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We develop a hydroelastic model based on a {3,2}-order sandwich composite panel theory
and Wagner’s water impact theory for investigating the fluid–structure interaction during
the slamming process. The sandwich panel theory incorporates the transverse shear and
the transverse normal deformations of the core, while the face sheets are modeled with
the Kirchhoff plate theory. The structural model has been validated with the general pur-
pose finite element code ABAQUS�. The hydrodynamic model, based on Wagner’s theory,
considers hull’s elastic deformations. A numerical procedure to solve the nonlinear system
of governing equations, from which both the fluid’s and the structure’s deformations can be
simultaneously computed, has been developed and verified. The hydroelastic effect on
hull’s deformations and the unsteady slamming load have been delineated. This work
advances the state of the art of analyzing hydroelastic deformations of composite hulls
subjected to slamming impact.

Published by Elsevier Ltd.
1. Introduction

Bottom slamming is caused by impact between a running marine vessel and the water (see e.g., Bishop et al., 1978;
Faltinsen, 1990; Mizoguchi and Tanizawa, 1996). In most cases, it is the result of a series of large pitch and heave mo-
tions that force a part of the vessel bottom to emerge out of water and subsequently reenter the water. The generated
load is typically characterized by very short-duration (e.g., of a few milliseconds), acting on a small surface and high-
peak pressure. The impact can cause severe local damage to the hull, material/structural failure by fatigue, injury to
occupants due to high acceleration, or in a benign case, globally uncomfortable high-frequency vibrations. Due to the
severity and significance of such phenomena on marine vehicles, much research effort has been devoted to this area dur-
ing the past century. For example, the pioneering research work can be traced back to Wagner, 1932, and the vast re-
search work is summarized in a series of review articles, see e.g., Chu and Abramson (1961), Faltinsen (2000), Faltinsen
et al. (2004), Howison et al. (1991) and Mizoguchi and Tanizawa (1996). An analytical method to predict slamming pres-
sure which considers a number of physical parameters was proposed by Stavovy and Chuang (1976), while Mei et al.
(1999), Toyama (1993) and Zhao and Faltinsen (1993), among others, developed models to address 2-D water impact
of general sections. Water impact with finite deadrise angles was investigated by Faltinsen (2002), Wu et al. (2004)
and Yettou et al. (2007). Faltinsen and Chezhian (2005), Korobkin and Scolan (2006), Peseux et al. (2005), Scolan and
Korobkin (2001), and Takagi (2004), among others, addressed three-dimensional (3D) slamming problems, while Korob-
kin (2007) and Oliver (2007) developed second-order Wagner theories. A concept of compliant hulls was proposed and
developed by Vorus (2000, 2004) toward wave-impact reduction. We note that due to vast literature in this area, we
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Fig. 1. Schematic sketch of the problem studied depicting slamming upon the bottom surface of a hull.
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have listed only a few references. However, high complexities of the slamming phenomena require continuous research
to improve upon and optimize hull’s design. In this context, issues of hydroelastic effect during the slamming impact on
structural deformations have drawn considerable attention, see e.g., Bereznitski (2001), Faltinsen (1999), Khabakhpash-
eva (2005), Korobkin (1995), Kvålsvold and Faltinsen (1995), and Scolan (2004).

This research effort becomes even more important in the design of impact-resistant marine hulls made of composite
sandwich structures, mainly due to hydroelastic effect induced by the more prominent structural deformations during slam-
ming impacts (Hayman, 1993).

We investigate here the local hydroelastic effects of slamming impact on a composite sandwich marine hull. More
specifically, due to high-peak pressures developed during short-duration slamming impacts, hull’s local deformations
must be considered in a mathematical model of the problem. As proposed by Hohe and Librescu (2003), we use a high-
er-order transverse shear and transverse normal deformation theory for the core, and the Kirchhoff plate theory for the
face sheets to simulate infinitesimal elastic deformations of a sandwich panel. In this theory, the in-plane displacement
of the core is expanded up to third-order in the thickness coordinate, whereas a second-order expansion is used for the
transverse displacement of the core. Following the name convention proposed by Barut et al. (2001), the theory is
termed as {3,2}-order theory. A higher-order sandwich plate theory can be systematically developed based on a kth
(k ¼ 0;1;2; . . .) order plate theory of Batra et al. (2002) and Batra et al. (2002), in which both the transverse normal
and transverse shear deformations are considered, and the three displacement components are expanded up to kth order
in the thickness coordinate.

