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Abstract

An analytical solution is presented for three-dimensional thermomechanical deformations of a simply supported func-

tionally graded (FG) rectangular plate subjected to time-dependent thermal loads on its top and/or bottom surfaces.Material

properties are taken to be analytical functions of the thickness coordinate. The uncoupled quasi-static linear thermoelasticity

theory is adopted in which the change in temperature, if any, due to deformations is neglected. A temperature function that

identically satisfies thermal boundary conditions at the edges and the Laplace transformation technique are used to reduce

equations governing the transient heat conduction to an ordinary differential equation (ODE) in the thickness coordinate

which is solved by the power series method. Next, the elasticity problem for the simply supported plate for each instanta-

neous temperature distribution is analyzed by using displacement functions that identically satisfy boundary conditions at

the edges. The resulting coupled ODEs with variable coefficients are also solved by the power series method. The analytical

solution is applicable to a plate of arbitrary thickness. Results are given for two-constituent metal-ceramic FG rectangular

plates with a power-law through-the-thickness variation of the volume fraction of the constituents. The effective elastic

moduli at a point are determined by either the Mori–Tanaka or the self-consistent scheme. The transient temperature,

displacements, and thermal stresses at several critical locations are presented for plates subjected to either time-dependent

temperature or heat flux prescribed on the top surface. Results are also given for various volume fractions of the two

constituents, volume fraction profiles and the two homogenization schemes.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Laminated composite plates are extensively used due to their high specific strength and high specific

stiffness. However, the abrupt change in material properties across an interface between discrete materials
introduces large interlaminar stresses that could cause delamination. One way to overcome this adverse effect
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is to use functionally graded materials (FGMs). In a functionally graded (FG) plate, the volume fraction of

the constituent materials changes gradually, usually in the thickness direction only. A smooth variation of

in-plane material properties and an optimum response to external thermomechanical loads could also be

obtained by changing gradually the chemical structure of a thin polymer sheet (Lambros et al., 1999; Breval
et al., 1990). Recently Vel and Batra (2003a, 2002) presented a three-dimensional (3D) exact solution for the

mechanical vibrations and the steady state thermal stresses in a simply supported FG rectangular plate. Vel

and Batra (2003b) have also given an exact solution for static thermoelastic cylindrical bending deformations

of an FG plate. Since the magnitudes of transient thermal stresses are usually larger than those of steady

state stresses, it is important to quantify them for proper design of an FG plate. Many of the earlier studies

on thermal stresses in FG plates are based on plate theories. For example, Yang and Shen (2002) have

presented a free and forced vibration analysis of initially stressed FG plates in a thermal environment based

on a higher order shear deformation plate theory. Cheng and Batra (2000) have used the asymptotic ex-
pansion method to study the 3D thermoelastic deformations of an FG elliptic plate. Tarn and Wang (1995)

have also given an asymptotic solution for nonhomogeneous plates. Reiter et al. (1997) and Reiter and

Dvorak (1997, 1998) conducted detailed finite element studies of discrete models containing simulated

skeletal and particulate microstructures and compared results with those computed from homogenized

models in which effective properties were derived by either the Mori–Tanaka or the self-consistent methods.

Some attempts have been made to analyze the 3D transient temperature distribution and thermal stresses

in FG plates. For example, Ootao and Tanigawa (1999) have approximated an FG plate as a laminated

plate consisting of a series of laminae, with each lamina assigned slightly different material properties. Kim
and Noda (2001) adopted a laminate theory and obtained Green�s function solution for analysing the 3D

transient temperature distribution.

Jin and Batra (1996a,b, 1998), amongst others, have used the quasi-static 2D linear thermoelasticity

theory to study fracture characteristics at a crack tip in an FG plate. They found that the fracture toughness

is significantly increased when a crack grows from the ceramic-rich region into the metal-rich region in an

aluminum–nickel FGM. Here we present an analytical solution for the 3D transient thermal stresses of an

FG thick plate. We assume that the macroscopic properties of the plate material are isotropic and vary

smoothly in the thickness direction. We expand material properties as a Taylor series in the thickness
direction thus circumventing the laminate theory approximation. A temperature function that identically

satisfies thermal boundary conditions at the edges and the Laplace transformation technique are employed

to reduce equations governing the transient heat conduction to an ordinary differential equation (ODE) in

the thickness coordinate, which is then solved by the power series method. The uncoupled quasi-static

linear thermoelasticity theory is adopted in which changes in temperature, if any, due to deformations are

neglected. Displacement functions that identically satisfy mechanical boundary conditions at the edges are

used to reduce the partial differential equations governing the mechanical deformations to a set of coupled

ODEs in the thickness coordinate, which are solved by the power series method.
We consider an Al/SiC graded plate with a power-law variation of the volume fractions of the con-

stituents through the thickness. The effective elastic moduli at a point are determined from the local volume

fractions of the constituents and their material properties either by the Mori and Tanaka (1973) or the self-

consistent (Hill, 1965) scheme. The temperature, displacements, and stresses at critical locations for tran-

sient thermal loads are given for the two homogenization schemes, volume fractions of the constituents,

and the exponent in the power-law that gives through-the-thickness variation of the constituents.
2. Formulation of the problem

Fig. 1 shows a sketch of the problem studied. We use rectangular Cartesian coordinates xi ði ¼ 1; 2; 3Þ to
describe the thermomechanical fields in a plate occupying the region ½0; L1� � ½0; L2� � ½�H=2;H=2� in the



Fig. 1. The FG rectangular plate and the coordinate system.
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unstressed reference configuration at a uniform temperature. The plate is made of an isotropic material

with material properties varying smoothly in the x3 (thickness) direction only.

