3 

is near the horizontal ccntroidal aXis but far removed from the void tip. The tcmpcraturc 

rise II and the ~lilXiIllllfll principal logarilhmic Strilin c :1t point I3 incrcasc very slowly as 

tftc hlrtck continLlcs to bc comprcsscri. The t~rnp~riltLirc at ths other eight points considcrcd 

rises rapidly in the beginning and then incrcnscs slowly. The values of c at points 1 iin4 2 

Fig. 3~. The maximum principal lugxithmic strain versus the :~cragc strain itt p&t6 I. 2. 3. 4. 5. 
ft. 7. R and 13. Coordinates. in IIN stress free refcrcnce c~n~~~ir~i~i~n. nf these points arc: l(~.l~I. 
o.mi,, ?(O.lxO. WMOl). 3(O.iJoO.wOO1). J(0.I I4l.O.OlJI). 5(0.12X3. 0.0’83). 6(0.1707.0.0707). 

7(0.IOOI. 0.0200). 8(O.lOOl. 0.0400). 13(O.HOoI. O.O(H)I). 
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I:ig. ?h. The kn~per;~~urc tisc VC’CSIIS the uvcrap strain at points I through X. and (3. 

1 .oo 1 

0.25 

0.00 i, 7 

0.00 0.02 O.OI 0.06 0.00 

Fig. 3~. The cfk~tivc s~rcss versus the ~vcr;lgc strain 31 pints I through 8. rnd I? 

near the void tip increase at first and the consequent temperature rise makes the material 
surrounding these points softer. The severe deformations of this material make the void 
coalesce. This is indicated by the drop in the value of c: at point I. The coalescence of the 
void results in a redistribution of derormations in the material surrounding point I. The 
rapid growth of I: at the void tip (point 1) when rhe average strain equals 0.044 is indicative 
of the eventual development of the shear band there. The plot of the effective stress in Fig. 
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3~ indicrtttzs that the effcctivt stress at ;L material point is lower if its temperature is higher, 
in conformit? uith the constitutice relation employed. Even when the strain at material 
point I rises rapidly. the low value of the effectice stress: there gives rise to moderate values 

of the plastic working and the temperature rise does not increase significantly. 
In Fig. 4, ive have plotted the evolution of 6 and 0 at points 9. IO. I I. I:! and 13. The 

first four points are near the vicinity of the point u here the void surface intersects the 
vertical axis. Both the temperature rise and the value of the maximum principal logarithmic 
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strain at these points are approximately an order of magnitude lower than those at point 1 
near the void tip. 

In order to delineate the difference between the deformations of the matrix material 
and the material of the hard layer. we show in Fig. 5a the evolution of E at six points 

O.bCl 0.62 0.04 O.b6 0.08 

*wBs- 

Fig. Sh. The maximum principai ingxithmic strain rcrsus the avcr;lgc strain at paints 30 through 
37. and point 12. Cvordin:ites of points in the stress rrtv rcfercnce configuration ml giwn in 
previous figures arc: 33(0.9MS. O.X!s(r). ?J(@.9?9f. 0.39Ji). 35(0.8939.0.3S89t. X(0.9999. %Pt50). 

37(0.9999. ~.3~5~). 
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near the common interface between the matrix and the reinforcing layer. Points 27.28 and 

29 are in the layer and points 30, 3 1 and 32 are in the matrix. The deformation of points 
“7 ‘8. 29 31 and 32 is miniscule as compared to that of point 30. whose deformation is -,- . 
comparable to that of the point near the void tip. Also the maximum principal ~oga~thm~c 

strain E rises monotonically at point 30. Because of the very large values of the effective 

stress in the hard layer, the plastic working and the resulting temperature rise in it are more 
than that at adjoining points in the matrix material. Because of the larger deformations of 

the matrix material near point 30, eventually the temperature rise at point 30 exceeds that 

at point 27 in the hard layer. To explore the direction of propagation of the deformation 

from point 30. we have plotted in Fig. 5b the maximum principal logarithmic strain versus 
the average strain at points 30 through 37 and point I?. Points 30. 36 and 37 are on a 

vertical line near the right traction free surface. and points 30. 33. 3-t and 3S are on a line 
that makes an angle of 45 with the vertical. The values of E at points 31, 31 and 37 are 

comparable to that at point I3 in the matrix material. Recall that point 13 is near the 

horizontal centroidal axis and far removed from the void tip. The values of .s at points 31. 

32 and 37 are considerably smaller than that at point 30. indicating thereby that the 

deformation ensuing at point 30 neither propagates horizontally nor vertically. The large 

values of s at point 36 arc indicative of the fact that a small material region surrounding 
point 30 is deforming sovercly. Since the values of E at points 33, 34 and 35 are comparable 

to that at point 30 and gcnerntly dccrcase as wc move away from point 30, we may conclude 
that the deformation propagates along the line joining thcsc points. ic. along the line 

making an angle of 45 with the vertical. The plots of E at points situated near the upper 

intcrfacc bctwccn the rcinf~)rcing Iaycr and the matrix material arc similar to those at points 

27 tflr~~li~~l 35 and arc not included hcrcin. 

