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Abstract

We consider the von Kármán nonlinearity and the Casimir force to develop reduced-order models for prestressed
clamped rectangular and circular electrostatically actuated microplates. Reduced-order models are derived by taking flex-
ural vibration mode shapes as basis functions for the transverse displacement. The in-plane displacement vector is decom-
posed as the sum of displacements for irrotational and isochoric waves in a two-dimensional medium. Each of these two
displacement vector fields satisfies an eigenvalue problem analogous to that of transverse vibrations of a linear elastic
membrane. Basis functions for the transverse and the in-plane displacements are related by using the nonlinear equation
governing the plate in-plane motion. The reduced-order model is derived from the equation yielding the transverse deflec-
tion of a point. For static deformations of a plate, the pull-in parameters are found by using the displacement iteration
pull-in extraction method. Reduced-order models are also used to study linear vibrations about a predeformed configura-
tion. It is found that 9 basis functions for a rectangular plate give a converged solution, while 3 basis functions give pull-in
parameters with an error of at most 4%. For a circular plate, 3 basis functions give a converged solution while the pull-in
parameters computed with 2 basis functions have an error of at most 3%. The value of the Casimir force at the onset of
pull-in instability is used to compute device size that can be safely fabricated.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Electrostatically actuated microelectromechanical systems (MEMS) are being used as transistors, switches,
micro-mirrors, pressure sensors, micro-pumps, moving valves, and micro-grippers, see for example Nguyen
et al. (1998), Hung and Senturia (1999), Gupta et al. (1997), Chu et al. (1996). An electrostatically actuated
MEMS is comprised of a conductive deformable body suspended above a rigid grounded body (Pelesko
0020-7683/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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and Bernstein, 2002). An applied direct current (DC) voltage between the two bodies results in the deflection
of the deformable body, and a consequent change in the system capacitance. When an alternating current
(AC) is superimposed on the DC voltage to excite harmonic motions of the system, resonant devices are
obtained. These devices are used in signal filtering, and chemical and mass sensing, see for example Abdel-
Rahman et al. (2002), Nayfeh and Younis (2005), Rhoads et al. (2006), Tilmans and Legtenberg (1994b),
Younis and Nayfeh (2003), Krylov and Maimon (2004), Kuang and Chen (2004), Xie et al. (2003).

The applied DC voltage has an upper limit, beyond which the electrostatic force is not balanced by the elas-
tic restoring force in the deformable conductor. Beyond this critical voltage, the deformable conductor snaps
and touches the lower rigid plate, and the MEMS eventually collapses. This phenomenon, called pull-in insta-
bility, has been first observed experimentally by Taylor (1968), Nathanson et al. (1967). The critical displace-
ment and the critical voltage associated with this instability are called pull-in displacement and pull-in voltage,
respectively. Their accurate evaluation is crucial in the design of electrostatically actuated MEMS. In partic-
ular, in micro-mirrors (Hung and Senturia, 1999) and micro-resonators (Tilmans and Legtenberg, 1994a) the
designer avoids this instability in order to achieve stable motions; while in switching applications (Nguyen
et al., 1998) the designer exploits this effect to optimize the performance of the device.

For a wide class of electrostatic MEMS, the deformable electrode is initially a flat body whose thickness h is
much smaller than its characteristic in-plane dimension ‘, see, Pelesko and Triolo (2001). Such electrodes can
be regarded as 2D plate-like bodies. Since h=‘� 1, an approximate distributed model can be employed, where
the system kinematics is described only through the displacement of points on the movable electrode mid-sur-
face, see for example Timoshenko (1970). The actual distance g between the two electrodes is therefore given
by g0 þ w, where g0 is the initial gap. Linear and nonlinear microplates have been studied by Francais and
Dufour (1999), Ng et al. (2004), Zhao et al. (2004), Vogl and Nayfeh (2005), Batra et al. (2008a), Porfiri
(2008). When the bending stiffness of the deformable electrode is negligible compared to its in-plane stretching
and g0=‘� 1, the electrode can be regarded as a linear elastic membrane. The membrane approximation is
valid for ‘=h P 400, see for example Mansfield (1989). Linear micromembranes have been studied by Pelesko
(2002), Pelesko et al. (2003), Pelesko and Chen (2003), Batra et al. (2006a). As discussed by Pelesko (2002), the
plate and the membrane approximations are accurate and reliable for many MEMS devices such as micro-
pumps made of thin glassy polymers and grating light valves comprised of stretched thin ribbons.

With the decrease in electrostatic MEMS dimensions from the micro to the nanoscale additional nanoscale
surface forces, such as the Casimir force and the van der Waals force (Lamoreaux, 2005, Bordag et al., 2001,
Lifshitz, 1956, Klimchitskaya et al., 2000), should be considered, see for example Zhao et al. (2003), Lin and
Zhao (2007). At small scales, the nanoscale surface forces may overcome elastic restoring actions in the device
and lead to the plates’ sticking during the fabrication process. van der Waals force and Casimir force can both
be connected with the existence of zero-point vacuum oscillations of the electromagnetic field (Bordag et al.,
2001, Lifshitz, 1956, Klimchitskaya et al., 2000). The microscopic approach to the modeling of both van der
Waals and Casimir forces can be formulated in a unified way using Quantum Field Theory, see for example
Lamoreaux (2005), Bordag et al. (2001), Lifshitz (1956), Klimchitskaya et al. (2000). It is found that the Casi-
mir force is generally effective at larger separation distances between the bodies than the van der Waals force.
Whereas the Casimir force between semi-infinite parallel plates is inversely proportional to the fourth power of
the gap, van der Waals force is inversely proportional to the third power of the gap. The dependence of these
forces on the dielectric properties of the plates and the filling medium is studied in detail by Bordag et al.
(2001, Section 4.1.1). It is important to note that van der Waals and Casimir forces cannot in general be con-
sidered to simultaneously act in MEMS, since they describe the same physical phenomenon at two different
length scales. Effect of van der Waals force on the pull-in instability of electrostatically actuated rectangular
microplates has been studied by Batra et al. (2008c).

In order to alleviate difficulties associated with the analysis of distributed nonlinear systems, considerable
efforts have been devoted to the development of reliable reduced-order models for MEMS. A simple lumped
spring-mass system for estimating pull-in parameters is proposed by Nathanson et al. (1967), where the elasticity
of the deformable body is lumped into the stiffness of a linear spring. The pull-in voltage so obtained usually
exceeds that observed experimentally for many applications (Pamidighantam et al., 2002), and the pull-in dis-
placement always equals one-third of the initial gap. Moreover, the aforestated description does not incorporate
inherent nonlinearities of the electrostatic, the Casimir, and the restoring forces (Chu et al., 1996, Castañer and
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Senturia, 1999). A reduced-order model for microplates that accounts for the mid-plane stretching and the non-
linearity in the electrostatic force has been used by Zhao et al. (2004) to study pull-in instability and natural fre-
quencies of a plate predeformed by an electric field. Pamidighantam et al. (2002) have studied microbeams
through a reduced one degree-of-freedom (d.o.f.) model which improves the pull-in voltage estimate of the
lumped system of Nathanson et al. (1967); however, the pull-in displacement is empirically chosen. Multimode
analysis on microbeams using a nonlinear beam equation has been done by Abdel-Rahman et al. (2002), Zhang
and Zhao (2006), where the effect of the number of modes retained in the trial solution on its convergence is inves-
tigated. Batra et al. (2006c) used a one d.o.f. model to extract pull-in parameters of a narrow microbeam. This
reduced-order model accounts for the mid-plane stretching and fringing fields in the electrostatic load, and it
is obtained by using the static deflection of the beam under a uniformly distributed load as the trial solution in
the Galerkin method. Batra et al. (2008b) showed that this reduced-order model predicts well the pull-in param-
eters when the mode shape corresponding to the fundamental frequency is taken as the basis function. Further-
more, predictions from this model agree well with results from the solution of the three-dimensional problem by
the finite element method. Reduced-order models have also been used to study the sticking phenomenon in nano-
electromechanical systems (NEMS) due to the Casimir force. Serry et al. (1998), Ding et al. (2001) studied a rect-
angular membrane using the 1D distributed model and considering nonlinear stretching effects; while Bárcenas
et al. (2005) used a lumped one d.o.f. model to analyze the stiction phenomenon between two conductors made of
different materials. Lin and Zhao (2005) studied the effect of Casimir force on pull-in parameters of NEM
switches by obtaining an approximate analytical expression of the critical pull-in gap by the perturbation theory.
The literature on electrostatically actuated MEMS has been reviewed by Batra et al. (2007b).

