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Abstract

Molecular mechanics (MM) simulations have been carried out to determine energetically favorable double-walled car-
bon nanotube (DWNT) structures, and analyze their infinitesimal extensional, torsional, radial expansion/contraction, and
bending deformations. Loads are applied either to one wall or simultaneously to both walls of an open-ended DWNT.
These results are compared against single-walled carbon nanotube (SWNT) results to determine differences and similarities
between responses of SWNTs and DWNTs, and the validity of using SWNT results to predict the response of a DWNT. It
is found that for small deformations such as simple tension and torsion, results for a DWNT can be derived from those for
its constituent SWNTs within 3% error. Results of radial expansion/contraction of a SWNT are used to deduce an expres-
sion for the van der Waals force. Based on these results, a continuum model is proposed for a MWNT whose response to
mechanical deformations computed using engineering theories is the same as that of the MWNT obtained via MM sim-
ulations. The continuum structure is comprised of concentric cylindrical tubes interconnected by truss elements. Young’s
modulus, Poisson’s ratio, the thickness of each concentric tube, and the stiffness of the truss elements are given. The pro-
posed continuum model is validated by studying bending and the onset of global buckling deformations of a DWNT and
its proposed equivalent continuum structure. Carbon nanotubes can be replaced by their equivalent continuum structures
when deriving mechanical properties of nanotube reinforced polymeric composites.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Although discovered first, multi-walled carbon nanotubes (MWNTs) have not been studied as thoroughly
as single-walled carbon nanotubes (SWNTs). This could partly be due to the higher specific stiffness and
strength of a SWNT as compared to those a MWNT. However, in certain applications, MWNTs offer supe-
rior properties over SWNTs. For example, a MWNT is expected to have higher resistance to bending and
buckling than a SWNT. Also, polymer matrix composites reinforced with MWNTs probably have better dis-
persion characteristics than those reinforced with SWNTs because MWNTs do not have the same propensity
0020-7683/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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to clump as SWNTs and thus disperse easily. MWNTs are easier to manufacture and are, therefore, less
expensive than SWNTs. They could conceivably be used as a bearing (Cumings et al., 2000) and as a pipe
to transport fluids (Galanov et al., 2002).

Much of the literature on the determination of the elastic moduli of SWNTs is summarized in Sears and
Batra (2004), and is not reported here. The reader is also referred to the review paper of Qian et al. (2002)
for a summary of earlier works.

When loaded in tension, a MWNT is likely to have a lower specific stiffness than a SWNT because only the
outermost wall of a MWNT supports the load. Atoms on adjacent walls of a MWNT do not share molecular
bonds; therefore, interactions between them are only through van der Waals forces. Schonenberger et al.
(1999) have demonstrated the possibility of sliding inner-walls of a MWNT in a telescopic-like motion and
attributed this to the low energy barriers provided by one wall to the other wall. Yu et al. (2000a) found during
tensile tests that the tensile strength is at least an order of magnitude lower than what it would be if the axial
stress was uniformly distributed over all layers of a MWNT. They found that the outer tube ruptured at the
tensile limit stress/strain, and then slid over the inner tube. Yu et al. (2000b) studied the sliding between nested
shells of MWNTs and observed both stick-slip and smooth pullout motions. The inner walls can resist lateral
or inward radial deflections of the outer wall since they affect van der Waals forces. Thus, an inner wall will
resist the radial contraction of an outer wall in tensile deformations of a MWNT. In compressive deforma-
tions, an inner wall will begin to carry loads at some point due to the reduction in the distance between
the end-caps and the consequent increase in van der Waals forces; when this occurs depends on the geometry
of the end-cap. Two end-cap geometries are shown in Fig. 1 that is taken from Qian et al. (2002); it is clear that
there is a wide variation in the distance between end-caps of two adjacent walls. Thus the specific Young’s
modulus of a MWNT is likely to be lower than that of a SWNT in tension.

Treacy et al. (1996) have experimentally studied flexural vibrations of a cantilever MWNT, and Yu et al.
(2000a) have performed tensile tests on a MWNT by applying loads only to its outermost wall. Treacy et al.
(1996) found that Young’s modulus E varied from 0.40 to 4.15 TPa with an average value of 1.8 TPa, while
Yu et al. (2000a) obtained values in the range of 0.27–0.95 TPa. Salvetat et al. (1999) and Wong et al. (1997)
performed bending tests using an atomic force microscope and found, respectively, 0.81 ± 0.41 and
Fig. 1. TEM image of the end-cap geometry of MWNTs (from Qian et al., 2002).
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1.28 ± 0.59 TPa for Young’s modulus. These values are comparable to those obtained from molecular
mechanics (MM) simulations on a SWNT; e.g. see the summary of results given in Sears and Batra (2004).
Lourie and Wagner (1998) used Raman spectroscopy to determine the modulus of MWNTs embedded in a
matrix as fibrous reinforcements, and obtained Young’s modulus ranging from 1.7 to 2.4 TPa.

The deduction of material moduli from test findings (and also from results of MM/molecular dynamics
(MD) simulations) requires the consideration of a continuum structure equivalent in mechanical response
to the MWNT tested. Many studies (e.g. see the review paper by Qian et al., 2002; also see Pantano et al.,
2004; Yu et al., 2000a; Wong et al., 1997; Salvetat et al., 1999) have assumed that the response of a MWNT
is equivalent to that of a linear elastic isotropic homogeneous cylindrical tube of outer radius equal to that of
the outermost wall of the MWNT and wall thickness 3.4N Å, where 3.4 Å and N equal, respectively, the mean
distance between two adjacent walls and the number of walls in the MWNT. We note that there is no mech-
anism allowed in this model to account for van der Waals forces among atoms on adjacent walls of a MWNT.