The analysis is based on the uncoupled, quasi-static linear thermoelasticity theory wherein both, the

change in temperature of the elastic body due to working of elastic deformations, and the inertia term in the

equations of motion, are neglected (e.g. see Fung and Tong, 2001). In a consistent linear thermoelasticity
theory for a body unstressed in the reference configuration, the elastic working is a second-order effect and

is hence ignored. Thus the heat equation in the absence of internal heat sources and the equations of motion

in the absence of body forces reduce to
cq _TT ¼ �qj;j; rij;j ¼ 0 ði; j ¼ 1; 2; 3Þ; ð1Þ
where c, q, T , qj and rij are the specific heat capacity, mass density, change in temperature of a material

particle from that in the stress-free reference configuration, the heat flux and the Cauchy stress tensor,

respectively. A comma followed by index j denotes partial differentiation with respect to the position xj of a
material particle, a superimposed dot indicates partial derivative with respect to time t, and a repeated index
implies summation over the range of the index.

The constitutive equations for a linear isotropic thermoelastic material are (e.g. see Fung and Tong,

2001)
rij ¼ kekkdij þ 2leij � bdijT ;

qj ¼ �jT;j;
ð2Þ
where k and l are the Lam�ee constants, b is the stress–temperature modulus, j is the thermal conductivity, eij
is the infinitesimal strain tensor and dij is the Kronecker delta. The material properties c, q, k, l, b and j are
functions of x3.

The infinitesimal strain tensor is related to the mechanical displacements ui by
eij ¼ 1
2
ðui;j þ uj;iÞ: ð3Þ
The edges of the plate are assumed to be simply supported and maintained at the reference temperature.

That is,
r11 ¼ 0; u2 ¼ u3 ¼ 0; T ¼ 0 at x1 ¼ 0; L1;

r22 ¼ 0; u1 ¼ u3 ¼ 0; T ¼ 0 at x2 ¼ 0; L2:
ð4Þ
The thermal boundary conditions on the top and the bottom surfaces are specified as
#�T ðx1; x2;�H=2; tÞ þ n�q3ðx1; x2;�H=2; tÞ ¼ u�ðtÞ sin ax1 sin bx2; ð5Þ

where uþðtÞ and u�ðtÞ are known functions, a ¼ kp=L1, b ¼ mp=L2, and k and m are positive integers. By

appropriately choosing values of constants #� and n�, various boundary conditions corresponding to either
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a prescribed temperature, a prescribed heat flux or exposure to an ambient temperature through a

boundary conductance can be specified on the top and bottom surfaces of the plate. Any prescribed

temperature distribution or heat flux on the top surface can be expressed in terms of a double Fourier series

and the solution obtained by the method of superposition. The mechanical boundary conditions prescribed
on the top and the bottom surfaces can be either a displacement component uj or a traction component r3j.

Since we are interested in the transient thermal stresses, the top and bottom surfaces are taken to be

traction free. That is,
r13 ¼ r23 ¼ r33 ¼ 0 at x3 ¼ �H=2: ð6Þ
Since T equals the change in temperature, therefore, T ðx1; x2; x3; 0Þ ¼ 0. The mechanical and the thermal

problems are one-way coupled in the sense that the temperature field is determined first by solving Eqs. (1)1
and (2)2 and the pertinent boundary and initial conditions, and the displacements are obtained for each

instantaneous temperature distribution from Eqs. (1)2 and (2)1 and the relevant boundary conditions.
3. A three-dimensional analytical solution

We assume that the material properties are analytic functions of x3 and thus can be represented by a
Taylor series expansion about the midsurface as
½k; l; b; j; cq� ¼
X1
a¼0

~kkðaÞ; ~llðaÞ; ~bbðaÞ; ~jjðaÞ; ~ffðaÞ
h i

xa3: ð7Þ
Since k, l, b, j and cq have positive values for all x3, therefore ~kkð0Þ, ~llð0Þ, ~bbð0Þ, ~jjð0Þ and ~ffð0Þ are positive.