Here, we propose a reduced-order model for studying the pull-in instability and the fundamental frequency of
clamped microplates under the combined effects of the Coulomb and the Casimir forces. The large transverse dis-
placement, moderate rotations, and small strains plate theory, see Landau and Lifshitz (1986), is used by incorpo-
rating the von Kármán nonlinearity in the mechanical model following the work reported by Younis et al. (2003).
Since small strains are involved, we use the parallel plate approximation for the Coulomb force, and the proximity
force approximation for the Casimir force. We note that both these approximations are consistent with the approx-
imation of locally parallel conductors. Thus, the dependence of the Casimir force on the spatial derivatives of the
gap g is neglected. Assuming that in-plane dimensions of supports holding the MEMS edges fixed are very large as
compared to those of the MEMS, we neglect the effects of fringing fields in the electrostatic force.

We consider rectangular and circular MEMS, and use the Galerkin method with different kinematically
admissible trial solutions to reduce the governing 2D nonlinear boundary-value problem to a nonlinear alge-
braic problem where both the pull-in voltage and the pull-in displacement are treated as unknowns. For the
static problem, pull-in parameters are found by using the displacement iteration pull-in extraction algorithm
proposed by Bochobza-Degani et al. (2002). Eigenvalue problems corresponding to linear vibrations of the
system about its deflected position are solved for the fundamental frequency. It is shown that the fundamental
frequency goes to zero as pull-in conditions are approached. The pull-in parameters found from the eigenvalue
analysis agree well with those derived from the static analysis. Convergence studies with an increase in the
number of basis functions reveal that 9 (4) basis functions for a rectangular (circular) plate give a converged
solution, and 3 (2) basis functions give values of pull-in parameters with less that 5% error. In the absence of
the applied electrostatic force, the value of the nanoscale surface force corresponding to the pull-in instability
determines the device size that can be safely fabricated. Reduced-order models for linear rectangular and cir-
cular membranes are obtained as special cases.

The rest of the paper is organized as follows. In Sections 2 and 3, we describe, respectively, the electrome-
chanical and the reduced-order models for a von Kármán plate under the effect of the Coulomb and the nano-
scale surface forces. The derivation of the reduced-order model follows a procedure typically used for studying
deformations of thin-walled structures. That is, in-plane inertial effects are neglected, and the resulting equa-
tion is solved for in-plane displacements in terms of transverse deflections which are then substituted in the
equation governing the evolution of transverse deflection. Once transverse deflections have been computed,
in-plane displacements can be found. In Section 4, we briefly outline the technique used to solve equations
for the reduced-order model. In Section 5, we present results, that is pull-in parameters and fundamental fre-
quencies for microplates and micromembranes, and we investigate the effect of the Casimir force on the pull-in
instability and the lowest frequency. Conclusions are summarized in Section 6.
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2. Formulation of the initial-boundary-value problem

Referring to the geometry in Fig. 1, we assume that the deformable electrode in the undeformed configu-
ration is a plate-like body occupying the region X� ð�h=2; h=2Þ, and that the initial gap g0 between the two
conductors and the thickness h of the deformable plate are much smaller than its characteristic length ‘. Thus,
X is the mid-surface of the plate. In our formulation, g0 and h can potentially be of the same order of mag-
nitude. We use the von Kármán plate theory to account for large deflections, moderate rotations, and small
strains, see for example Landau and Lifshitz (1986). Neglecting the effect of the rotatory inertia, the von Kár-
mán plate equations are, see Landau and Lifshitz (1986)
.h€wþ DDDw� hdivðrrwÞ � F e � F C ¼ 0; ð1aÞ

.€u� divr ¼ 0; ð1bÞ
where D ¼ Eh3=ð12ð1� m2ÞÞ is the bending stiffness of the plate; ., E, and m are the mass density, Young’s
modulus, and Poisson’s ratio of the plate material, that is assumed to be homogeneous and isotropic; u

and w are the in-plane and the out-of-plane displacements of a point on the mid-surface; r is the in-plane stress
tensor; F e and F C are the Coulomb and the the Casimir forces; D, div, and r are the Laplace, the divergence,
and the gradient operators with respect to the curvilinear in-plane coordinates x1 and x2, see Fig. 1; and a
superimposed dot means partial time derivative. Expressions for the Coulomb and the Casimir forces are dis-
cussed below. Eqs. (1) and others given below are written in direct notation. Definitions of differential oper-
ators in curvilinear coordinates are given in Appendix B.

We note that when r ¼ r01, where r0 is a constant having dimensions of the stress and 1 is the 2D identity
tensor, and the rigidity due to in-plane stretching dominates over the bending stiffness in supporting the exter-
nal load, Eqs. (1) reduce to equations governing deformations of a linear elastic membrane.

In the von Kármán plate theory, the in-plane strain tensor e is given by
e ¼ symruþ 1

2
rw�rw; ð2Þ
where symru is the symmetric part of ru and � denotes the tensor product between two vector fields (see
Appendix A). Assuming the response of the material to be linear elastic with the prestress r01 in the reference
configuration, the constitutive relation under the Kirchhoff assumption (see Batra, 2005) is:
r ¼ E
1þ m

eþ m
1� m

ðtreÞ1
� �

þ r01; ð3Þ
where tre is the trace of e. Substitution for r from Eq. (3) into Eqs. (1), assuming that r0 is constant, and using
Eq. (2) and identity (A.5) in Appendix A, give the following equations for u and w:
.h€wþ DDDw� Bdiv ðð1� mÞsymruþ mðdivuÞ1Þrwþ 1

2
ðrw � rwÞrw

� �
� r0hDw� F e � F C ¼ 0; ð4aÞ

.h€u� B
2
ðð1� mÞDuþ ð1þ mÞrdivuÞ ¼ B

2
ðð1� mÞdivðrw�rwÞ þ mrðrw � rwÞÞ; ð4bÞ
where B ¼ Eh=ð1� m2Þ, and a � b indicates the inner product between vectors a and b.
Fig. 1. Sketch of the electrostatically actuated device.
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From an electrical point of view, the system depicted in Fig. 1 behaves as a variable gap capacitor. By
assuming that g0=‘� 1 and by neglecting fringing fields due to reasons explained in Section 1, the magnitude
F e of the electrostatic force acting on the deformable electrode along its normal is given by, see Pelesko and
Bernstein (2002),
F e ¼ �
�0V 2

2g2
0ð1þ ŵÞ2

; ð5Þ
where ŵ ¼ w=g0 is the nondimensional transverse displacement, �0 is the dielectric constant in vacuum, and V

is the applied direct current voltage. Therefore, the expression for the electrostatic force depends only on the
gap g. Thus, the validity of the analysis is limited to those variable gap capacitors whose actual gap is differ-
entially uniform, that is, the two conductors are locally parallel to each other, see for example Pelesko and
Bernstein (2002). Also, because of small strains and moderate rotations involved, the force F e is assumed
to act along the normal to the undeformed plate.

We use the proximity force approximation (PFA) for the Casimir force F C that is consistent with assump-
tions made in the mechanical and the electrostatic models. In the PFA, curved surfaces are viewed as a super-
imposition of infinitesimal parallel plates; see for example Bordag (2006), Gies and Klingmüller (2006) and
references therein. Gies and Klingmüller (2006) have shown that for a sphere of radius ‘ separated from a flat
plate by a distance g, the PFA gives results within 1% accuracy for g=‘ < 0:1. For perfect conductors, the PFA
approximation gives
F C ¼ �
�hcp2

240g4
0ð1þ ŵÞ4

; ð6Þ
where �h is Plank’s constant and c the speed of light in vacuum. For nonperfect conductors, the Casimir
force is still inversely proportional to g4

0, but the proportionality constant differs from that in Eq. (6),
see for example Bordag et al. (2001). Corrections to Eq. (6) for geometries with known and fixed departures
from the parallel configurations are given in Bordag (2006), Gies and Klingmüller (2006). However, Eq. (6)
is consistent with the parallel plate approximation for the electrostatic force, and the small deformations
assumption in the mechanical model. For gaps smaller than the retardation length, that is, for gaps smaller
than the wavelength of the virtual transitions responsible for the quantum dipole fluctuations (Bordag et al.,
2001, Klimchitskaya et al., 2000), the nanoscale interaction between the two bodies is described by the van
der Waals distributed force per unit surface area, see for example Israelachvili (1991), Laliotis et al. (2007),
Zhao et al. (2003):
F vdW ¼ �
H

6pg3
0ð1þ ŵÞ3

: ð7Þ
In Eq. (7), H is the Hamaker constant with values in the range ½0:4; 4� � 10�19 J.
van der Waals and Casimir forces between parallel layered metallic surfaces have been extensively stud-

ied in the literature, see for example, Bordag et al. (2001), Klimchitskaya et al. (2000). For gold-coated
aluminum surfaces, it is found that van der Waals force, see Eq. (7), is effective in the gap range 0.5–
4 nm. For gaps in the range 4 nm–1 lm, there is a transition between the force-distance dependence
g�3 (van der Waals force) to the force-distance dependence g�4 (Casimir force). For gaps larger than
1 lm, the interaction between the plates is described by the Casimir force, see Eq. (6). Therefore, for per-
fect conductors, at large separation distances the interaction force is independent of the material proper-
ties of plates, whereas, as the gap decreases, the interaction force is affected by the material properties of
the system. For dielectric bodies, the van der Waals force is effective at larger distances as shown by Israe-
lachvili and Tabor (1972).