Based on potentials for bond deformations and van der Waals forces, Li and Chou (2003) studied defor-
mations of a double-walled carbon nanotube (DWNT) by interconnecting atoms with trusses and finding their
stiffnesses from bond potentials. They analyzed tensile and torsional deformations, and computed Young’s
modulus values ranging from 0.95 to 1.15 TPa, and the shear modulus values between 0.38 and 0.46 TPa.
When only the outer wall was loaded, they found a little to no transfer of load to the inner wall due to
van der Waals forces.

Results of the afore-stated investigations are summarized in Table 1.
Salvetat et al. (1999) found that MWNTs grown by the arc discharge method have Young’s modulus of

1TPa, and Young’s modulus of those grown by the catalytic decomposition of hydrocarbons is one to two
orders of magnitude lower. Thus only highly ordered and well-graphitized MWNTs having strong carbon-car-
bon bonds within each layer have Young’s modulus comparable to that of graphite. MWNTs grown by the
catalytic decomposition technique have more defects than those formed by the arc discharge method.

Ru (2000) used a continuum approach to study the effect of van der Waals forces on the buckling response
of a DWNT, modeled tube walls as cylindrical shells with a bending stiffness, D(t) = Et3/(12(1 � m2)), where t

is the wall thickness of the equivalent cylindrical shell and m Poisson’s ratio, and assumed that shell walls inter-
act with each other through the pressure, p, given by, piRi = poRo, where R is the wall radius and subscripts i
and o signify, respectively, the inner and the outer wall of the DWNT or the cylindrical shell. Ru’s analysis
predicts that the critical strain for shell wall buckling of a DWNT is lower than that of a SWNT. He assumed
that the pressure, p, is proportional to the distance between the two adjacent walls, or the gap between the
walls, and did not find the value of the constant of proportionality that will give reasonable values of van
der Waals forces. Galanov et al. (2002) considered two models of a MWNT; in one they replaced each inner
wall by a membrane and in the second a MWNT by a cylindrical tube.

Based on MM simulations of a SWNT deformed in tension/compression and torsion, and the relation
E = 2G(1 + m) valid for linear elastic isotropic materials, Sears and Batra (2004) found that the response of
an isotropic, homogeneous and linear elastic cylindrical tube with Young’s modulus E = 2.52 TPa, shear mod-
ulus G = 0.96 TPa, and wall thickness t = 1.34 Å to mechanical deformations is equivalent to that of the
SWNT. These values were found to be nearly the same for SWNTs of various diameters and helicities. Aver-
age values of material and geometric parameters for the (8,0), (12,6), (16, 0), (25, 0), (48, 0) and (10,10) tubes
are E = 2.46 TPa, G = 0.99 TPa, Poisson’s ratio m = 0.21 and t = 1.35 Å with coefficients of deviation of 0.04,
Table 1
Literature values of Young’s modulus for a MWNT; these studies assumed that a MWNT can be modeled as a linear elastic, homogeneous
and isotropic cylindrical tube as described above

Authors Year Avg. modulus (TPa) Method Test

Treacy et al. 1996 1.8 Experiment Thermal vibrations
Wong et al. 1997 1.28 Experiment Cantilever bending
Lourie and Wagner 1998 2.8–3.6 Experiment Raman spectroscopy
Salvetat et al. 1999 1.28 Experiment 3 point bending
Yu et al. 2000a, b 0.27–0.95 Experiment Tension
Li and Chou 2003 0.95–1.15 Finite element analysis Tension
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0.03, 0.05 and 0.01, respectively. Liew et al. (2004) found that the classical shell theory with the wall thickness
of 1.54 Å gave results in close agreement with their predictions of the buckling load from the MD simulations.
Pantano et al. (2004) modeled a DWNT as two concentric thin cylindrical shells each having t = 0.75 Å,
m = 0.19, E = 4.84 TPa, and analyzed its buckling deformations by the finite element method. The van der
Waals force was simulated as equal and opposite pressures on the outer wall of the inner cylinder and the inner
wall of the outer cylinder with the pressure varying affinely with the distance between the two walls. The shell
walls were assumed to be initially stressed due to their curvatures with the magnitude of the stress varying
inversely as the radius of the shell wall.

Whereas for a SWNT the equivalent continuum structure can be either a solid fiber or a cylindrical tube, for
a MWNT the equivalent continuum body can be one of the following three: a solid fiber, a cylindrical tube,
and a structure comprised of multiple concentric cylindrical tubes. There is no easy way to account for van der
Waals forces in the first two continuum structures even though, as mentioned above, the second one has often
been used. Accordingly, we propose that the continuum structure equivalent in mechanical response to a
MWNT be comprised of concentric cylindrical tubes with the number of tubes equal to the number of walls
in a MWNT. The next tasks are to find the mean diameter and the thickness of each continuum tube, a way to
interconnect concentric tubes in order to model the action of van der Waals forces between adjacent walls of a
MWNT, and values of elastic constants for the material of each concentric tube. In an attempt to elucidate
upon the interaction between two adjacent walls of a MWNT due to van der Waals forces, we seek answers
to the following four questions for a DWNT by using MM simulations with the MM3 potential: (i) Does the
inner wall slide freely in the outer wall as is commonly assumed? (ii) Can a simple superposition of solutions
for SWNTs be used to obtain the response of a MWNT? (iii) What are quantifiable differences between
responses of a SWNT and a DWNT to commonly studied simple deformations such as axial tension/compres-
sion, torsion and bending? (iv) What is more important in the construction of MWNT structures, relative heli-
cal angles and/or wall separation distance?