3.1. The heat conduction problem

A solution for the change in temperature is sought in the form
T ðx1; x2; x3; tÞ ¼ hðx3; tÞ sin ax1 sin bx2; ð8Þ
which identically satisfies boundary conditions (4)4;8 at the edges of the plate. We will require that

hðx3; 0Þ ¼ 0. Substitution for T from (8) into (2)2 and the result into (1)1 gives the following partial dif-

ferential equation with variable coefficients,
j½ða2 þ b2Þh� h00� � j0h0 þ cq _hh ¼ 0; ð9Þ
where a prime denotes derivative with respect to x3. Taking the Laplace Transform L of (9) with respect to

time t and defining Hðx3; sÞ � L½hðx3; tÞ�, we obtain the following ODE involving only spatial derivatives

of H
j½ða2 þ b2ÞH�H00� � j0H0 þ cqsH ¼ 0: ð10Þ
We assume a solution for H in the form of a power series
Hðx3; sÞ ¼
X1
c¼0

~HHðcÞðsÞxc3: ð11Þ
The series (11) and the Taylor series for j and cq in (7) are substituted into Eq. (10). By multiplying the
infinite series, appropriately shifting the index of summation and equating each power of x3 to zero, we

obtain the recursive relation
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Xa

c¼0

~jjðcÞ½ ~HHða�cþ2Þða� cþ 2Þða� cþ 1Þ � ~HHða�cÞða2 þ b2Þ� þ ~jjðcþ1Þ ~HHða�cþ1Þðcþ 1Þða� cþ 1Þ

� s~ffðcÞ ~HHða�cÞ ¼ 0; ð12Þ

for a ¼ 0; 1; 2; . . . Since ~jjð0Þ > 0, corresponding to a ¼ 0 in (12) we obtain
~HHð2ÞðsÞ ¼ 1

2
ða2

"
þ b2Þ þ s

~ffð0Þ

~jjð0Þ

#
~HHð0ÞðsÞ � ~jjð1Þ

2~jjð0Þ
~HHð1ÞðsÞ: ð13Þ
Evaluation of the recursion formula (12) successively for a ¼ 1; 2; . . ., gives ~HHðaþ2ÞðsÞ in terms of arbitrary

functions ~HHð0ÞðsÞ and ~HHð1ÞðsÞ. Substitution of the coefficients ~HHðaÞðsÞ into (11) gives
Hðx3; sÞ ¼ ~HHð0ÞðsÞw0ðx3; sÞ þ ~HHð1ÞðsÞw1ðx3; sÞ; ð14Þ

where w0ðx3; sÞ and w1ðx3; sÞ are known infinite series in x3 whose coefficients are polynomials in s, and
~HHð0ÞðsÞ and ~HHð1ÞðsÞ are unknown functions that are determined by satisfying the boundary conditions on the

top and bottom surfaces.

Using (8) and (2)2, the thermal boundary conditions (5) on the top and bottom surfaces are
#�hð�H=2; tÞ � n�jð�H=2Þh0ð�H=2; tÞ ¼ u�ðtÞ: ð15Þ

Taking the Laplace transform of (15) with respect to t, we obtain
#�Hð�H=2; sÞ � n�jð�H=2ÞH0ð�H=2; sÞ ¼ U�ðsÞ; ð16Þ

where U�ðsÞ � L½u�ðtÞ�. Substitution of (14) into (16) gives
#�½ ~HHð0ÞðsÞw0ð�H=2; sÞ þ ~HHð1ÞðsÞw1ð�H=2; sÞ� � n�jð�H=2Þ½ ~HHð0ÞðsÞw0
0ð�H=2; sÞ þ ~HHð1ÞðsÞw0

1ð�H=2; sÞ�
¼ U�ðsÞ: ð17Þ
This equation is readily solved to obtain the following expressions for ~HHð0ÞðsÞ and ~HHð1ÞðsÞ
~HHð0ÞðsÞ ¼ 1

D
½#�w1ð

n
� H=2; sÞ � n�jð � H=2Þw0

1ð � H=2; sÞ�UþðsÞ

� ½#þw1ðH=2; sÞ � nþjðH=2Þw0
1ðH=2; sÞ�U�ðsÞ

o
;

~HHð1ÞðsÞ ¼ 1

D
½#þw0ðH=2; sÞ

n
� nþjðH=2Þw0

0ðH=2; sÞ�U�ðsÞ

� ½#�w0ð � H=2; sÞ � n�jð � H=2Þw0
0ð � H=2; sÞ�UþðsÞ

o
;

ð18Þ
where
D ¼ ½#þw0ðH=2; sÞ � nþjðH=2Þw0
0ðH=2; sÞ�½#�w1ð�H=2; sÞ � n�jð�H=2Þw0

1ð�H=2; sÞ�
� ½#�w0ð�H=2; sÞ � n�jð�H=2Þw0

0ð�H=2; sÞ�½#þw1ðH=2; sÞ � nþjðH=2Þw0
1ðH=2; sÞ�: ð19Þ
Substitution of (18) into (14) gives the function Hðx3; sÞ in the form of a power series in x3, whose coeffi-

cients are rational functions of s. By writing these coefficients as partial fractions of s and taking the inverse

Laplace transform, we obtain
hðx3; tÞ ¼
X1
c¼0

~hhðcÞðtÞxc3; ð20Þ
and the transient temperature field T ðx1; x2; x3; tÞ for the plate is determined from (8).
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3.2. The displacement field and thermal stresses

A solution for the displacement field is sought in the form
u1 ¼ U1ðx3Þ cos ax1 sin bx2;
u2 ¼ U2ðx3Þ sin ax1 cos bx2;
u3 ¼ U3ðx3Þ sin ax1 sin bx2;