In this work, we consider the Casimir force given by Eq. (6). Therefore, the analysis applies to those MEMS
devices with separation distances J 1 lm. The analysis with an expression for the nanoscale surface force
valid in the transition range between Casimir and van der Waals force is left for future work. The effect of
van der Waals force and thermal stresses on pull-in parameters of a rectangular plate has been studied by
Batra et al. (2008c).
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For convenience we introduce the nondimensional time t̂ ¼ t=s, where
s2 ¼ 12.‘4

Eh2
ð1� m2Þ; ð8Þ
and the in-plane displacement û ¼ u‘=g2
0. We use a superimposed dot to denote time derivative with

respect to t̂. Also, we drop the superimposed hat on nondimensional variables. Thus, Eqs. (4)
become
€wþDDw�12adiv ð1�mÞsymruþmðdivuÞ1ð Þrwþ1

2
rw �rwð Þrw

� �
�bDwþ k

ð1þwÞ2
þ l

ð1þwÞ4
¼0; ð9aÞ

c€u�ð1�mÞDu�ð1þmÞrdivu¼ð1�mÞdivðrw�rwÞþmrðrw �rwÞ; ð9bÞ
where
a ¼ g2
0

h2
; b ¼ 12

r0‘
2

Eh2
ð1� m2Þ; c ¼ h2

6‘2
; k ¼ 6�0V 2‘4

Eh3g3
0

ð1� m2Þ; l ¼ �hcp2‘4

20Eh3g5
0

ð1� m2Þ: ð10Þ
Nondimensional parameters b, k, and l are indicators of the MEMS stiffening due to the initial stress, the
Coulomb force, and the Casimir force, respectively. We assume that the order of magnitude of different terms
in Eqs. (9) is determined by the order of the corresponding nondimensional parameters. Since von Kármán
approximation holds for h=‘� 1, therefore c� 1, we neglect the inertial term in Eq. (9b) and obtain its fol-
lowing simplified form
ð1� mÞDuþ ð1þ mÞrdivu ¼ �ð1� mÞdivðrw�rwÞ � mrðrw � rwÞ: ð11Þ
We consider the boundary C of X to be clamped. The kinematic boundary conditions for a clamped edge are,
see Meirovitch (1967)
w ¼ 0 and rw � n ¼ 0; ð12aÞ
u ¼ 0; ð12bÞ
where n is the outward unit normal vector field on C that lies in the mid-surface of the plate.
We do not study transient behavior of microplates, but only static deformations or steady state vibrations.

Therefore, we do not need to prescribe initial conditions.
3. Reduced-order system

A closed-form solution of the initial-boundary-value problem defined by Eqs. (9a) and (11) and boundary
conditions (12a) and (12b) cannot be found. An approximate solution is constructed by expressing the dis-
placement fields u and w as
wðx1; x2; tÞ ¼
XN

n¼1

�wnðx1; x2ÞfnðtÞ ¼WTðx1; x2ÞfðtÞ; ð13aÞ

uðx1; x2; tÞ ¼
XP

p¼1

�upðx1; x2ÞnpðtÞ ¼ UTðx1; x2ÞnðtÞ; ð13bÞ
where �wn and �up are orthogonal basis functions for the transverse and the in-plane displacements, and fn and
np are the corresponding amplitude parameters or equivalently the mode participation factors. Basis functions
are collected into the N-vector W and into the P-vector U, and amplitudes are collected into the N-vector f

and into the P-vector n. Each basis function satisfies the corresponding kinematic boundary conditions, that
is, Eqs. (12a) and (12b).
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3.1. Basis functions for in-plane displacement

A basis function for the in-plane displacement is determined by solving the following linear eigenvalue
problem associated with Eq. (9b):
j2�up þ ð1� mÞD�up þ ð1þ mÞrdiv�up ¼ 0; ð14Þ

where j is the wave number. We decompose the in-plane displacement as u ¼ un þ ut, where un and ut are dis-
placement vectors for longitudinal and transverse waves satisfying curlun ¼ 0 and divut ¼ 0, respectively.
Therefore, Eq. (14) is equivalent to the following two equations, see for example Landau and Lifshitz (1986):
D�un þ g2
n�un ¼ 0; ð15aÞ

D�ut þ g2
t �u

t ¼ 0; ð15bÞ
where gn ¼ j=
ffiffiffi
2
p

and gt ¼ j=
ffiffiffiffiffiffiffiffiffiffiffi
1� m
p

are the wave numbers of the longitudinal and the transverse waves,
respectively.

Since curl�un ¼ 0, we solve Eq. (15a) by introducing the scalar potential / through �un ¼ r/. Therefore,
within an arbitrary additive constant Eq. (15a) reduces to
D/þ g2
n/ ¼ 0: ð16Þ
In order to solve Eq. (15b), we introduce the vector potential U through �ut ¼ curlU. The fact that �ut is an
in-plane vector field in X and Eq. (B.13) imply that U ¼ Ug3, where g3 is the normal vector field in the z coor-
dinate direction (see Fig. 1) and U is a scalar field in X. Therefore, within an arbitrary additive vector field ~U
such that curl ~U ¼ 0, the eigenvalue problem (15b) reduces to
DUþ g2
t U ¼ 0: ð17Þ
By integrating over the domain X and by applying Green’s formulas to transform surface integrals into line
integrals, conditions curl�un ¼ 0 and div�ut ¼ 0 imply the following set of boundary conditions for the displace-
ments associated with the longitudinal and the transverse waves
�un � t ¼ 0; �ut � n ¼ 0; ð18Þ

where t is the tangent vector to the boundary C of X, such that ðn; t; g3Þ is a positively oriented basis. Addi-
tional boundary conditions are provided by Eq. (12b) through
�un � n ¼ �ut � n ¼ 0; �ut � t ¼ �un � t ¼ 0: ð19Þ

We note that the governing equations for the potentials / and U, that is, Eqs. (16) and (17), respectively, are

equivalent. Nevertheless, the normal and transverse displacement fields are generally different since the rela-
tion between them and their corresponding potential are different.

3.2. Relation between n and f

In order to express n in terms of f, we substitute from Eqs. (13) into Eq. (11), take the inner product of both
sides of the resulting equation with the in-plane mode �up, and integrate over the domain X. Applying identities
given in Appendix A, the divergence theorem and imposing boundary condition (12b) on the boundary inte-
grals we obtain
np ¼ fTHpf; ð20Þ
where the ðN � NÞ symmetric matrix Hp is given by
½Hp�mn ¼ �
Z

X
ðð1� mÞrT�upr�wm � r�wn þ mðr�wm � r�wnÞdiv�upÞdX

Z
X
ðð1� mÞtrðr�uprT�upÞ

�

þð1þ mÞðdiv�upÞ2ÞdX
��1

; m; n ¼ 1; . . . ;N : ð21Þ
Formulae to compute the gradient of a vector field in curvilinear coordinates are given in Appendix B.
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We note that all amplitude coefficients for the transverse displacement are needed for computing any ampli-
tude coefficient of the in-plane displacement field. In addition, we note that relation (11) between the in-plane
motion and the transverse motion is nonlinear and that the in-plane motion vanishes in the linear theory.
Because of the P internal constraints (20), the reduced-order model for the microplate has N degrees of
freedom.