We perform a series of MM simulation tests on several DWNTs. These tests are similar to those performed
on a continuum structure in the Mechanics of Materials Laboratory. The MM simulations of infinitesimal
axial and torsional deformations reveal that the response of a DWNT is similar to that of a SWNT. We then
study radial expansion/contraction of a DWNT to find an expression for the van der Waals force between
atoms on two adjacent walls. All of this information is synthesized to propose a continuum structure of a
MWNT whose response to infinitesimal mechanical deformations is equal to that of the MWNT. It is com-
prised of concentric tubes with mean diameter of each tube equal to that of the corresponding wall in the
MWNT, E = 2.52 TPa, G = 0.96 TPa, t = 1.34 Å. The adjacent tubes are interconnected by truss elements
whose mechanical properties are described in Section 4. The proposed continuum model will be useful in many
anticipated engineering applications of MWNTs that will involve infinitesimal deformations. In order to
establish the validity of the proposed continuum model, the response in bending and global buckling of the
axially compressed continuum structure is compared with that of MM simulations on the corresponding
DWNT.

The present continuum structure equivalent to a MWNT differs from that proposed by Ru (2000) and Pant-
ano et al. (2004) in having truss elements simulate van der Waals forces that are derived from MM simulation
results on the radial expansion/contraction of one of the walls of a DWNT. Also, material and geometric
parameters of the proposed cylindrical tubes are derived from MM simulation results of tension and torsional
deformations and the relation E = 2G(1 + m). Our assumption of the continuum structure being initially stress
free agrees with that of Ru (2000) but not with that of Pantano et al. (2004) who took the walls to be initially
stressed. Also, in many cases the (wall thickness)/(mean radius) will not be small enough to regard each wall as
a thin cylindrical shell.

Contributions of this work include the following: (i) Determination of relaxed configurations of DWNTs
prior to simulating their deformations. This is equivalent to annealing a continuum structure prior to testing
it. Whereas annealing of a continuum structure usually relieves all prior internal stresses, there is no guarantee
that a DWNT in a relaxed configuration is free of all internal stresses. It, however, provides the same base
configuration for all DWNTs simulated herein. (ii) Simulation of radial expansion/contraction of a SWNT
due to van der Waals forces between two walls of a DWNT. (iii) Proposal of a continuum structure energet-
ically equivalent in mechanical response to a MWNT in the sense that for the same average axial or shear/tor-
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sional strain, the continuum and the atomic structures have the same energies of deformation. The continuum
structure is comprised of initially stress-free concentric cylindrical tubes interconnected by truss elements. (iv)
Validation of the continuum model by comparing predictions from it with those from the MM simulations.
The approach is valid for any MM potential. It uses values of the strain energy of deformation and strains
averaged over the specimen. It does not use the Cauchy–Born rule.

A limitation of this work is that it is valid for infinitesimal deformations of an atomically perfect MWNT;
thus fractures are not considered. Atomic studies (e.g. see Yakobson et al., 1996) on fracture of SWNTs and
MWNTs have given failure strains under axial tensile deformations of �10%. Thus the limitation of the pres-
ent work is not as severe as it first appears. However, it is not applicable to problems involving folding and
unfolding of tubes where large elastic strains are induced. Its extension to finite deformations is nontrivial
since a constitutive relation for a second-order isotropic elastic material has six material constants whose eval-
uation will require many more types of tests than the simple tension/compression and torsion. An alternative
is to adopt the approach of Arroyo and Belytschko (2004) or that of Zhang et al. (2002). Arroyo and Bely-
tschko (2004) developed a finite element model for MWNTs. Rather than using a thin shell theory, they
replaced a tube wall by a membrane made of a hyperelastic material and deduced its mechanical properties
directly from the Tersoff–Brenner potential, crystal elasticity and a modified Cauchy–Born rule. The pressure
equivalent to that exerted by the van der Waals forces was applied to the membrane. For torsional, bending
and compressive deformations, they successfully reproduced local buckling, kinking, and rippling effects,
which were very close to the shapes obtained by the MM simulations.

The rest of the paper is organized as follows. Details of the molecular mechanics (MM) simulations are
given in Section 2 where various relaxed configurations of DWNTs are also described. Section 3 gives MM
simulations results for simple deformations of a DWNT and also gives an expression for the van der Waals
force. The equivalent continuum structure is deduced in Section 4, and is validated in Section 5 by comparing
results of bending and global buckling deformations on the continuum structure and the corresponding MM
simulations on the DWNT. Conclusions of this work are summarized in Section 6.
2. Molecular mechanics simulations

2.1. Molecular mechanics potential

The MM3 class II pair-wise potential with both higher-order expansions and cross-terms and type 2
(alkene) carbon atoms (Allinger et al., 1989) is used. This potential has both higher-order expansions and
cross-terms and is appropriate for carbon nanotubes due to the similarity between graphitic bonds in the
nanotube and the aromatic protein structures for which the potential was constructed. Numerous MM poten-
tials and quantum theories have been used to predict a wide range of mechanical responses of nanotubes. Of
these MM potentials, the MM3 potential yields results for SWNTs that are close to those found experimen-
tally. An advantage of MM3 potential is that it is applicable to a wider class of hydrocarbons and can also be
employed to study the interaction between MWNTs and the surrounding polymeric matrix.