ð21Þ
which identically satisfies the homogeneous boundary conditions (4)1–3 and (4)5–7 at the simply supported

edges. Substitution for u from (21) into (3), for e and T into (2) and for r into (1)2 gives the following

coupled system of second-order ODEs:
ðkþ 2lÞU1a2 þ kU2abþ lðU1b2 þ U2abÞ � kU 0
3a� l0ðU 0

1 þ U3aÞ � lðU 00
1 þ U 0

3aÞ þ bha ¼ 0;

ðkþ 2lÞU2b2 þ kU1abþ lðU2b2 þ U1abÞ � kU 0
3b� l0ðU 0

2 þ U3bÞ � lðU 00
2 þ U 0

3bÞ þ bhb ¼ 0;

lðU 0
1aþ U 0

2bÞ þ lU3ða2 þ b2Þ þ k0ðU1aþ U2bÞ þ kðU 0
1aþ U 0

2bÞ � ðk0 þ 2l0ÞU 0
3

� ðkþ 2lÞU 00
3 þ b0hþ bh0 ¼ 0:

ð22Þ
We assume a power series solution for the displacements as
Uiðx3Þ ¼
X1
c¼0

eUU ðcÞ
i xc3: ð23Þ
Inserting into the ODEs (22) the material properties k, l and b from (7) and the assumed power series

solution for the displacements and the temperature change from (23) and (20), we obtain the following

coupled recurrence algebraic relations for every non-negative integer a:
Xa

c¼0

ð~kkðcÞ þ 2~llðcÞÞ eUU ða�cÞ
1 a2 þ ~kkðcÞ eUU ða�cÞ

2 abþ ~llðcÞð eUU ða�cÞ
1 b2 þ eUU ða�cÞ

2 abÞ � ða� cþ 1Þ~kkðcÞ eUU ða�cþ1Þ
3 a

� ðcþ 1Þ~llðcþ1Þðða� cþ 1Þ eUU ða�cþ1Þ
1 þ eUU ða�cÞ

3 aÞ � ða� cþ 1Þ~llðcÞðða� cþ 2Þ eUU ða�cþ2Þ
1

þ eUU ða�cþ1Þ
3 aÞ þ ~bbðcÞ ~hhða�cÞðtÞa ¼ 0;Xa

c¼0

ð~kkðcÞ þ 2~llðcÞÞ eUU ða�cÞ
2 b2 þ ~kkðcÞ eUU ða�cÞ

1 abþ ~llðcÞð eUU ða�cÞ
2 a2 þ eUU ða�cÞ

1 abÞ � ða� cþ 1Þ~kkðcÞ eUU ða�cþ1Þ
3 b

� ðcþ 1Þ~llðcþ1Þðða� cþ 1Þ eUU ða�cþ1Þ
2 þ eUU ða�cÞ

3 bÞ � ða� cþ 1Þ~llðcÞðða� cþ 2Þ eUU ða�cþ2Þ
2

þ eUU ða�cþ1Þ
3 bÞ þ ~bbðcÞ ~hhða�cÞðtÞb ¼ 0;Xa

c¼0

~llðcÞða� cþ 1Þð eUU ða�cþ1Þ
1 aþ eUU ða�cþ1Þ

2 bÞ þ ~llðcÞ eUU ða�cÞ
3 ða2 þ b2Þ þ ðcþ 1Þ~kkðcþ1Þð eUU ða�cÞ

1 aþ eUU ða�cÞ
2 bÞ

þ ða� cþ 1Þ~kkðcÞð eUU ða�cþ1Þ
1 aþ eUU ða�cþ1Þ

2 bÞ � ðcþ 1Þða� cþ 1Þð~kkðcþ1Þ þ 2~llðcþ1ÞÞ eUU ða�cþ1Þ
3

� ða� cþ 2Þða� cþ 1Þð~kkðcÞ þ 2~llðcÞÞ eUU ða�cþ2Þ
3 � ~bbðcþ1Þðcþ 1Þ~hhða�cÞðtÞ

� ~bbðcÞða� cþ 1Þ~hhða�cþ1ÞðtÞ ¼ 0: ð24Þ
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The recurrence relations (24) are evaluated successively for a ¼ 0; 1; . . . , to obtain eUU ðaþ2Þ
1 , eUU ðaþ2Þ

2 and eUU ðaþ2Þ
3

in terms of six arbitrary constants eUU ð0Þ
1 , eUU ð1Þ

1 , eUU ð0Þ
2 , eUU ð1Þ

2 , eUU ð0Þ
3 and eUU ð1Þ

3 . These six constants are determined

by satisfying the mechanical boundary conditions (6) on the top and the bottom surfaces of the plate. Thus

displacements and stresses at any point in the entire plate can be determined.
4. Effective moduli of two-phase composites

Consider a FG composite material fabricated by mixing two distinct material phases, for example, a

metal and a ceramic. Often, precise information about the size, shape and distribution of the particles is not

available and the effective moduli of the graded composite must be evaluated based only on the volume

fraction distributions and the approximate shape of the dispersed phase. Several micromechanics models
have been developed to infer the effective properties of an equivalent macroscopically homogeneous

composite material. We use here the Mori–Tanaka and the self-consistent methods to determine the ef-

fective moduli.