3.3. Equations for the reduced-order system

The reduced-order model is obtained by premultiplying both sides of Eq. (9a) with W, substituting for w

and u from Eqs. (13), integrating the resulting equation over X, and substituting into it the relation (20):
Z
X

WWT€fdXþ
Z

X
WDDWTfdX� 12a

Z
X

Wdiv �erWTfþ 1

2
rWTf � rWTf
� 	

rWTf

� 

dX

� b
Z

X
WDWTfþ k

Z
X

W

ð1þWTfÞ2
dXþ l

Z
X

W

ð1þWTfÞ4
dX ¼ 0; ð22Þ
where
�e ¼
XP

p¼1

npðfÞEp ¼
XP

p¼1

ðfTHpfÞEp; ð23aÞ

Ep ¼ ð1� mÞsymr�up þ mðdiv�upÞ1: ð23bÞ
We now define the following ðN � NÞ matrices
½D�mn ¼ r�wm � r�wn; ½L�mn ¼ D�wmD�wn; ½G�mn ¼ �er�wm � r�wn; m; n ¼ 1; . . . ;N : ð24Þ

Using the divergence theorem and imposing boundary conditions (12a) we obtain the following equation

for the reduced-order system:
m€fþ ðk1 þ bk2 þ ak3ðfÞÞfþ kf eðfÞ þ lfCðfÞ ¼ 0; ð25Þ

where
m ¼
Z

X
WWT dX; ð26aÞ

k1 ¼
Z

X
LdX; k2 ¼

Z
X

DdX; ð26bÞ

k3ðfÞ ¼ 12

Z
X

Gþ 1

2
ðfTDfÞD

� 

dX; ð26cÞ

feðfÞ ¼
Z

X

W

ð1þWTfÞ2
dX; fCðfÞ ¼

Z
X

W

ð1þWTfÞ4
dX: ð26dÞ
In Eq. (25), k1 þ bk2 represents the stiffness of a linear elastic plate, and ak3ðfÞ the strain-stiffening effect.
We note that the system represented by Eq. (25) depends on N displacement unknowns. As will be shown

below, N ¼ 1 gives very good results. However, Eqs. (26) involve G that depends upon �e given by Eq. (23a).
Thus the total number of basis functions equals N þ P .

4. Extraction of pull-in parameters, and frequencies of a deformed plate

4.1. Solution of the static problem

For the static problem, we assume that the voltage difference is applied slowly to the two electrodes, and
neglect the inertia term in Eq. (25).
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The tangent stiffness matrix of the reduced-order system is given by
Kðf; a; b; k; lÞ ¼ k1 þ bk2 þ a k3ðfÞ þ
dk3ðfÞ

df
f

� 

þ k

dfeðfÞ
df
þ l

dfCðfÞ
df

; ð27Þ
where
dfeðfÞ
df

¼ �2

Z
X

WWT

ð1þWTfÞ3
dX;

dfCðfÞ
df

¼ �4

Z
X

WWT

ð1þWTfÞ5
dX: ð28Þ
Using the linearity of the trace operator, from Eqs. (23a) and (24) we obtain
d½G�mn

df
f ¼

XP

p¼1

2tr Epr�wm �r�wn

� 	
fTHp

" #
f ¼ 2

XP

p¼1

ðEpr�wm � r�wnÞðfTHpfÞ ¼ 2½G�mn; ð29Þ
and similarly
dðfTDfÞ½D�mn

df
f ¼ 2ðfTDfÞ½D�mn: ð30Þ
Therefore, Eq. (27) becomes
Kðf; a; b; k; lÞ ¼ k1 þ bk2 þ 3ak3ðfÞ þ k
dfeðfÞ

df
þ l

dfCðfÞ
df

: ð31Þ
At the onset of instability the system’s tangent stiffness matrix becomes singular. Therefore, at pull-in the
system satisfies Eq. (25) with €f ¼ 0, and the condition det Kðf; a; b; k; lÞ ¼ 0.

When the static problem is solved for k ¼ 0 it gives the critical value, lcr, of the Casimir force parameter at
which the pull-in instability occurs. When l ¼ lcr the system collapses spontaneously with zero applied volt-
age. Thus such a MEMS cannot be fabricated. The effect of the MEMS size on pull-in parameters kPI and
kwPIk1 is investigated by solving Eq. (25) with €f ¼ 0 and variable k for different values of l in the range
½0; lcr�. The pull-in instability ðkPI; kwPIk1Þ occurs when the curve kwk1ðk; lÞ becomes multivalued. Here
kwPIk1 equals the maximum transverse displacement of a plate particle at the onset of the pull-in instability.

We use the displacement iteration pull-in extraction (DIPIE) algorithm (Bochobza-Degani et al., 2002) to
solve Eq. (25) with €f ¼ 0. It enables one to find the complete bifurcation path by driving the system through
the displacement of a pre-chosen point ð�x1;�x2Þ 2 X, treating the load parameter (either k or l) as unknown.
The method is explained for the case of variable k and fixed l. When studying the behavior of the system
under the effect of either the Casimir or the van der Waals force only, that is, for k ¼ 0 with varying l, exactly
the same procedure applies except that the role of the two parameters is exchanged.

A parameter s, representing the deflection of a point ð�x1;�x2Þ 2 X, is added. Both f and k are regarded as
functions of s. If the solution ðfi�1; ki�1Þ corresponding to WTð�x1;�x2Þfi�1 ¼ si�1 is known, the solution
ðfi; kiÞ ¼ ðfi�1; ki�1Þ þ ðDfi;DkiÞ corresponding to si ¼ si�1 þ Dsi is obtained by solving the following system
of equations:
ðk1 þ bk2 þ ak3ðfiÞÞfi þ kifeðfiÞ þ lfCðfiÞ ¼ 0; ð32aÞ
WTð�x1;�x2Þfi ¼ si: ð32bÞ
The solution of the set of nonlinear Eqs. (32) in terms of the unknowns Dfi and Dki is found by using New-
ton’s iterations. Hence, at the generic jth iteration
KðfðjÞi ; k
ðjÞ
i ; lÞ

dfeðfðjÞi Þ
df

WTð�x1;�x2Þ 0

2
4

3
5 Df

ðjÞ
i

DkðjÞi

" #
¼ � ðk1 þ k2 þ k3ðfðjÞi ÞÞf

ðjÞ
i þ kðjÞi feðfðjÞi Þ þ lfCðfðjÞi Þ

WTð�x1;�x2ÞfðjÞi � si

" #
; ð33Þ
where ðDf
ðjÞ
i ;DkðjÞi Þ indicates the jth solution increment; ðfðjÞi ; k

ðjÞ
i Þ is the updated solution at the ðj� 1Þth iter-

ation, that is,
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f
ðjÞ
i ¼ fi�1 þ

Xj�1

k¼1

Df
ðkÞ
i ; kðjÞi ¼ ki�1 þ

Xj�1

k¼1

DkðkÞi : ð34Þ
The iterations are performed until
max½jDf
ðjÞ
i j; DkðjÞi � 6 �T; ð35Þ
where �T is a preassigned small number.
4.2. Frequencies of an electrostatically loaded MEMS

For given values of a, b, and l, and for every converged solution ðfi; kiÞ of the static problem up to pull-in,
we perturb the static solution by setting fiþ1 ¼ fi þ Dfi expðıxtÞ in Eq. (25) and linearize it around ðfi; kiÞ. Here
Dfi is a constant vector, ı ¼

ffiffiffiffiffiffiffi
�1
p

, and x is the natural frequency of free vibration of the deformed plate that is
obtained by solving the following eigenvalue problem:
detðKðfi; a; b; ki; lÞ � x2mÞ ¼ 0: ð36Þ
Since the tangent stiffness matrix becomes singular at pull-in, it follows that corresponding to pull-in at
least one natural frequency of the system equals zero. It is an alternative way of finding the pull-in parameters
of the statically deformed plate.
5. Results

Results presented below for clamped rectangular and circular plates have been computed for m ¼ 0:25.
Unless otherwise stated, we apply constant increments jDsij ¼ 10�3 to extract pull-in parameters with the
DIPIE algorithm. Tolerance �T in Eq. (35) equals 10�7. When k ¼ 0, l ¼ 0 the numerical scheme is started
with s0 ¼ 0, consistent with the assumption that the corresponding deflection of every point on the plate’s
mid-surface is zero.

We solve the problem for k ¼ 0 to determine the critical parameters ðfcr; lcrÞ, corresponding to collapse of
the system with zero applied voltage and purely due to the effect of the Casimir force. When solving the prob-
lem with variable k and assigning values to l in the range ½0; lcr�, the DIPIE scheme is started with
s0 ¼WTð�x1;�x2Þfl, where fl is the converged set of deflection parameters corresponding to k ¼ 0 and the
assigned value of l.
5.1. Rectangular plate

We consider a rectangular plate with nondimensional lengths of sides equal to 1 and u 2�0; 1�. The two-
dimensional region representing the plate’s mid-surface is described in the reference configuration by the rect-
angular Cartesian coordinate system ðx1; x2Þ with x1 and x2 axes aligned with sides of lengths 1 and u,
respectively.