The MM3 potential is described by Eq. (1) in which the terms Us, Uh and U/ are the primary bond defor-
mation terms; the term, UVdW, is the non-bonded van der Waals term, and Us/, U/s and U hh0 represent cross
interactions between the variables. Parameters r, h and /, used in the equation are shown in Fig. 2. A sub-
Fig. 2. Definitions of variables r, h and / used in defining pair-wise MM3 potentials.
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script, 0, on a variable signifies its value in the unstressed equilibrium configuration. The total energy of a
body equals the sum of the potential for all atoms in the body (the index j in Eq. (1) ranges over bonded atoms,
and the index k over all atoms).
U ¼
X

i

X

j

ðU s þU h þU/ þU sh þU/s þU hh0 Þ þ
X

i

X

k

UV dW ;

Us ¼ 71:94Ksðr� r0Þ2½1� 2:55ðr� r0Þ þ ð 7
12
Þ2:55ðr� r0Þ2�;

U h ¼ 0:02191Khðh� h0Þ2 � ½1� ðh� h0Þ þ 5:6ð10�5Þðh� h0Þ2 � 7:0ð10�7Þðh� h0Þ3 þ 9:0ð10�10Þðh� h0Þ4�;
U/ ¼ ðV 1=2Þð1þ cos /Þ þ ðV 2=2Þð1� cos 2/Þ þ ðV 3=2Þð1þ cos 3/Þ;
UV dW ¼ e0f�2:25ðrv=rÞ6 þ 1:84ð105Þ exp½�12:00ðr=rvÞ�g;
Us/ ¼ 2:511Ksb½ðr� roÞ þ ðr0 � r00Þ�ðh� h0Þ;
U/s ¼ 11:995ðK/s=2Þðr� r0Þð1þ cos 3/Þ;
U hh0 ¼ �0:021914Khh0 ðh� h0Þðh0 � h00Þ:

ð1Þ
Values of constants Ks, Kh, V1, V2, V3, e0, rm, Ksb, K/s and K 0hh are given in Zhou et al. (2000). Note that the van
der Waals force between two atoms varies as (rm/r)6 and exp(�12r/rm) which is quite different from that in the
Lennard–Jones potential.

For four MM potentials, namely the MM3, the Amber, the Morse and the TB, the bond strain energy, Us,
versus the bond strain is plotted in Fig. 2 of Sears and Batra (2004) paper. For bond strains of about 5% the
curves for these potentials are nearly coincident. For simple tensile deformations of a SWNT simulated with
the MM3 potential [cf. Fig. 7 of Sears and Batra (2004)], the potential energy due to bond stretching essen-
tially equals the total energy of the SWNT as contributions from other terms cancel with each other. However,
for simple axial compressive deformations, the bond stretching, the angle bend and the van der Waals terms
make nearly equal contributions to the total energy of deformations. Also, at the onset of global buckling, the
total energy of the SWNT abruptly decreases.

The Tersoff–Brenner potential has been used by Zhang et al. (2002) to build an equivalent continuum struc-
ture. Sears and Batra (2004) have compared predictions from it with those derived from the MM3 potential.
2.2. Computer code

We used the computer code TINKER (Ponder, 2000) to analyze mechanical deformations of MWNTs. The
potential energy of the structure is minimized through an adaptive minimization routine which utilizes either a
truncated Newton or a negative curvature technique. Except where noted, all simulations used a non-bonded
cutoff value of 30 Å, and minimized the potential energy to within 0.001 kcal/mol/Å rms.
2.3. MWNT structures

Before a MWNT may be tested a relaxed configuration (i.e. the one of minimum potential energy under no
external loads) should be determined to establish a ground state for its potential energy. The nanotube atomic
structures are closed structures constructed of whole hexagonal rings which dictate that they must be discrete
in size and structure. The White et al. (1993) notation for classifying SWNTs by their (a,b) wrapping vector
describes each structure uniquely. This classification system is extended to incorporate MWNTs into the
((a,b),(c, d), . . .) notation where (a, b) describes the innermost SWNT. Thus numerous distinct MWNT struc-
tures are available; many of these were examined to determine which were energetically more favorable. The
ideal wall separation distance for MWNTs has been found to be �3.4 Å.

Thus only SWNTs with estimated separation distances between 3.3 and 3.5 Å were used to construct a
range of DWNTs, and all other DWNTs were assumed to be energetically unfavorable due to the much higher
inter wall van der Waals energies. For a particular outer wall, several inner wall structures can meet this cri-
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terion. Thus, effects of helicity and wall separation distance may be ascertained to find out whether one or
both or none plays a more important role in determining MWNT structures.