Recalling that the hydrodynamic load which accounts for hull’s deformations is highly localized, the bottom slamming
problem is idealized as that of a deformable sandwich wedge entering water with a uniform vertically downward speed
(see Fig. 1). The system of nonlinear governing equations accounting for deformations of the hull and flow of the water,
and the associated boundary conditions are derived by using the extended Hamilton’s principle (Meirovitch (1997)). Here,
the nonlinearity arises due to the a priori unknown length of the wetted surface which is a nonlinear function of hull’s defor-
mations. Also, deformations of the hull are to be determined by solving the governing equations. The solution of the problem
necessitates the evaluation of singular integrals. An algorithm has been developed for numerically solving the system of cou-
pled nonlinear equations. It has been verified by comparing the numerical solution with the analytical solution of a repre-
sentative problem.

In order to validate the structural model, a general purpose finite element code, ABAQUS (2004), is used to compute nat-
ural frequencies of a dry sandwich panel. It is found that frequencies from the {3,2}-order theory agree well with those pre-
dicted by ABAQUS�. It is also found that the natural frequencies of the sandwich panel converge rapidly when mode shapes
of the corresponding Euler–Bernoulli beam are taken as the basis functions. The mode shapes of the sandwich panel are ex-
pressed as polynomials in the axial coordinate and are used to reduce governing equations to a state-space form. Deforma-
tions of a sandwich panel due to hydrodynamic pressure have been studied, and the effect of the penetration speed of the
hull into water has been delineated.

2. Formulation of the problem

Since we are considering the local slamming impact on a hull, the bottom slamming problem is idealized as a 2D (plane-
strain) water entry of a deformable wedge (see Fig. 1). We use Lagrangian rectangular Cartesian coordinates ðx2; x3Þ depicted
in Fig. 2 to study deformations of the hull penetrating stationary water with a vertically downward speed _hðtÞ. Furthermore,
the hull is comprised of a sandwich panel with relatively stiff top and bottom face sheets and a flexible core. Such a structure
reduces weight without sacrificing hull’s stiffness and resistance to impact loads. During the slamming process, hull’s defor-



Transversely
flexible core

Bottom face sheet

Top face sheet

2

ct

2

ct

ft

ft

2x

3x

2L

Fig. 2. Geometry of a sandwich panel.
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mations are assumed to be infinitesimal, and symmetric about the x3-axis. It is thus tacitly assumed that the hull is symmet-
ric about the x3-axis. Our analysis further rules out snap through instability of the wedge.

2.1. Deformations of the sandwich panel

For the sandwich panel shown in Fig. 2, we follow Hohe and Librescu (2003), and adopt the Kirchhoff hypothesis for the
top and the bottom face sheets but consider transverse deformations of the core. We thus assume following expressions for
the displacement field in the face sheets and the core.

� For the top and the bottom face sheets:
vt
2 ¼ ua

2 þ ud
2 � x3 �

tc þ tf

2

� �
ðua

3;2 þ ud
3;2Þ; ð1aÞ

vb
2 ¼ ua

2 � ud
2 � x3 þ

tc þ tf

2

� �
ðua

3;2 � ud
3;2Þ; ð1bÞ

vt
3 ¼ ua

3 þ ud
3; vb

3 ¼ ua
3 � ud

3; ð1cÞ
where tc and tf equal, respectively, the thickness of the core and of the face sheet, and the two face sheets are of equal thick-
ness. Superscripts a and d signify the average and the half-difference of the top and the bottom face sheets’ mid-surface dis-
placements ut

j and ub
j . That is,
ua
j �

1
2
ðut

j þ ub
j Þ; ud

j �
1
2
ðut

j � ub
j Þ; j ¼ 2;3; ð2aÞ
and subscripts t and b imply the top and the bottom face sheets, also u3;2 � ou3=ox2. Note that u2 and u3 denote displace-
ments in the x2 and the x3 directions of a point on the mid-surface, but v2 and v3 signify displacements of any point of
the panel.
� For the core:
vc
2 ¼ ua

2 þ
tf

2
ud

3;2 þ
2x3

tc ud
2 þ

tf

tc x3ua
3;2 þ

4ðx3Þ2

ðtcÞ2
� 1

" #
Uc

2 þ 2x3
4ðx3Þ2

ðtcÞ2
� 1

" #
Xc

2; ð3aÞ

vc
3 ¼ ua

3 þ
2x3

tc ud
3 þ

4ðx3Þ2

ðtcÞ2
� 1

" #
Uc

3; ð3bÞ
where displacement functions Uc
2, Xc

2 and Uc
3 describe the warping of the core, and superscripts f and c denote, respectively,

the quantity for the face sheets and the core. The transverse shear strain in the core is a quadratic function of x3, and the
transverse normal strain is a polynomial of degree one in x3. We note that Eqs. (2) and (3) involve seven functions,
ua

2; ud
2; ua

3; ud
3; Uc

2; Xc
2 and Uc

3, of the spatial variable x2. The displacement field at points on the interfaces between face
sheets and the core is continuous.