Integrals appearing in Eqs. (26) for the reduced-order model for the microplate have been evaluated using
the 21� 21 Gauss quadrature rule. For the DIPIE algorithm we adopt ð�x1;�x2Þ ¼ ð1=2;u=2Þ as the point whose
displacement s is imposed.

The solution of the eigenvalue problem (14) with the method explained in Section 3.1 gives the following
basis functions for the in-plane displacement in Eq. (13b):
�upðx1; x2Þ ¼ Arl sinðrpx1Þ sin
lpx2

u

� 

ðg1 þ g2Þ ð37Þ
where Arl are constants used for normalization, and p ¼ ðr � 1Þ�qþ l for r ¼ 1; . . . ; �p and l ¼ 1; . . . ; �q.
For the transverse displacement, we use the following set of kinematically admissible basis functions
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�wmðx1; x2Þ ¼ Am
coshðKmx1Þ � cosðKmx1Þ

cosh Km � cos Km
� sinhðKmx1Þ � sinðKmx1Þ

sinh Km � sin Km

� 


�
cosh Kmx2

u

� �
� cos Kmx2

u

� �
cosh Km � cos Km

�
sinh Kmx2

u

� �
� sin Kmx2

u

� �
sinh Km � sin Km

0
@

1
A; ð38Þ
where Km, m ¼ 1; . . . ;N , is the mth root of the transcendental equation
cosh K cos K ¼ 1; ð39Þ

and the constant Am is chosen by normalizing �wm with respect to its maximum value. Basis functions (38) equal
products of basis functions for clamped–clamped Euler beams of length 1 and u, respectively. However, the
same mode shapes in the x1- and the x2-directions are considered.

Since each function �wm in Eq. (38) is symmetric about the axes x1 ¼ 1=2 and x2 ¼ u=2, the basis functions up

in Eq. (37) with
modðmodðr; 2Þ þmodðl; 2Þ; 2Þ ¼ 0 ð40Þ

imply ½Hp�mn ¼ 0 in Eq. (21). Here, modðr; lÞ gives the remainder in the division of r by l. Therefore, the num-
ber of basis functions in Eq. (13b) is given by
P ¼ 1

2
ð�p�q�modð�p�q; 2ÞÞ; ð41Þ
where only basis functions up such that modðmodðl; 2Þ þmodðr; 2Þ; 2Þ ¼ 1 are considered. Results presented
below are computed by selecting �p ¼ �q.

5.1.1. Pull-in parameters from the static analysis

5.1.1.1. Comparison of results. Table 1 lists pull-in parameters kwPIk1 and kPI extracted for u ¼ 1 (square
plate), a ¼ 1, b ¼ 0, l ¼ 0, and different values of �p and N in Eqs. (37) and (38). The solution is affected
by the number of basis functions for the in-plane displacements, while it is not significantly affected by the
number of basis functions used to approximate the transverse displacement. The converged values of pull-
in parameters (with �p ¼ �q ¼ 4 and N ¼ 1 or a total of P þ N ¼ 9 basis functions and 1 degree of freedom)
match well with the corresponding ones kwPIk1u0:51 and kPIu192 deduced from Fig. 5 of Zhao et al.
(2004) who used the hierarchical finite element method to numerically generate eigenfunctions of a linear
clamped plate and used them as basis functions for the displacement field.

The primary reason for needing only one basis function for the transverse deflection and several for the in-
plane displacements is that the basis functions for the transverse displacement in Eq. (38) approximate well the
deformed shape of the microplate under the distributed Coulomb and Casimir forces. However, more basis
functions for the in-plane displacement are needed to reproduce accurately the membrane stress that couples
the in-plane and the transverse deformations.

5.1.1.2. Critical value of the Casimir force parameter.

5.1.1.2.1. Zero prestress. In Tables 2 and 3, we list for a ¼ 1 the critical Casimir force parameter lcr and the
corresponding infinity norm kwcrk1 of the pull-in displacement for a square and a rectangular plate with
u ¼ 1=2. They converge with increasing number of basis functions for the in-plane displacement, and they
1
= 1, nondimensional pull-in parameters kwPIk1 and kPI for different number of basis functions used to approximate the in-plane
e transverse displacements

kwPIk1 kPI

�p, �q ¼ �p �p, �q ¼ �p

2 4 6 2 4 6

0.551 0.535 0.534 203 196 196
0.551 0.535 0.534 204 196 196
0.551 0.534 0.534 204 196 196



Table 2
For u ¼ 1, critical Casimir force parameter lcr and the corresponding pull-in displacement infinity norm kwcrk1 with different number of
basis functions for the in-plane and the transverse displacements

N kwcrk1 lcr

�p, �q ¼ �p �p, �q ¼ �p

2 4 6 2 4 6

1 0.315 0.309 0.309 103 101 101
3 0.315 0.309 0.309 103 101 101
5 0.315 0.309 0.309 103 101 101

Table 3
For u ¼ 1=2, critical Casimir force parameter lcr and the corresponding pull-in displacement infinity norm kwcrk1 with different number
of basis functions for the in-plane and the transverse displacements

N kwcrk1 lcr

�p, �q ¼ �p �p, �q ¼ �p

2 4 6 2 4 6

1 0.316 0.310 0.309 766 755 754
3 0.316 0.310 0.310 766 755 754
5 0.316 0.310 0.310 766 755 754
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are essentially unaffected by the number of basis functions used to approximate the transverse displacement.
We note that lcr for the clamped rectangular plate with aspect ratio 1/2 is nearly 7.5 times that for the clamped
square plate.

Based on results in Tables 1–3 we henceforth use �p ¼ 4 and N ¼ 1 in Eqs. (37) and (38). Thus the reduced-
order model has P ¼ 8 basis functions for the in-plane displacement, N ¼ 1 basis functions for the transverse
displacement, and N ¼ 1 degree of freedom.

For k ¼ 0 Fig. 2 shows the the variation of the critical Casimir force parameter lcr with the aspect ratio u
for two values of a ¼ g2

0=h2. Numerical data in Fig. 2 is interpolated with a fourth order polynomial of the
form
lcr ¼ f ðaÞ 1þ 1

u2
þ 1

u4

� 

ð42Þ
where the function f ðaÞ, plotted in Fig. 3, is given by
f ðaÞ ¼ 2:31aþ 35:8: ð43Þ

Note that lcr increases rapidly with a decrease in u. However, for the MEMS to be useful, u has a lower

limit since all four edges are clamped. For two opposite edges clamped and the longer edges kept traction free,
the MEMS can be modeled as a beam for which reduced-order models described by Batra et al. (2006c), Batra
et al. (2008b) with fringing fields given by Batra et al. (2006b) can be employed.
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Fig. 2. Variation of lcr with the aspect ratio u for (a) a ¼ 1 and (b) a ¼ 4.
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In Fig. 4, we plot for a square and a rectangular plate the variation of the critical Casimir force parameter
lcr with the parameter

ffiffiffi
a
p
¼ g0=h. It is clear that the linear plate theory predictions represented by the values

� 95 and � 715 corresponding to a ¼ 0 lose accuracy with increasing g0=h. Moreover, the absolute error in the
linear plate theory prediction is enhanced with decreasing aspect ratio u, as shown by the scales on the vertical
axes in Fig. 4. These plots also reveal that Eq. (42) gives approximate values of lcr. For example, for a ¼ 0 and
u ¼ 1, Eq. (42) gives lcr ¼ 117:4 as compared to 95 from Fig. 4.
5.1.1.2.2. Nonzero prestress. Recalling that the parameter b in Eq. (10) is a measure of the prestress, we plot
in Fig. 5 the variation with b of the critical Casimir force parameter lcr for a square plate and a rectangular
plate with u ¼ 1=2, and for a ¼ 1 and 4. For each case studied lcr increases with a decrease in the magnitude
of the compressive prestress and an increase in the tensile prestress. Thus the safely fabricated device size can
be modified by changing the prestress. We note that results depicted in Fig. 5 are in qualitative agreement with
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Fig. 5. For a ¼ 1 (solid line) and a ¼ 4 (dashed line), variation with b of the critical Casimir force parameter lcr for (a) square plate and
(b) rectangular plate with u ¼ 1=2.
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those for a clamped–clamped MEM beam computed both with ANSYS using three-dimensional formulation
of the problem, and with the one degree of freedom model of the beam, see Batra et al. (2006c).
5.1.1.3. Pull-in parameters for a fixed value of l.