The MWNT configurations were constructed by placing one relaxed SWNT on the outside of another
relaxed SWNT and repeated as many walls as desired. The procedure for determining the relaxed configura-
tion of a SWNT can be found in Sears and Batra (2004). In summary it involves estimating the SWNT con-
figuration and letting atoms move freely till the potential energy of the structure is minimized. The DWNT
walls were trimmed to coincident lengths of 200 Å. The strain energy of a MWNT was minimized to conver-
gence value of 0.001 rms. This process invariably deforms MWNT walls from their relaxed SWNT configu-
rations. The van der Waals forces typically cause radial deformations of the walls as they try to move the
walls towards the ideal wall separation distance. This process will also cause axial deformations due to the
Poisson effect. Furthermore, the MWNT walls will tend to shift axially so that their end faces are no longer
coincident. For example, the ((a,0), (b, 0)) type DWNTs were found to shift so that the hexagonal rings took
up a staggered configuration rather than a stacked one. These open ended nanotubes were preferred to peri-
odic nanotubes because the latter can not guarantee that walls are under the same strain. Also, only one wall
can not be deformed in a periodic nanotube, which negates tests to determine whether or not two adjacent
walls of a MWNT can deform independently of each other. Various DWNT relaxed configurations are listed
in Table 2 where the separation strain, es, is defined as (sr � sa)/sa; sr and sa equal, respectively, the distance
between walls of the relaxed configurations of the two SWNTs, and the distance between them in the relaxed
configuration of the resulting DWNT.

Table 2 has been formatted to show different inner walls of a DWNT with the structure of the outer wall
fixed. For example, for the ((a,b), (20,8)) DWNT series, the (11, 7) inner tube yields the lowest separation
deformation. The lowest separation strains occurred for DWNTs for which the distance between the walls
of the relaxed configurations of the two constituent SWNTs was about 3.43 Å, which equals the ideal distance
between the two adjacent walls. It was expected that the separation strain would occur in a balanced manner,
that is, the inner wall would move outwards and the outer one inwards. However, while this occurred in most
Table 2
Summary of tube structures, deformations from SWNT relaxed configurations, and non-bonded, inter-wall energy comparisons

Inner wall Outer wall sr (Å) sa (Å) es (%) eri (%) ero (%) Eint (kCal/atom)

9,9 20,8 3.470 3.479 �0.269 0.006 �0.097 �0.6397
10,8 20,8 3.459 3.467 �0.226 �0.011 �0.091 �0.6427
11,7 20,8 3.433 3.432 0.020 �0.066 �0.034 �0.6436

12,6 20,8 3.390 3.374 0.483 �0.168 0.069 �0.6424
16,0 20,8 3.337 3.330 0.188 �0.007 0.063 �0.6396
9,9 25,0 3.473 3.485 �0.338 0.017 �0.116 �0.6413

10,8 25,0 3.464 3.473 �0.259 �0.003 �0.099 �0.6404
11,7 25,0 3.437 3.438 �0.021 �0.057 �0.044 �0.6432

12,6 25,0 3.395 3.380 0.435 �0.158 0.058 �0.6423
16,0 25,0 3.363 3.336 0.796 �0.233 0.137 �0.6410
9,9 16,13 3.522 3.547 �0.696 0.105 �0.200 �0.6360

10,8 16,13 3.513 3.535 �0.632 0.087 �0.185 �0.6374
11,7 16,13 3.485 3.500 �0.433 0.040 �0.137 �0.6405
12,6 16,13 3.440 3.442 �0.049 �0.050 �0.049 �0.6431

16,0 16,13 3.408 3.398 0.286 �0.123 0.026 �0.6430
20,8 34,0 3.386 3.343 1.267 �0.248 0.153 �0.6425
25,0 34,0 3.380 3.337 1.278 �0.246 0.157 �0.6434

16,13 34,0 3.349 3.275 2.258 �0.388 0.300 �0.6382
21,7 34,0 3.336 3.247 2.718 �0.453 0.364 �0.6357
20,8 26,13 3.471 3.491 �0.562 0.035 �0.128 �0.64333
25,0 26,13 3.466 3.485 �0.550 0.036 �0.124 �0.6437

16,13 26,13 3.429 3.423 0.185 �0.077 �0.007 �0.6448

21,7 26,13 3.414 3.395 0.549 �0.135 0.047 �0.6446

The lowest separation strain for each series is shown in bold. Furthermore, eri = circumferential strain in the inner wall, ero = circum-
ferential strain in the outer wall, Eint = inter atomic energy, circumferential strain = radial displacement/initial radius.
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cases, both walls contracted in other cases. Intriguingly, for the three DWNTs which experienced the least sep-
aration strain, both walls contracted. It was also expected that tubes with the lowest separation strains would
have the lowest intermolecular energy. Of the five series of DWNTs shown in the Table, this was found to be
true. The data listed in Table 2 is plotted in Fig. 3 to clearly evince the following two trends. The intermolec-
ular energy exhibits a parabolic shape around the ideal wall separation, and the separation strain varies almost
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linearly with the distance between the walls of the relaxed configurations of the DWNT. No significant cor-
relations were found between the intermolecular energy and the helicities of the DWNTs. However, the pref-
erence for staggered rather than stacked rings for the ((a,0), (b, 0)) tubes shows that the tube’s structure does
have an effect, however, it is less significant than the effect of the separation distance.