4.1. The Mori–Tanaka estimate

The Mori–Tanaka (Mori and Tanaka, 1973; Reiter and Dvorak, 1997) scheme for estimating the

effective moduli is applicable to regions of the graded microstructure which have a well-defined continuous
matrix and a randomly distributed particulate phase. It takes into account the interaction of the elastic

fields among neighboring inclusions. It is assumed that the matrix phase, denoted by the subscript 1, is

reinforced by spherical particulates, denoted by the subscript 2. In this notation, K1, l1, j1 and a1 denote
the bulk modulus, the shear modulus, the thermal conductivity and the thermal expansion coefficient,

respectively, and V1 the volume fraction of the matrix phase. K2, l2, j2, a2 and V2 denote the corresponding
quantities for the particulate phase. It should be noted that V1 þ V2 ¼ 1, the Lam�ee constant k is related to

the bulk and the shear moduli by k ¼ K � 2l=3 and the stress–temperature modulus is related to the co-

efficient of thermal expansion by b ¼ ð3kþ 2lÞa ¼ 3Ka. The effective value of cq at a point in the com-
posite is given by the ‘‘rule of mixture’’:
cq ¼ c1q1V1 þ c2q2V2: ð25Þ
For an isotropic matrix containing isotropic particulates, the macroscopic response of the composite is

assumed to be isotropic. The effective local bulk modulus K and the effective shear modulus l are given by
K � K1

K2 � K1

¼ V2 1

��
þ ð1� V2Þ

K2 � K1

K1 þ ð4=3Þl1

�
;

l� l1

l2 � l1

¼ V2 1

��
þ ð1� V2Þ

l2 � l1

l1 þ f1

�
;

ð26Þ
where f1 ¼ l1ð9K1 þ 8l1Þ=6ðK1 þ 2l1Þ. The effective thermal conductivity j is found from (Hatta and Taya,

1985)
j� j1

j2 � j1

¼ V2
1þ ð1� V2Þðj2 � j1Þ=3j1

; ð27Þ
and the coefficient of thermal expansion a is determined from the correspondence relation (Rosen and

Hashin, 1970)
a� a1
a2 � a1

¼ 1

K

�
� 1

K1

�
1

K2

��
� 1

K1

�
: ð28Þ
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4.2. Self-consistent estimate

The self-consistent method (Hill, 1965; Reiter and Dvorak, 1997) assumes that an inclusion is embedded

in a continuum material whose effective properties are those of the composite. This method treats the
matrix and reinforcement phases symmetrically and the same overall moduli is predicted for another

composite in which the roles of the two phases are interchanged. This makes it particularly suitable for

determining the effective moduli in those regions which have an interconnected skeletal microstructure. The

effective moduli are given implicitly by
d=K ¼ V1=ðK � K2Þ þ V2=ðK � K1Þ;
g=l ¼ V1=ðl� l2Þ þ V2=ðl� l1Þ;

ð29Þ
where d ¼ 3� 5g ¼ K=ðK þ 4l=3Þ. Eq. (29)1 is solved for K in terms of l to obtain
K ¼ 1=ðV1=ðK1 þ 4l=3Þ þ V2=ðK2 þ 4l=3ÞÞ � 4l=3; ð30Þ
and l is obtained by solving the following quadratic equation
½V1K1=ðK1 þ 4l=3Þ þ V2K2=ðK2 þ 4l=3Þ� þ 5½V1l2=ðl� l2Þ þ V2l1=ðl� l1Þ� þ 2 ¼ 0: ð31Þ
The thermal conductivity (Hashin, 1968) is also given implicitly by
V1ðj1 � jÞ=ðj1 þ 2jÞ þ V2ðj2 � jÞ=ðj2 þ 2jÞ ¼ 0: ð32Þ
The coefficient of thermal expansion a is obtained by substitution for the self-consistent estimate of the bulk

modulus K from (30) into the correspondence relation (28). Because the quadratic Eq. (31) and the qua-

dratic Eq. (32) have to be solved to obtain the shear modulus l and the thermal conductivity j, it is easier to
use the Mori–Tanaka method than the self-consistent scheme.
5. Results and discussion

We present exact results for a simply supported square plate with its top surface subjected to a transient

thermal load. Since it is common in high-temperature applications to employ a ceramic top layer as a

thermal barrier to a metallic structure, we choose the constituent materials of the FG plate to be Aluminum

and SiC having the following material properties
Al : Em ¼ 70 GPa; mm ¼ 0:3; am ¼ 23:4� 10�6=K;

jm ¼ 233 W=mK; cm ¼ 896 J=kgK; qm ¼ 2707 kg=m3;

SiC : Ec ¼ 427 GPa; mc ¼ 0:17; ac ¼ 4:3� 10�6=K;

jc ¼ 65 W=mK; cc ¼ 670 J=kgK; qc ¼ 3100 kg=m3:

ð33Þ
We assume that the volume fraction of the ceramic phase is given by the power-law type function
Vc ¼ V �
c þ ðV þ

c � V �
c Þ 1

2

�
þ x3
H

�p

: ð34Þ
Here V þ
c and V �

c are, respectively, the volume fractions of the ceramic phase on the top and the bottom

surfaces of the plate, and the parameter p dictates the volume fraction profile through the thickness. The

dimensions of the simply supported plate are L1 ¼ L2 ¼ 0:25 m. For V �
c ¼ 0 and V þ

c ¼ 1 and different
values of p, we have plotted in Fig. 2 the through-the-thickness variations of various material parameters

given by the two homogenization schemes.