5.1.1.3.1. Zero prestress. In Figs. 6 and 7, we plot for a square and a rectangular plate the pull-in parameters
versus l in the range ½0; lcr� for a ¼ 1 (that is, g0=h ¼ 1), b ¼ 0 (that is, r0 ¼ 0). As l increases the pull-in
parameter kPI decreases monotonically from its maximum value kmax

PI corresponding to l ¼ 0 to its minimum
value 0 for l ¼ lcr; l ¼ lcr represents the intersection of the curves with the horizontal axis. With an increase
in l the nondimensional maximum transverse displacement decreases monotonically from its maximum value
kw PIkmax

1 for l ¼ 0 to its minimum value at l ¼ lcr.
For a MEMS made of a specified material, Eq. (10)5 implies that ‘4=ðh3g5

0Þ is proportional to lcr. Thus lcr

determines the device size that can be safely fabricated. This means that reduced–deflection ranges are allow-
able for devices having a large value of lcr since lcr is inversely proportional to g5

0. By comparing results
depicted in Figs. 6 and 7, we conclude that a change in the aspect ratio of a plate from 1 to 1/2 significantly
increases kmax

PI , and it does not noticeably affect the difference kwPIkmax
1 � kwcrk1.

For l ¼ 0:3lcr and a ¼ 4, we have plotted in Fig. 8 the deformed shapes of the square plate when k ’ 180
and kwk1 ’ 0:52, and of the rectangular plate with u ¼ 1=2 when k ’ 1300 and kwk1 ’ 0:52. Fringe plots of
the Casimir pressure (cf. Eq. (6)) are also exhibited. In the undeformed plate grid lines were uniformly spaced.
Thus by comparing the lengths of the curve segments between two consecutive curves with their original
lengths one can estimate stretches at different points of the plate. For the same value of kwk1 the maximum
magnitude of the Casimir pressure for the rectangular plate is nearly an order of magnitude higher than that
for the square plate; note that F C in Eq. (6) does not depend upon the applied voltage. Its value is negative
because it acts along the negative z-axis.

5.1.1.3.2. Nonzero prestress. In the absence of the Casimir force (that is, l ¼ 0) Fig. 9 exhibits the variation
with the prestress parameter b of the pull-in voltage kPI for a square plate and a rectangular plate with
u ¼ 1=2, and also for a ¼ 1 and 4. In each case the pull-in voltage parameter increases nearly linearly with
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Fig. 7. (a) kPI and (b) kwPIk1 versus l for a rectangular plate ðu ¼ 1=2Þ with a ¼ 1 and b ¼ 0.



Fig. 8. For l ’ 0:3lcr and a ¼ 4, deformed shape of (a) the square plate with k ’ 180 and kwk1 ’ 0:52, and (b) rectangular plate with
u ¼ 1=2, k ’ 1300 and kwk1 ’ 0:52. Fringe plots of the Casimir pressure are also displayed.
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an increase in b. We note that magnitudes of the initial compressive and tensile prestresses are limited, respec-
tively, by the buckling instability of the MEMS and the tensile strength of the material of the MEMS.
5.1.2. Frequencies of a deformed plate

In Fig. 10, we have plotted for a square and a rectangular plate the fundamental natural frequency x0 of the
deflected microplate versus k for a ¼ 4, b ¼ 0 (that is, no initial stress) and two different values of l. The eigen-
frequency is normalized with respect to the value �x0 corresponding to k ¼ 0; nondimensional values of �x0 for

Figs. 10 and 11 are reported in Table 4. The corresponding dimensional values equal �x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ð.‘4Þ

q
. The trend

is nonmonotonic due to the combined effect of the strain hardening represented by ak3ðfÞ and the softening
effect introduced by the Coulomb and the Casimir forces. Indeed, from Eq. (28) it is clear that the overall
behavior of the Coulomb and the Casimir forces is equivalent to a nonlinear spring with negative spring con-
stant. When the strain hardening effect is negligible the fundamental frequency monotonically decreases to
zero, as is typically predicted by the linear plate theory.

We note that the presently computed non-dimensional fundamental frequencies of 36.1 and 98.6 match well
with the 36.108 and 98.592 for square and rectangular plates reported by Arenas (2003).

Results in Fig. 11 show that for a ¼ 1 and b ¼ 0 the fundamental frequency monotonically decreases,
meaning that in this case the softening effect related to the Coulomb and the Casimir forces overwhelms
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Fig. 9. For a ¼ 1 (solid line), a ¼ 4 (dashed line), and l ¼ 0, variation with b of the pull-in voltage parameter kPI for (a) square plate and
(b) rectangular plate with u ¼ 1=2.
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Table 4
Values of �x0 in Figs. 10 and 11

a u ¼ 1 u ¼ 1=2

l ¼ 0 l ’ 0:3lcr l ¼ 0 l ’ 0:3lcr

1 36.1 34.1 98.6 93.0
4 36.1 33.9 98.6 92.7
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the strain hardening effect. Note that k corresponding to x0 ¼ 0 agrees with the kPI from Fig. 6 which of
course should be true since in both cases det Kðf; a; b; k; lÞ ¼ 0. This provides an alternative way to find the
pull-in parameters.
5.1.3. Pull-in parameters for a membrane

For a linear elastic membrane the equation
�Dwþ k

bð1þ wÞ2
þ l

bð1þ wÞ4
¼ 0 ð44Þ
governing static deflection under the action of the Coulomb and the Casimir forces is derived from Eq. (9a)
with b	 1 and a=b� 1. Since typically E=r0 
 103, we have ‘2 	 h2 and ‘2 	 g2

0. Therefore, the MEMS de-
vice experiences small deflections and the bending stiffness is negligible as compared to the in-plane stiffness
due to a constant prestress in carrying the external load. Eq. (44) shows that lcr varies linearly with b or,
equivalently, that the ratio lcr=b is constant. The same remark applies to kPI=b for a given l 2 ½0; lcr�. A
reduced-order model for the linear membrane can be derived from Eq. (25) by setting k1 ¼ k3 ¼ 0, and by
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computing m, k2, fe, and fC in Eqs. (26a), (26b), and (26d) with the following basis functions for the transverse
displacement:
�wm
n ðx1; x2Þ ¼ sinðnpx1Þ sin

npx2

u

� 

: ð45Þ
Pull-in parameters kPI=b and kwPIk1 versus l=b 2 ½0; lcr=b� are plotted in Fig. 12 for a clamped square
micromembrane by taking n ¼ 1 in Eq. (45), implying that we use a 1 d.o.f. model.

5.2. Circular plate

We consider a circular plate of radius 1. The two-dimensional region corresponding to plate’s mid-surface is
described by polar coordinates ðx1; x2Þ, where x1 and x2 are the radial and the angular coordinates, respectively.

Integrals appearing in the reduced-order model for the microplate have been computed using the Gauss
quadrature rule by placing 21� 21 quadrature points in the region ½0; 1� � ½0; 2p�. For the DIPIE algorithm
we adopt ð�x1;�x2Þ ¼ ð0; 0Þ as the point whose displacement s is imposed.

The solution of the eigenvalue problem (14) with the method explained in Section 3.1 gives the following
linearly independent basis functions for the in-plane displacement:
�upðx1; x2Þ ¼ A1
mn

oJm

ox1
ðj0mnx1Þ cosðmx2Þðg1 þ x1g2Þ; ð46aÞ

�uð�pþ1Þ�qþpðx1; x2Þ ¼ A2
mn

oJm

ox1
ðj0mnx1Þ sinðmx2Þðg1 þ x1g2Þ; ð46bÞ

�uð2�pþ1Þ�qþpðx1; x2Þ ¼ A3
mnmJmðjmnx1Þ cosðmx2Þ � g1

x1
þ g2

� 

; ð46cÞ

�uð3�pþ1Þ�qþpðx1; x2Þ ¼ A4
mnmJmðjmnx1Þ sinðmx2Þ g1

x1
� g2

� 

; ð46dÞ
where
p ¼ m�qþ n; m ¼ 0; . . . ; �p; n ¼ 1; . . . ; �q:
Therefore, the number of nonzero basis functions for the in-plane displacement in Eq. (13b) is
P ¼ �qð1þ 4�pÞ. In Eqs. (46), Jm is a Bessel function of the first kind, and nondimensional variables j0mn and
jmn are determined, respectively, as the nth roots of the following characteristic equations:
oJm

ox1
ðj0x1Þ

����
x1¼0

¼ 0; JmðjÞ ¼ 0: ð47Þ
As basis functions for the transverse displacement we use the following family of axisymmetric functions,
see for example Meirovitch (1967)
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Fig. 12. For a clamped square membrane, pull-in parameters versus the Casimir force parameter.
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�wnðx1Þ ¼ An
J0ðKnx1Þ
J0ðKnÞ

� I0ðKnx1Þ
I0ðKnÞ

� 

; n ¼ 1; . . . ;N ; ð48Þ
where I0 is the modified Bessel function of the first kind, and nondimensional frequencies Kn are determined as
roots of the equation
J0ðKÞI1ðKÞ þ J1ðKÞI0ðKÞ ¼ 0: ð49Þ

Because of the assumption of axisymmetry embodied in Eq. (48), a nonaxisymmetric solution (if there is

one) will not be found. For annular micromembranes, nonaxisymmetric unstable equilibrium solutions exist
after pull-in, see Pelesko et al. (2003), Batra et al. (2006a), Batra et al. (2007a). Plaut (2008) has also studied
wrinkling instabilities in electrostatically loaded annular membranes.