In order IO clucidatc the evolution of a shear band, WC have plotted in Figs 6 and 7 
contours of the second invariant I of the clcviatoric strain-rate tensor 0. the maximum 

prirlcip~~f l~?~;Irithri~ic strain t:, atld the tcnlpcr~~t~;rc rise 0 at two ciif~crcrlt V;~UOS of the 
avcragc strain, The contours of I dcscribc how a matcriat particlc is deforming at a given 
instant. contours of I: give the accumuhltcd deformation until that time. and contours of 

0 dcscribc the total energy dissipated into heat till that time and the resulting tcmpcraturc 
rise. Wc note that the contour plot routine interpolates the data at numerous points in the 

domain front that supplied at discrctc points. Figure 6 shows the contours of I, E and 0 

WllCIl y.,*, = O.()lrtX. It follows from the contours of I that the matcriat near the void tip and 

points P anti Q on the traction free right edge where the reinforcing layer meets it is 
&forming scvcrely. As descrihcd earlier, thcsc intense dcform~ttions propagate along lines 
inclined at 1fi4.5’ to the horizontal. The contours of E and 0 r~e:tl that the matcriai 

surrounding the aforcstatcd lines has undcrgonc scverc deformations. Even though the 

strain rate and the strain in tho layer arc ncgligiblc as ~ompilrc~j to thoir m;iximum WIUCS 

in the matrix n~:ttthd, the stress in the layer is high. Consequently. the plastic work done 
;lnd the resulting tempcraturc rise in the layer arc not that small. The contours of I, i: and 
0 ;tt an average strain ofO.0308 plotted in Fig. 7 arc cvidcnce of the narrowing down Of the 
rapidly deforming region. Three bands. two initiating from points P and Q, and the third 
from the void tip, have formed. The maximum values of I: and 0 equal 0.134 and 133 C. 
rcspcctivcly. Wc note that ifa block of rigid/perfectly plastic material with flow stress equal 

to 333 MPa wcrc dcformcd homogeneously in simple compression to an average strain of 
0.03~)8, the temperature rise would equal 2.6 C assuming that all of the plastic work done 
has been convcrtcd into heat. Thus, the significant tcmperaturo incrcasc within the band 

signifies the intense deformation therein. 

3.22. Ln_wr mtteriut w&r titm the matrix rtwterinl. We first investigate the dcvei- 
opmcnt of shear bands initiating from points P and Q that arc on the right traction free 
surface and the common intcrfaccs between the layer and the matrix material. For this 
purpose. we have plotted in Fig. 8a the growth of the maximum principal Io~arithm~c strain 
c at points 31 through 38. Points 31, 3 2, 33 and 34 are on the layer side and points 35. 36. 
37 and 38 are on the matrix side of the common interface between the layer and the matrix. 
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The first four points lie on a horizontal line in the layer, and the last four points lie on a 
different horizontal line in the matrix. Amongst these eight points, the growth of c at point 
31 is the maximum. The relative magnitude of E at these points indicates that the severe 
deformation initiating from point 31 propagates horizontally to point 32 within the softer 

layer. Similarly. the severe deformation initiating from point Q propagates horizontally 

within the soft layer. Recall that in the previous case, the severe deformations occurred at 

the matrix particles on the common interface and propagated into the softer matrix material. 

Since the values of E at point 34 are quite small as compared to that at points 31 and 32. 

the severe deformation either did not propagate horizontally from point 32 to point 34. or 

there was not enough time for it to arrive at point 34. Which one of these two alternatives 

is valid can be derived from the plots of E at points 37 through 43. All of these points are 

in the matrix. Because the Row stress in a quasistatic simple compression test for the matrix 

material is five times that for the material of the layer. the strain rates and hence the strains 
in the matrix material are small relative to those in the layer. We note that points 37. 38 

and 39 are on a horizontal line. 37. 40 and 43 are on a vertical line and 37. 41 and 42 are 

on a line that makes an angle of 45’ with the vertical. For comparison purposes, the values 

of E at point I3 which is near the horizontal centroidal axis and far removed from the 

ellipsoidal void are also plotted. The values of E at these points indicate that the likely 

direction of propagation of the shear band from point 37 is along the line joining it to 

points 41 and 42. Similarly. the severe deformations initiating from point Q on the upper 

interface bctwccn the Iaycr and the matrix material will propagate horizontally first into 

the soft layer and then into the matrix material along a line that makes an angle of45’ with 

the vertical lint. III order to see whcthcr thcsc two bands propagate indcpondontly of each 