2.4. Virtual experiments

The minimum energy configuration for the molecular structure is first found. That is, all atoms are allowed
to move freely until the total energy of the structure reaches a minimum. This minimum energy configuration
of the structure is henceforth referred to as the relaxed structure. All simulations are displacement controlled,
i.e., appropriate displacements are prescribed on atoms near the end faces of the tube. Also, all MWNTs con-
sidered are open-ended; thus the effect of end caps is not considered. The open ends locally change the bonding
character of the structure and may result in edge effects. In order to mitigate these, boundary conditions were
applied to atoms �1 diameter away from the end faces and tube’s aspect ratio (length/diameter) was kept
above ten. Recall that all tubes had a starting length of 200 Å. Local effects, such as necking or swelling during
axial deformation, occur within 2 Å of the atoms where boundary conditions are applied; these were found to
have negligible effect on the total energy of the system. With atoms where displacements are specified kept
fixed, remaining atoms are allowed to move freely till the potential energy of the system is minimized. The
difference between the potential energies of the deformed and the relaxed configurations of the tube gives
the energy required to deform it. Numerical experiments showed that the precise value of the distance from
the free ends of atoms where displacements are enforced did not affect results.

In a laboratory set-up, loads can only be applied to the outer walls of a DWNT and are transferred to the
inner wall through non-bonded interactions among atoms on the two walls. Accordingly, in one set of simu-
lations mimicking either simple tensile or simple torsional deformations, boundary conditions were applied
only to atoms on the outer wall. These simulations are termed the ‘‘slip’’ cases since no external loads are
applied to the inner walls. In the second set of simulations, termed ‘‘fully constrained’’, the loads in terms
of displacement boundary conditions are applied simultaneously to both walls of a DWNT. In an axial com-
pression test performed on a MWNT in a laboratory, the capped ends will transfer the load from the outer to
the inner wall. Our fully constrained simulations correspond to the assumption that the load transferred
instantaneously from the outer to the inner wall and the two are strained equally.

Periodic boundary conditions to simulate an infinitely long DWNT could not be enforced at the end faces
of a DWNT of finite length because of the offset and differences in lengths between its two walls in the relaxed
configuration.

3. Response to simple deformations

3.1. Axial deformations

We first investigate if the strain energy of deformations of a DWNT under applied axial tractions or axial
displacements equals the sum of the strain energies of the constituent tubes subjected to the same boundary
conditions as the DWNT. Such a comparison will also illuminate the effect, if any, the van der Walls force has
on deformations of a DWNT. Results for several DWNTs are shown in Figs. 4 and 5. To properly compare
results for different nanotubes, the strain energy per atom is used as a metric and plotted against the axial
strain. The columnar (global) buckling of a tube in axial compression is signified by the sudden drop in the
strain energy of deformation with an increase in the axial compressive strain. Prior to buckling, for a given
value of the axial strain the strain energy per atom is very nearly the same for the DWNTs and the TWNT
(triple-walled nanotube); it differs from the sum of the strain energies per atom of the constituent SWNTs
by less than 0.5% for the fully constrained cases and by less than 3.5% for the slip cases. The rather larger
difference for the slip cases is most likely caused by the van der Waals forces. In the fully constrained case,
both walls are strained axially by the same amount and will also deform radially nearly the same amount
due to Poisson’s effects. Thus the wall separation remains nearly the same and no significant change in van
der Waals forces will accrue. However, in the slip case, the inner wall will not deform radially due to Poisson’s
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effects but the outer wall will deform radially, the wall separation will change and some energy of deformations
due to the change in van der Waals force will accrue. This is supported by the plots included in Fig. 6 of the
strain energy/atom due to the van der Walls force and the difference in the strain energies/atom of a DWNT



Fig. 6. For two DWNTs, comparison of strain energy due to intermolecular van der Waals forces and the difference in strain energies of a
DWNT loaded under slip conditions and identically loaded constituent SWNT.
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with only the outer wall constrained and the strain energy/atom of its constituent outer SWNT. Note that the
two quantities are close to each other. These results imply that the response of a DWNT is independent of
the helicity. Furthermore, the strain energy of axial deformations due to van der Walls forces is about 3%
of the total strain energy. Thus, the error involved in using results of axial deformations, prior to the onset
of either local or global buckling, of SWNTs to predict those for a MWNT is approximately 3%.
3.2. Torsional deformations

The torsional test was simulated in the same way as the simple tension test, i.e., circumferential
displacements of atoms corresponding to the desired angle of twist were determined and applied to
atoms � one diameter from the free ends. With atoms where displacements are prescribed kept fixed,
other atoms were allowed to move freely till the potential energy of the system was minimized. The
strain energy/atom for infinitesimal torsional deformations of the inner SWNT of a DWNT with no
loads applied on the outer wall (slip condition), for various wall structures, is presented in Fig. 7,
and for those when both tubes are twisted simultaneously through the same angle (fully constrained
case) in Fig. 8. The angle of twist per unit tube length is used as a metric because for the same
angle of twist/length the shear strains of different walls vary due to their different radii. The devia-
tions from the parabolic energy response at higher angles of twist/length are most likely due to the
buckling of tubes. As for the axial deformations, the strain energy for infinitesimal torsional deforma-
tions of a DWNT equals the sum of the strain energies of torsional deformations of the constituent
SWNTs, and the maximum difference between the two values is �1%. Thus the effects of helicities
and the van der Walls force between adjacent walls of a DWNT on its torsional deformations are
negligible.
3.2.1. Buckling under torsional loads

One situation where the response of a MWNT differs from that of its constituent SWNTs is buckling.
A nanotube (either SWNT or MWNT) was assumed to have buckled when either the strain energy of
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deformations dropped significantly for an infinitesimal increase in the load or torsional deformations were
very large. These invariably corresponded to a noticeable increase in the number of iterations needed for
the solution to converge.