Since the basis functions in Eq. (48) are axisymmetric, only in-plane modes that are also axisymmetric give
nonzero entries of the matrix Hp in Eq. (21). Therefore, results are computed with �p ¼ 0 in Eq. (46), and the
number of basis functions for the in-plane displacement equals P ¼ �q.

5.2.1. Pull-in parameters from the static analysis

5.2.1.1. Comparison of results. Table 5 lists pull-in parameters kwPIk1 and kPI extracted for a ¼ 1, b ¼ 0 and
l ¼ 0 and different values of �q and N in Eqs. (46) and (48). For the same �q the difference between results
obtained with N ¼ 1 and N ¼ 5 is � 1%.

For a ¼ 1=ð12ð1� m2ÞÞ and b ¼ 0 the converged pull-in parameters kwPIk1 ¼ 0:469 and kPI ¼ 13:8 match
well with the corresponding ones kwPIk1u0:47 and kPIu14 obtained from Fig. 2 of Vogl and Nayfeh (2005);
the authors employed a reduced-order model for a von Kármán circular microplate formulated in terms of the
transverse displacement and the Airy stress function.

5.2.1.2. Critical values of the Casimir force parameter.
5.2.1.2.1. Zero prestress. In Table 6, we give values of the critical Casimir force parameter lcr and the cor-

responding infinity norm of the pull-in displacement kwcrk1 for a ¼ 1. As for results reported in Table 5, for
the same �q the difference between values of pull-in parameters obtained with N ¼ 1 and N ¼ 5 is � 1%.

Based on values listed in Tables 5 and 6 we use �q ¼ 2 and N ¼ 1 in Eqs. (46) and (48) for results presented
below. Hence the reduced-order model has 3 basis functions and 1 degree of freedom.

The variation of the critical Casimir force parameter lcr with the parameter
ffiffiffi
a
p
¼ g0=h is plotted in Fig. 13.

For g0=h ¼ 2 the value 7.2 of lcr computed with the linear plate theory (corresponding to a ¼ 0) has an error
of u16%.

5.2.1.2.2. Nonzero prestress. For a ¼ 1 and 4 Fig. 14 depicts the variation of the critical Casimir force
parameter lcr with the prestress parameter b. As the prestress parameter b is increased from �15 to 30, lcr

increases almost linearly.

5.2.1.3. Pull-in parameters for a fixed value of l.

5.2.1.3.1. Zero prestress. Pull-in parameters versus l in the range ½0; lcr� for a ¼ 1, b ¼ 0 are plotted in
Fig. 15. As l increases pull-in parameters decrease monotonically from their maximum values corresponding
to l ¼ 0 to their minimum values for l ’ 8. For l ¼ lcr, k ¼ 0 and the device collapses with zero applied
voltage.
5
mensional pull-in parameters kwPIk1 and kPI for different number of basis functions to approximate the in-plane and the transverse
ements

kwPIk1 kPI

�q �q

1 2 4 1 2 4

0.542 0.528 0.528 16.2 15.7 15.7
0.535 0.522 0.522 16.2 15.7 15.7
0.534 0.522 0.522 16.2 15.7 15.7



Table 6
Critical force parameter lcr and the corresponding pull-in displacement infinity norm kwcrk1 with different number of basis functions for
the in-plane and the transverse displacements

N kwcrk1 lcr

�q �q

1 2 4 1 2 4

1 0.310 0.305 0.305 8.22 8.12 8.12
3 0.307 0.302 0.302 8.24 8.14 8.14
5 0.306 0.302 0.301 8.24 8.14 8.14
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Fig. 13. For b ¼ 0, lcr versus
ffiffiffi
a
p
¼ g0=h.
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Fig. 14. Variation with b of the critical Casimir force parameter lcr for the circular plate with a ¼ 1 (solid line) and a ¼ 4 (dashed line).
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Fig. 15. (a) kPI and (b) kwPIk1 versus l for a circular plate with a ¼ 1 and b ¼ 0.

3576 R.C. Batra et al. / International Journal of Solids and Structures 45 (2008) 3558–3583
For l ’ 0:3lcr and a ¼ 4 the deformed shape of the circular plate when k ’ 14 and kwk1 ’ 0:5 is shown in
Fig. 16. Fringe plots of the Casimir pressure (cf. Eq. (6)) are superimposed on the deformed plate.



Fig. 16. For l ’ 0:3lcr and a ¼ 4, the deformed shape of the circular plate with k ’ 14 and kwk1 ’ 0:5. Fringe plots of the Casimir
pressure are also displayed.
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5.2.1.3.2. Nonzero prestress. For l ¼ 0, and a ¼ 1 and 4, the variation with b of the pull-in voltage kPI is
plotted in Fig. 17. For both values of a, the variation of kPI with b is essentially linear.
5.2.2. Frequencies of a deformed plate
In Fig. 18, we plot the fundamental natural frequency x0 of the deflected microplate versus k for b ¼ 0 and

different values of a and l. The eigenfrequency is normalized with respect to the value �x0 corresponding to
k ¼ 0; nondimensional values of �x0 for Fig. 18 are reported in Table 7. The corresponding dimensional values
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Fig. 18. Normalized fundamental natural frequency versus k for l ¼ 0 (solid line), l ’ 0:3lcr (dashed line), and b ¼ 0; (a) a ¼ 1 and (b)
a ¼ 4.
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Fig. 17. For l ¼ 0, variation with b of the pull-in voltage parameter kPI for the circular plate with a ¼ 1 (solid line) and a ¼ 4 (dashed
line).



Table 7
For the circular plate, values of �x0 in Fig. 18

a l ¼ 0 l ’ 0:3lcr

1 10.2 9.64
4 10.2 9.59
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equal �x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ð.‘4Þ

q
. With increasing l and decreasing a the nonmonotonic behavior decreases due to the

increased softening effect introduced by the Casimir force. As for the rectangular plate, for l ¼ 0 and
a ¼ 1 the value kPI � 15 agrees with that obtained in Fig. 15 by the DIPIE algorithm.

5.2.3. Pull-in parameters for a membrane

We plot in Fig. 19 pull-in parameters of a circular clamped membrane obtained by solving the reduced-
order model derived from Eq. (44) by using the following basis functions for the transverse displacement
�wm
n ðx1Þ ¼ J0ðj0nx1Þ; ð50Þ
and n ¼ 1. They match very well with those obtained by Batra et al. (2007a), Batra et al. (2006a) by solving the
two-dimensional governing equation with the meshless local Petrov-Galerkin method (Atluri and Shen, 2002).
For l ¼ 0, the nondimensional pull-in voltage and the pull-in maximum displacement computed with the one
degree-of-freedom model equal 0.783 and 0.456, while those predicted by the MLPG method in Batra et al.
(2006a) equal 0.791 and 0.443, respectively.

5.3. Detachment dimensions

The maximum size of the MEM plates that does not stick with the substrate without the application of volt-
age is called the detachment dimension (Lin and Zhao, 2005). For a given initial gap g0 the detachment size
can be found from Eq. (10)5 by setting l ¼ lcr. Using values of lcr listed in Tables 2, 3, and 6 for the square,
rectangular and circular plates, respectively, we get their maximum sizes that can be safely fabricated. For
h ¼ 1 lm, g0 ¼ h, r0 ¼ 0, E ¼ 169 GPa, m ¼ 0:25 the detachment sizes of various plates are summarized in
Table 8.

In terms of the area A of the MEM plate, ‘ /
ffiffiffi
A
p

,
ffiffiffiffiffiffiffiffiffi
A=u

p
, and

ffiffiffiffiffiffiffiffiffiffiffi
4A=p

p
for the square, the rectangular and

the circular plates. Thus if A, the plate thickness h and the initial gap g0 are kept constant, then the maximum
dimensions listed in Table 8 for the rectangular and the circular plates will decrease by factors of

ffiffiffiffi
u
p

and
2=

ffiffiffi
p
p

, respectively. If the device length is kept fixed then lcr gives the minimum value of the gap g0.