Fig. 2. Through-the-thickness variation of (a) ceramic volume fraction (b) bulk modulus (c) shear modulus, (d) thermal conductivity,

(e) thermal expansion coefficient, and (f) specific heat capacity using the Mori–Tanaka and self-consistent homogenization schemes for

different values of the power-law exponent p; V �
c ¼ 0, V þ

c ¼ 1.
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A convergence study for the number of terms to be included in series (11) was performed for the
temperature and heat flux prescribed on the top surface of the plate; the results for the latter case are

summarized in Table 1. It is clear that 15 terms in the series (11) give accurate temperature fields in the

plate. Obtaining the inverse Laplace Transform becomes more involved as we increase the number of terms

in the series. The stresses and displacements were obtained by retaining 100 terms in the series expansion

(23).

5.1. Time-dependent surface temperature

We first study the problem when the prescribed temperature on the top surface of the plate increases

exponentially from the reference temperature to a prescribed steady state value given by
Table

Compu

surface

Num

of te

5

10

15

20
T ðx1; x2;H=2; tÞ ¼ Tþð1� e�ctÞ sinðpx1=L1Þ sinðpx2=L2Þ: ð35Þ
The bottom surface is maintained at the reference temperature, i.e., T ðx1; x2;�H=2; tÞ ¼ 0. The parameter c
determines the rate of temperature change on the top surface. Results are presented in terms of the non-

dimensional variables defined as
1

ted temperature at three points in the plate for the heat flux (37) prescribed on the top surface of the plate with the bottom

thermally insulated; L=H ¼ 5 and non-dimensional variables are defined in Eq. (38)

ber

rms

�tt ¼ 2:0 �tt ¼ 6:0bTT L1
2
; L2
2
; H
2

� � bTT L1
2
; L2
2
; 0

� � bTT L1
2
; L2
2
;� H

2

� � bTT L1
2
; L2
2
; H
2

� � bTT L1
2
; L2
2
; 0

� � bTT L1
2
; L2
2
;� H

2

� �
1.960062 1.170248 1.004035 2.468455 1.656847 1.480494

1.994998 1.170763 1.015029 2.505207 1.660631 1.494150

1.997386 1.170742 1.014309 2.507529 1.660650 1.493503

1.997595 1.170739 1.014366 2.507733 1.660652 1.493561



Fig. 3

stress,

with c
and Vc
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�cc ¼ ctr; �tt ¼ t
tr
; tr ¼

cmqmH
2

jm

; �TT ¼ T
Tþ ; �uui ¼

ui
amL1Tþ ; �rrij ¼

rij

EmamTþ : ð36Þ
Thus the reference length and the reference stress non-dimensionalizing displacements and stresses re-

spectively equal the axial elongation of a free aluminum bar of length L1 and the magnitude of the axial
stress produced in this bar clamped at the edges caused by the temperature rise of Tþ. tr is the characteristic
time of heat conduction through length H . For material properties listed in (33), H ¼ 50 mm and T þ ¼ 100

K, these quantities respectively equal 0.585 mm, 63.8 MPa and 26 s.

The Mori–Tanaka homogenization scheme is used to find the effective material properties with the metal

(Al) taken as the matrix phase and the ceramic (SiC) as the particulate phase. That is, P1 ¼ Pm and P2 ¼ Pc,
where P stands for either the volume fraction V or a material property. Fig. 3(a) depicts the time history of

the prescribed temperature change on the mid-surface for c ¼ 10, 1.0 and 0.1 s�1. It is clear that for c ¼ 10

s�1, the temperature at the mid-surface rises rapidly to the steady state value, and the rise is more gradual
for c ¼ 0:1 s�1. For L1=H ¼ 5, Fig. 3(b)–(f) show the corresponding time evolution of the transverse dis-

placement and stresses at different points in the plate. For c ¼ 1 and 10 s�1, the transverse deflection at the

center of the plate increases rapidly to its maximum value and then decreases slowly to its steady state

value. However, for c ¼ 0:1 s�1, the deflection is a monotonically increasing function of time. A similar

trend is exhibited by the longitudinal stress �rr11 at the center of the top surface of the plate. For c ¼ 10 s�1,

the longitudinal stress �rr11 at �tt ¼ 0:01 is 7.9 times the steady state value. The magnitude of the shear stress
�rr12 at the left edge increases monotonically for all c. The transverse shear stress �rr13ð0; L2=2;H=4; tÞ has a
negative value initially and increases to a positive value when the steady state is reached. The transverse
normal stress �rr33 at the center of the plate is initially tensile and evolves to become compressive at steady

state. The steady state temperature, displacement and stress fields match with the exact static thermo-

elasticity solution given by Vel and Batra (2002).

The through-the-thickness variation of the temperature and stresses is plotted in Fig. 4 for c ¼ 10 s�1.