Fig. 9. Buckled shapes of (16,0) SWNT, and ((16,0), (25,0)) DWNT under torsional loads.
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This can be seen in the initiation of buckling in the ((16,0), (25,0)) DWNT as compared to that in the (25,0)
SWNT. The SWNT begins to buckle at an angle of twist/length of 0.046 while the DWNT with only the outer
tube loaded (slip condition) buckles at a much higher angle of twist/length of 0.109. Thus van der Waals forces
between the two walls delay the buckling of the outer tube. However, when both walls are simultaneously
twisted (fully constrained case) then the angle of twist/length at the onset of buckling drops back down to
0.047. In each case, there is a gradual transition into the buckled shape, as opposed to the snap-through
behavior found for buckling under axial loads. As should become transparent from the deformed shapes plot-
ted in Fig. 9 the buckled shape of the outer wall of the DWNT is similar to that of its inner SWNT.
3.3. Expression for van der Waals forces

Batra and Sears (pending publication) simulated the radial expansion/contraction of a wall of a DWNT,
and computed the intermolecular energy, W, due to van der Waals forces only as a function of the distance,
s, between the two walls; their results are summarized in Fig. 10. Eq. (2) describes the least squares fit to the
data:
W ¼ 2pL
Kðbðsþ riÞ þ 1Þ

b2ðr2
o � r2

i Þ
exp½�bðs� cÞ�; ð2Þ
where 2.6 Å < s < 3.5 Å, K = 9.5 · 10�22 J/Å3, b = 5.3 1/Å, c = 3.52 Å, and r0 and ri are, respectively, the radii
of the outer and the inner tubes. The radial force versus s relation is found by differentiating Eq. (2) with re-
spect to s from which pressure is computed. The resulting pressure (van der Waals force/area) versus the radial
strain relation is depicted in Fig. 11, and is used to deduce the axial force versus the axial displacement relation
for a truss element in the following section.
4. Equivalent continuum structure

As mentioned above, we found in a previous study (Sears and Batra, 2004) that the response of an initially
stress-free continuum cylindrical tube made of a homogeneous and isotropic linear elastic material with mean
radius of the continuum tube = radius of the SWNT, t = 1.34 Å, E = 2.54 TPa, G = 0.96 TPa, is equivalent to
that of a SWNT for axial, torsional and bending deformations. Furthermore, for large values of length/diam-
eter, the axial strain at the onset of columnar buckling due to axial loads predicted by the Euler buckling the-
ory applied to the equivalent continuum structure equaled that obtained through MM simulations of
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Fig. 11. Radial pressure vs. radial strain derived from MM simulations of radial expansion/contraction of a wall of a nanotube.
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deformations of the SWNT. Values of E, G and t were found to be independent of the helicity and the radius
of the SWNT. It has been shown here that, prior to the onset of buckling, the response of a DWNT to axial



Fig. 12. Left, a continuum structure equivalent to a DWNT; right, a cross-section showing trusses connecting the two concentric tubes to
account for van der Walls force.
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and torsional deformations is essentially the same as that of a SWNT. Since SWNT MM simulation results
may be used to predict deformations of a MWNT it is reasonable to propose that a continuum structure
equivalent to a MWNT be comprised of concentric cylindrical tubes each of thickness 1.34 Å and having
E = 2.54 TPa, G = 0.96 TPa. The adjacent concentric tubes are interconnected by an appropriate number
of truss elements aligned radially and with the area of cross-section varying affinely to ensure that equal
and opposite forces are exerted on the adjacent walls of a MWNT. The end faces of a truss are connected
to the cylindrical tube through rollers that can slide freely in the circumferential direction. The equivalent con-
tinuum model is shown schematically in Fig. 12. The axial modulus of a truss element is taken to vary with the
axial strain according to the pressure vs. radial strain curve depicted in Fig. 11. The area of cross-section, At,
of a truss element depends upon the number of trusses employed and Young’s modulus, Et, of the material of
truss elements. Thus AtEt multiplied with the number of truss elements should equal the surface area of a wall
multiplied by the change due to a unit separation strain in the van der Waals pressure acting on it. One can
reduce the number of truss elements by increasing the value of Et.

Since the length of each truss element will not change during constrained deformations of a MWNT in which
both walls are deformed simultaneously by the same amount, it will not exert any radial force on either of the
two walls. The length of a truss element will not change when either one of the two walls of a DWNT is twisted
with no loads applied to the other wall. However, when one of the two walls of a DWNT is compressed axially
then the length of a truss element will change and it will exert a radial force on the two walls it connects.

In the analysis of deformations of a DWNT by the finite element method, the number of truss elements will
equal the number of nodes on each wall of the cylindrical tube.

While van der Waals forces are long range forces, their magnitude diminishes rapidly when the distance
between two atoms exceeds the ideal wall separation distance of 3.4 Å, which can be seen from the expression
for UVdW in Eq. (1). Thus, while truss elements will not capture the longer range, weaker and dispersed forces
from many atoms, they effectively account for the shorter range forces which are much higher in magnitude.