5.4. Remarks

In Batra et al. (2008b) we showed that the 1 degree-of-freedom model for a narrow MEM beam derived
by using an approach similar to that adopted here gave values of pull-in parameters that differed by 5%
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Fig. 19. For a clamped circular membrane, pull-in parameters versus the Casimir force parameter.



Table 8
Maximum sizes of square, rectangular (u ¼ 1=2) and circular microplates that can be safely fabricated for h ¼ 1 lm

Plate

Square (side) Rectangular (longer side) Circular (radius)

Size (lm) 3692 6103 1966
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from the values derived from the analysis of the coupled three-dimensional electromechanical problem with
the commercial code ANSYS using nearly 1400 degrees of freedom. For the circular MEM membranes, the
1 d.o.f. model of Section 5.2.3 gives pull-in parameters that differ by about 3% from the numerical solution
of the nonlinear governing equations using 86 degrees of freedom for a quarter of the circular membrane.
These comparisons provide robustness and accuracy of the proposed reduced-order models. In the absence
of a solution of the nonlinear partial differential Eqs. (9a) and (9b) with inertia forces neglected and under
the appropriate boundary conditions, the error in the converged solution obtained herein can not be ascer-
tained. A comparison of the solution of Eqs. (9a) and (9b) with that of equations governing three-dimen-
sional deformations of the MEM plate will provide information about the adequacy of the plate model
adopted here. Of course, an ultimate test of the adequacy of a mathematical model lies in its ability to pre-
dict results that agree well with the experimental observations.

We note that the work has been extended to MEM elliptic plates by Batra et al. (2008a).
6. Conclusions

We have presented a unified approach to derive reduced-order models for clamped rectangular and cir-
cular microelectromechanical von Kármán plates subject to both the Coulomb and the Casimir forces. The
nonlinear governing equations for the three displacement components are coupled. Mode shapes of a linear
elastic plate are taken as the basis functions for the transverse displacement. The in-plane displacement is
expressed as the sum of the displacement vectors for the longitudinal and the transverse waves. For the
geometries considered, basis functions for the in-plane displacements can be found analytically. For other
geometries, these basis functions may be computed numerically.

The pull-in voltage and the pull-in deflection extracted from these reduced-order models for rectangular
and circular plates agree well with those available in the literature. Free vibrations of a plate predeformed
by the applied voltage and the Casimir force are analyzed; the voltage for which the first natural frequency
equals zero gives the pull-in voltage. It is found that 9 basis functions for the rectangular plate and a 3 basis
functions for the circular plate give converged values of the pull-in parameters which agree well with those
reported in the literature. Also, the models using 3 basis functions for the rectangular plate and 2 basis
functions for the circular plate give pull-in parameters with less than 4% error.

The reduced-order model for a plate is simplified to that for the corresponding membrane by neglecting
the bending stiffness of the plate. Pull-in parameters for the rectangular and the circular membranes from
the 1 degree-of-freedom reduced-order models are found to agree well with those obtained by solving
numerically the complete set of governing nonlinear partial differential equations.

Critical values of the Casimir force parameter for these plates are also determined. These give sizes of
microelectromechanical systems that can be safely fabricated. The analysis is valid for separation distances
between the two plates J 1 lm, for which the geometric interaction between perfectly conducting plates is
given by Eq. (6).
Appendix A. Identities used in the derivation of the reduced-order model

Let f : X! R, f; g : X! V, and F;G : X! T be a scalar, vector, and second order tensor fields in X. We
denote the inner product between two vectors as a � b; the space T has the natural inner product, see for exam-
ple Batra (2005), defined by F �G ¼ trðFGTÞ ¼

P
i;jF ijGij.
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The tensor product � between two vectors f and g is the second order tensor that assigns to each vector a

the vector ðg � aÞf:
ðf � gÞa ¼ ðg � aÞf: ðA:1Þ

Then the following rules apply
Fðf � gÞ ¼ ðFfÞ � g; ðf � gÞF ¼ f � ðFTgÞ; ðA:2Þ
trðf � gÞ ¼ f � g; ðA:3Þ
ðf � gÞT ¼ g� f: ðA:4Þ
Moreover, the following identities hold, see for example Gurtin (1981):
divðrTfÞ ¼ rdivf; ðA:5Þ
divðf fÞ ¼ f divf þ f � rf ; ðA:6Þ
divðFTfÞ ¼ f � divFþ trðFrfÞ: ðA:7Þ
Appendix B. Differentiation in curvilinear coordinates

For a comprehensive treatment of the material briefly outlined below, see Bowen and Wang (1976).
Let ðx1; x2Þ be curvilinear coordinates related to rectangular Cartesian coordinates ðz1; z2Þ by
z1 ¼ ẑ1ðx1; x2Þ; z2 ¼ ẑ2ðx1; x2Þ; ðB:1Þ
x1 ¼ x̂1ðz1; z2Þ; x2 ¼ x̂2ðz1; z2Þ: ðB:2Þ
Covariant and contravariant natural basis associated with the curvilinear coordinates are defined by
gi ¼
o

oxi
ẑ1i1 þ ẑ2i2

� 	
; gi ¼ r̂x̂i; ðB:3Þ
where ij are basis vectors associated with the Cartesian coordinates, and r̂ ¼ o
oz1 i1 þ o

oz2 i2. The covariant com-
ponents gij and the contravariant components gij of the metric tensor are given, respectively, by gij ¼ gi � gj

and gij ¼ gi � gj. Since gi � gj ¼ di
j where di

j is the Kronecker delta, it follows that ½gij� ¼ ½gij�
�1.

Let / be a scalar field. The gradient r/ of / is the vector field given by
r/ ¼ o/
oxj

gj ¼ /;jg
j: ðB:4Þ
Here and below, a repeated index appearing as a subscript and a superscript in the same term is summed
over its range of values. Let w be a vector field. The gradient rw of w is the second order tensor field given by
rw ¼ wi
;jgi � gj ¼ wi;jg

i � gj; ðB:5Þ
where the derivatives wi
;j and wi;j are defined by
wi
;j ¼

owi

oxj
þ i

jk

� 
wk; ðB:6Þ

wi;j ¼
owi

oxj
� k

ji

� 
wk; ðB:7Þ
and i
jk

n o
are the Christoffel symbols, given in the next subsection for polar coordinates. A convenient formula

for computing Christoffel symbols is
i
jk

� 
¼ 1

2
gih ogjh

oxk
þ ogkh

oxj
�

ogjk

oxh

� 

: ðB:8Þ
Expression (B.7) is suitable for the calculation of rr/, since from Eq. (B.4) the components of r/ are
covariant.
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Combining Eq. (B.5) with Eqs. (A.3) and (A.2) we obtain the following component representations of rela-
tions appearing in (21)
trðrwrTwÞ ¼ gjkgihwi;jwh;k ¼ gjkwh
;jwh;k; ðB:9Þ

divw ¼ trrw ¼ wi
;i ¼ gijwi;j; ðB:10Þ

trðr/�rTwr/Þ ¼ rTwr/ � r/ ¼ o/
oxi

wi
;jg

jk o/
oxk

: ðB:11Þ
Let ðg1; g2; g3Þ be an orthogonal basis of a three-dimensional Euclidean space E. The curl of the vector field
W is the vector field defined by, see for example Bowen and Wang (1976):
curlW ¼ � eijkffiffiffi
g
p

oWj

oxk
gi; ðB:12Þ
where g ¼ det½gij�, and eijk ¼ 0 if any of the two indices are equal, eijk ¼ �1 if fi; j; kg is an even or an odd
permutation of f1; 2; 3g, respectively.

In the special case when W is a field on a two-dimensional region X with unit normal vector field g3, the
expression for the curl simplifies to
curlW ¼ 1ffiffiffi
g
p � oW3

ox2
g1 þ

oW3

ox1
g2 þ

oW2

ox1
� oW1

ox2

� 

g3

� 

: ðB:13Þ
B.1. Polar coordinates

Let x1 2 ½0;R� and x2 2 ½0; 2p� be polar coordinates. They are related to rectangular Cartesian coordinates
ðz1; z2Þ by
z1 ¼ x1 cos x2; z2 ¼ x1 sin x2: ðB:14Þ

The covariant components of the metric tensor are
½gij� ¼
1 0

0 ðx1Þ2
� �

: ðB:15Þ
According to Eq. (B.8), in polar coordinates the nonzero Christoffel symbols are
1

22

� 
¼ �x1;

2

12

� 
¼ 2

21

� 
¼ 1

x1
: ðB:16Þ
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