The through-the-thickness variation of the longitudinal stress �rr11, the transverse shear stress �rr13 and the
. Normalized: (a) temperature, (b) transverse deflection, (c) longitudinal stress, (d) in-plane shear stress, (e) transverse shear

and (f) transverse normal stress versus time for the Al/SiC FG square plate for time-dependent temperature on the top surface

¼ 10:0, 1.0 and 0.1 s�1. Effective moduli are obtained by using the Mori–Tanaka homogenization scheme with metal as matrix
� ¼ 0, V þ

c ¼ 1, p ¼ 2, L1=H ¼ 5.



Fig. 4. Through-the-thickness variation of (a) temperature, (b) longitudinal stress, (c) transverse shear stress, and (d) transverse normal

stress in the Al/SiC FG square plate for time-dependent temperature on the top surface with c ¼ 10 s�1 at times �tt ¼ 0:05, 0.2 and 1.0.

Effective moduli are obtained by using the Mori–Tanaka homogenization scheme with metal as matrix and V �
c ¼ 0, V þ

c ¼ 1, p ¼ 2,

L1=H ¼ 5.
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transverse normal stress �rr33 change significantly as a function of time. For example, at �tt ¼ 0:05 the mag-

nitude of the longitudinal stress is maximum at a point on the top surface of the plate. However at �tt ¼ 1:0
the peak value of j�rr11j occurs at a point nearly one-sixth the height from the top surface. The magnitude of

the axial stress at the center of the bottom surface always stays small even though the stress switches from
compressive at �tt ¼ 0:05 to tensile at �tt ¼ 1:0. The transverse normal stress at a point on the midsurface

changes from tensile at �tt ¼ 0:05 to compressive at �tt ¼ 1:0; its absolute value is nearly three order of

magnitude smaller than that of the axial stress even though H=L1 ¼ 0:2. Similar comments apply to the

transverse shear stress whose value is about one-tenth of that of the axial stress. The through-the-thickness

variation of the longitudinal stress �rr11 is non-linear since material properties and the temperature change

vary through the thickness.

The time evolution of the temperature, transverse displacement and stresses for c ¼ 1:0 s�1 and power-

law exponent p ¼ 2 are shown in Fig. 5 for various ceramic volume fractions V þ
c on the top surface when

V �
c ¼ 0. For V þ

c ¼ 0, results are for a homogeneous aluminum plate. The temperature and transverse

deflection at the mid-surface decrease as the ceramic volume fraction on the top surface is increased; cf.

Fig. 5a and b. Furthermore, the magnitude of the transient longitudinal thermal stress �rr11 in an FG plate

for V þ
c ¼ 1:0 is smaller than that in a homogeneous plate (V þ

c ¼ 0). The transverse shear stress



Fig. 5. Normalized: (a) temperature, (b) transverse deflection, (c) longitudinal stress, (d) transverse shear stress versus time for the Al/

SiC FG square plate for volume fractions V þ
c ¼ 0; 0:5 and 1.0 and time-dependent temperature on the top surface with c ¼ 1:0 s�1.

Effective moduli are obtained by using the Mori–Tanaka homogenization scheme with metal as matrix and V �
c ¼ 0, p ¼ 2, L1=H ¼ 5.

7192 S.S. Vel, R.C. Batra / International Journal of Solids and Structures 40 (2003) 7181–7196
�rr13ð0; L2=2;H=4; tÞ is negative at all times for a homogeneous plate (V þ
c ¼ 0), whereas it evolves with time

from a negative to a positive value for the two FG plates.

5.2. Time-dependent surface heat flux

The prescribed heat flux on the top surface increases from zero at t ¼ 0 to a steady state value expo-

nentially, and is given by
q3ðx1; x2;H=2; tÞ ¼ qþðe�ct � 1Þ sinðpx1=L1Þ sinðpx2=L2Þ; ð37Þ
and the heat flux on the bottom surface is zero, i.e., q3ðx1; x2;�H=2; tÞ ¼ 0. The temperature, heat flux,
displacements and stresses are non-dimensionalized as follows:
bTT ¼ Tjm

qþH
; q̂qi ¼

qi
qþ

; ûui ¼
uijm

amL2
1qþ

; r̂rij ¼
rijjm

EmamL1qþ
: ð38Þ
Thus the reference value of the temperature equals the temperature difference across an aluminum bar of

length H caused by the steady state heat flux of qþ through it. The reference values of the displacement and
the stress equal the elongation of a free bar of length L1 and the magnitude of the axial stress developed in

such a clamped bar with the steady state flux qþ applied across the faces. For qþ ¼ 106 W/m2, a value
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typical for laser heating, the reference temperature, displacement and stress equal respectively 214.6 K, 6.28

mm and 176 MPa.