During columnar buckling, the length of a truss element will not change much and thus it will exert very
little radial force on either wall to which it is connected. This will leave the wall separation distance essentially
unchanged as has been observed in TEM images of bent nanotubes (Lourie et al., 1998; Bower et al., 1999).
5. Validation of the continuum model

5.1. Bending deformations

Bending deformations of three DWNT cantilever beams of various helicities and radii have been analyzed
with the MM3 potential. For a prescribed deflection of the free end, the Euler beam theory is used to estimate
the deformed positions of atoms. The null displacement boundary conditions at the clamped edge are enforced
by fixing positions of atoms of the outer wall that are �5 Å from one end of the tube. The prescribed deflection
at the other end is achieved by displacing three adjacent atoms �10 Å from the free end of the tube to min-
imize the wall indentation effects. With boundary conditions applied to atoms on the outer wall only, van der



Fig. 13. Deformed configurations of three cantilever DWNTs loaded by a point load at the free end.
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Waals forces act on atoms of the inner wall. These boundary conditions mimic an experimental set-up where
only the outer wall is loaded. For each prescribed deflection, axial positions of all atoms, including those with
assigned lateral displacements (or deflections), were perturbed to find the minimum energy configuration of
the bent tube.

As can be seen from the deformed configurations plotted in Fig. 13, for the three DWNTs of varying wall
structures, the wall separation distance remained constant at points away from the atoms where displacements
were prescribed. Thus truss elements can be ignored during bending deformations of a MWNT. The deformed
shape of the DWNT found by MM simulations agrees well with that given by the Euler beam theory.

Strain energies computed from the Euler beam theory applied to the equivalent continuum structure and
from the MM simulations on the DWNT and the SWNTs are plotted in Fig. 14. The close agreement between
the strain energies computed by the two methods validates the proposed equivalent continuum structure.

We have plotted in Fig. 15 strain energies of bending computed by using the Euler beam theory and two
other continuum structures; one of these, referred to as CS2 proposed by Yakobson et al. (1996), has a wall
thickness of 0.66 Å which equals the thickness of the pi-bond. The other continuum structure, referred to as
CS3, commonly used has outer diameter equal to that of the outer wall of the tube and a wall thickness of
6.8 Å. The presently proposed continuum structure is called CS1. Values of E for these three continuum struc-
tures were adjusted so that EA is the same for them; here A equals the area of cross-section of the continuum
structure. Several trends can be deduced from the plots. First, the structure CS3 requires higher strain energy
of bending due to its higher area moment of inertia. Second, the difference among results from structures CS1,
CS2 and CS3 diminishes as the radius of the DWNT increases because the radius to thickness ratio becomes
higher. Lastly, except for the continuum structure CS3 corresponding to the smallest diameter tube, the three
equivalent continuum structures give results close to those obtained from MM simulations.

5.2. Buckling deformations

In Fig. 16 we have plotted the axial strain at the onset of buckling vs. the tube length obtained through MM
simulations for two DWNTs and their constituent SWNTs, and also that computed by using the Euler buck-
ling theory for continuum structures equivalent to the SWNTs and the DWNTs proposed herein. A carbon
nanotube was assumed to buckle when the strain energy of deformation for an incremental additional axial
compression suddenly dropped; e.g. see results plotted in Fig. 4. It is evident that for tubes with length/outer
diameter exceeding �10, results from the Euler buckling theory applied to continuum structures match very
well with those from the MM simulations thereby validating the proposed equivalent continuum structure.
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When using the Euler buckling theory, the area moment of inertia of trusses has been neglected; thus the num-
ber of truss elements employed is immaterial. Sears and Batra (2006) have shown that truss elements play a
noticeable role when analyzing buckling deformations of DWNTs with small values of length/outer diameter.
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They used the finite element method to analyze deformations of the continuum structure and regarded each
cylindrical tube as a shell. Corresponding nodes on the two cylindrical shells were connected by truss elements.
Thus the number of truss elements equaled the number of nodes on either one of the two shells.

6. Conclusions

We have used results of MM simulations on DWNTs and a TWNT under various loads to answer several
questions about the similarities/differences of their responses with those of the constituent SWNTs. Based on
these results we have proposed a continuum structure whose response to mechanical deformations is the same
as that obtained with MM simulations on the DWNT. The proposed equivalent structure differs from that
often used and allows for the consideration of van der Waals forces through appropriate truss elements inter-
connecting concentric tubes. It has been validated by comparing predictions from it for bending and columnar
buckling deformations with those derived from the MM simulations.

An advantage of having an equivalent continuum structure is that it can be used to compute effective prop-
erties of composites comprised of polymers reinforced with MWNTs. Also, an equivalent continuum struc-
tures is inherently used to interpret results of experiments on carbon nanotubes and deduce values of
material parameters.

Answers to questions posited in Section 1 are as follows: (i) walls of a MWNT slide freely over each other in
both axial and torsional loading of only one wall; (ii) except for buckling deformations, results for a MWNT
may be obtained within 3% accuracy by adding those for the constituent SWNTs subjected to the same trac-
tion or displacement boundary conditions; (iii) the wall separation distance is of primary importance when
finding energetically favorable MWNT configurations while differences in their helical angles play a minor role
in the relative axial translation of walls; (iv) for bending deformations, the choice of an equivalent continuum
structure was found not to be highly important as long as they had the same axial stiffness, and the radius to
wall thickness ratio was large.

During torsional loading with the same angle of twist/length applied to each wall of a DWNT, the buckled
shape of the DWNT resembles that of its constituent inner SWNT.
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Note added in Proof

We recently found an algebraic mistake in solving Eq. (5) of Sears and Batra (2004). Corrected values of the
wall thickness, Young’s modulus and the shear modulus of a cylindrical tube equivalent in mechanical
response to the (16,0) single wall carbon nanotube are t = 0. 436 Å, 7.26 TPa and 3 TPa respectively.
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