other or not. WC have plotted in Fig. 9 the contours of the maximum principal logarithmic 

strain at succcssivcly iiicrcasing valiics of yelvy. At Y,,“~ = 0.012. shear bands have initiated 

from the void tips on the major :lxis of the elliptical void as well as points on the free cdgc 

whcrc the layer IIICC~S the matrix material. Whcrcas the band originating from points on 

the free cdgc propagates into the softer layer matcrinl. those initiating from the void tips 

propagate into the matrix. The two hands initiating from points I’and Qcsscntially coalcscc 

imrnctliatcly into WC hccausc of the small thickness of the layer. Also due to the competing 

clTcct of the m;lximum shear stress in the +_45” directions and the rclativcly ncgligiblc 

thickness of the I;lycr. the band propagates horizontally into the layer. 

When the hotly has been dcformcd to an average strain of 0.0177. the matrix material 

has softcncd somewhat bccausc of its being heated up. The shear band originating from 

the void tip has propagated more into the matrix material. The two bands that had coalcsccd 

into one and wcrc propagating horizontally into the layer now start to bifurcate and 

propagate into the matrix material in the directions of the maximum shear stress. This 

bifurcation of the shear band into two bands becomes clearer in Fig. 9c. At yaVy = 0.02053, 

the shear hand that initiated from the void tip has merged with the one that bifurcated 

from the band in the layer. The other band bifurcating from the one in the layer continues 

to travel in the -45 direction into the matrix material. During subsequent deformations 

of the body, all bands propagate more into the matrix material. When j)_ = 0.0273. the 

bands originating from the void tip and the one divcrtcd out of the layer material have 

mcrgcd and propagated to the top right corner of the block. During the ensuing defor- 
mations. these bands do not quite narrow down into thin bands. Rather. the interaction 

among various bands broadens the region that has deformed severely. Figure 9g shows 

contours of the maximum principal logarithmic strain at jt_ = 0.0333. The contour of 

I: = 0.075 has propagated significantly into the matrix material from the void tip and also 

into the softer Iaycr and the surrounding matrix material near the points whore the layer 

meets the traction free cdgc of the matrix. Note that the maximum value 0.40 of E equals 
I2 times the average strain of 0.0333. 

Figure IO depicts the contours of the temperature at various values of Y.,~$. We recall 
that the temperature riscat a point dcpcnds upon the totalencrgydissipated. At yJVp = 0.013. 

even though the layer material near the free edge has deformed severely, it has not been 

heated up much because of the rather low value of stresses in it. The contours of temperature 
reinforce the picture given above of the growth of and the interaction among various bands. 
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Also only the material near the void tip is heated up significantly. At yJVy = 0.0333, the 
m~lxirnurn temperature reached at a point near the void tip equals 157 ‘C. However, if the 
body were made of a rigid/perfectly plastic material with a flow stress of 333 MPa and 
deformed homogeneously in simple compression to an average strain of 0.0333, the tem- 
perature rise would cquitl only 2.85 C. assuming that all of the plastic: work done has been 
converted into heat. 

Finally, we note that in both cases studied above, contours of distinct values 01’): travel 
at different speeds. The speed of propagation also depends upon the average strain reached 
in the body. 

Even though the deformations could be continued further. they were not mainly 
because the CPU time rcquircd exceeded our allotment and it was feh that the deformations 
had developed into well-defined shear bands. 

4. CONCLUSIONS 

We have studied the problem of the initiation and growth of shear bands in plane 
strain deformations of a thermally softening viscoplastic body containing a void and two 
symmetrically placed layers made of a viscoplastic material that differs from the matrix 
material in the value of the tlow stress in a quasistatic simple compression test. When the 
layer material is stronger than the matrix material, a shear band first originates from the 
void tip. This band propagates into the matrix material at an angle of approximately 45’ 
to the horizontal. the axis of loading being vertical. Two bands also initiate from points 
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where the layer meets the traction free boundary and these bands propagate into the matrix 
material along +-I5 directions. When the void has coalesced. the severely deforming region 
surrounding the band around the void tip starts receding. Eventually three bands form at 
an average strain of 0.044 when the maximum principal logarithmic strain and the tem- 
perature rise equal 0.13-l and 133 C. respectively. However, when the layer material is 
weaker than the matrix material. bands initiating from the void tip and the layer edges 
propagate into the matrix and the layer. respectively. The band propagating in the layer 
bifurcates into two bands that propn_cate into the matrix material in the direction of 
maximum shearing stress. One of these bands eventually merges with that initiating from 
the void tip. The severely deformed region in this case is quite different from the one when 
the layer material is stronger than the matrix material. 

.~c~Pnr~~~k~t/~c~mc~nr.~-This work was supported by the U.S. National Science Foundation Grant SlSXl 8715952 
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