The evolution of the temperature and the transverse displacement at the center of the plate, of the

longitudinal stress at the center of the top surface, and of the transverse shear stress at the point
ð0; L2=2;H=4Þ on the left edge are depicted in Fig. 6 for c ¼ 10, 1 and 0.1 s�1 using the Mori–Tanaka

homogenization scheme. The time history of the temperature rise at the center of the plate is essentially

the same for c ¼ 1 and 10 s�1 but is a little lower for c ¼ 0:1 s�1. For slow heating with c ¼ 0:1 s�1, the

magnitude of the longitudinal stress r̂r11 at the center of the top surface increases monotonically to the

steady state value. However, if heat flux on the top surface increases rapidly, as would be the case for c ¼ 10

s�1, the magnitude of the longitudinal stress r̂r11ðL1=2; L2=2;H=2Þ increases until �tt ¼ 0:076, decreases from
�tt ¼ 0:076 to 0.237 and increases after that (Fig. 6c). Unlike for the problems of time-dependent surface

temperatures, the transient thermal stresses for the time-dependent heat flux problems are less than their
respective steady state values. It is because the magnitude of the temperature gradient in the thickness

direction is smaller for the latter problems as compared to those of the former case. This is evidenced by the

comparison of the through-the-thickness variations of the temperatures plotted in Figs. 4a and 7a for the

two problems.

The through-the-thickness variation of the temperature and transverse displacement at the centerline

of the plate, the longitudinal stress and of the transverse shear stress on the centerline of left edge for

c ¼ 10 s�1 are plotted in Fig. 7. The ceramic volume fraction on the bottom and top surfaces are V �
c ¼ 0:2
Fig. 6. Normalized: (a) temperature, (b) transverse deflection, (c) longitudinal stress, and (d) transverse shear stress versus time for the

Al/SiC FG square plate for time-dependent heat flux on the top surface with c ¼ 10:0, 1.0 and 0.1 s�1. Effective moduli are obtained by

using the Mori–Tanaka homogenization scheme with metal as matrix and V �
c ¼ 0, V þ

c ¼ 1, p ¼ 2, L1=H ¼ 5.



Fig. 7. Through-the-thickness variation of (a) temperature, (b) transverse displacement, (c) longitudinal stress and (d) transverse shear

stress in the Al/SiC FG square plate for time-dependent heat flux on the top surface with c ¼ 10 s�1 at times �tt ¼ 0:05, 0.5 and 5.0.

Effective moduli are obtained by using the self-consistent homogenization scheme and V �
c ¼ 0:2, V þ

c ¼ 0:8, p ¼ 4, L1=H ¼ 5.
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and V þ
c ¼ 0:8, respectively, p ¼ 4 and the effective properties are obtained by the self-consistent scheme. At

time �tt ¼ 5:0, there is a significant difference in the transverse displacement of points on the top and bottom

surfaces, indicating a considerable change in the thickness of the plate. The through-the-thickness varia-

tions of the longitudinal stress r̂r11 and the transverse shear stress r̂r13 are qualitatively and quantitatively

different at different times (Fig. 7a and b); the peaks in their absolute values occur once the steady state has

been reached.
5.3. Remarks on boundary conditions

A simply supported plate, loaded by compressive normal tractions on the top surface, is usually simulated

in the laboratory by using sharp knife edges as supports. Assuming that the supports are rigid, points on the

bottom surface of the four edges will be restrained from moving vertically and the edge surfaces will be

traction free. Such boundary conditions can be easily simulated in numerical solutions of an initial-

boundary-value problem as has been done by Batra and Geng (2001, 2002). However, due to singularities

likely to occur at points of the plate contacting the sharp knife edges, it is difficult to satisfy such boundary

conditions when solving the problem analytically. For the rectangular plate analyzed here, mechanical

boundary conditions in (4) require that all points do not move in the plane of the edge surfaces and the
normal component of the traction vector vanish. These boundary conditions can be obtained by bonding
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membranes with zero bending and infinite in-plane stiffness to the boundaries x1 ¼ 0, x1 ¼ L1, x2 ¼ 0 and

x2 ¼ L2. Such support conditions are difficult to realize experimentally. However, the analytical solutions

presented here are useful for validating plate theories and finite element formulations for FG plates. Three-

dimensional analytical solutions presented by Srinivas and Rao (1970) and Pagano (1970) for laminated
composite plates under boundary conditions (4) have been extensively used to assess the accuracy of classical

and refined plate theories. Recently, Vel and Batra (1999, 2000, 2001) used the Stroh formalism to obtain

three-dimensional analytical solutions for laminated plates subjected to arbitrary boundary conditions.
6. Conclusions

We have analysed 3D transient heat conduction problem for a rectangular simply supported FG plate
with the uniform temperature prescribed at the edges and subjected to either time-dependent temperature

or heat flux on the top and the bottom surfaces. The material properties are taken to be analytical functions

of the thickness coordinate and are uniform in the other two directions. Transient stresses developed by the

resulting temperature gradients have been evaluated for a simply supported FG plate. It is found that for

the case of rapid time-dependent prescribed surface temperature, the transient longitudinal stress is nearly 8

times its steady state value. However, for the case of transient prescribed heat flux, the transient stresses are

less than their respective steady state values. Furthermore, with the passage of time, longitudinal stresses at

a point change from compressive to tensile and the transverse shear stresses change sign too. Qian and
Batra (2003) have analyzed numerically transient thermomechanical deformations of an FG plate by using

a higher-order shear and normal deformable plate theory of Batra and Vidoli (2002). They found that the

consideration of inertia forces for problems involving transient thermal loads has a negligible effect on

displacements and stresses induced in the plate.
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