2.2. Hydrodynamic pressure distribution during slamming impact

For studying the hydrodynamic problem, an Eulerian coordinate system yz which coincides with the Lagrangian
coordinate system x2x3 at the beginning of penetration is used. We restrict ourselves to small disturbances in the
flow, adopt a linear theory, and study deformations symmetric with respect to the z-axis. Since x2-displacement of



2014 Z. Qin, R.C. Batra / International Journal of Solids and Structures 46 (2009) 2011–2035
water except in the domain of jet flow is expected to be infinitesimal, we use coordinates x2 and y
interchangeably.

We assume that water is inviscid and incompressible, and the flow is irrotational (see e.g., Faltinsen, 1997; Mei et al.,
1999; Zhao and Faltinsen, 1993). Thus potential functions can be used to derive the displacement and velocity fields in water.
We also neglect gravitational force in the flow since fluid acceleration associated with the initial impact is much larger than
that due to gravity. With Uh denoting the displacement potential of water, we get the following governing equations for Uh

(see Fig. 1 for geometric specifications):
o2Uh

oy2 þ
o2Uh

oz2 ¼ 0; z < 0; ð4aÞ

Uh ¼ 0; jyj > aðtÞ; z ¼ 0�; ð4bÞ
oUh

oz
¼ �hðtÞ þ f ðyÞ þ ub

3ðy; tÞ; jyj < aðtÞ; z ¼ 0�; ð4cÞ

Uh ! 0; y2 þ z2 !1; ð4dÞ
where aðtÞ denotes the length of the right-half wetted hull, which is to be determined as a part of the solution of the problem.
It is also the y-coordinate of the right side contact point of the hull with the free surface of water. In Eqs. (4c) and (4d), hðtÞ
equals the time-dependent penetration of hull’s center into water, z ¼ f ðyÞ describes the profile of the bottom surface of the
hull, and ub

3ðy; tÞ equals the vertical displacement of a point on the bottom surface of the hull. In writing Eq. (4c), we have
assumed that there is no separation between the hull and the water. Thus the vertical displacement of a point on the bottom
surface of the hull equals that of the contacting water particle.

In terms of the following non-dimensional variables
~y � y
aðtÞ ;

~z � z
aðtÞ ; t > 0; ð5Þ
the wetted length is normalized to ð�1;1Þ.
In order to determine the displacement potential Uh, we distribute vortices of intensity cb on the wetted length

~y 2 ð�1;1Þ, z ¼ 0. The potential theory (see e.g., Katz and Plotkin, 1991) gives
Uhð~y;~z; tÞ ¼
1

2p

Z 1

�1
cbð~y; tÞ tan

~z
~y� ~y0

d~y0; ~z < 0: ð6Þ
Fulfillment of boundary condition (4c) yields the following Cauchy type singular integral equation:
1
2p

Z 1

�1

cbð~y0; tÞ
~y� ~y0

d~y0 ¼ aðtÞ hðtÞ � f ½aðtÞj~yj� � ub
3½j~yjaðtÞ; t�

� �
� j½aðtÞjyj; t�: ð7Þ
Here, j � j is the absolute value operator.
Since the water flow across end points ~y ¼ �1 in the horizontal direction must be bounded in amplitude, the solvability

condition for Eq. (7) is (Gakhov, 1966)
Z 1

�1

j½aðtÞj~y0j; t�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~y2

0

q d~y0 ¼ 0: ð8Þ
Eq. (8) is called the Wagner condition (Scolan and Korobkin, 2001), and is used to determine the unknown contact
point aðtÞ which depends on the penetration depth hðtÞ, shape z ¼ f ðyÞ of the wetted hull surface, and hull’s deforma-
tion ub

3.
The solution of Eq. (7) can be written as (Gakhov, 1966)
cbð~y; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~y2

p
p

Z 1

�1

j½aðtÞj~y0j; t�d~y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~y2

0

q
ð~y� ~y0Þ

; j~yj < 1: ð9Þ
Once the vortex intensity cb has been obtained from Eq. (9), the displacement potential Uh can be determined from Eq. (6). As
a result, the non-dimensional elevation of the free surface of water can be deduced from
gð~y; tÞ ¼ oUh

o~z

����
~z!0�

¼ � 1
2p

Z 1

�1

cbð~y; tÞ
~y� ~y0

d~y0; j~yj > 1: ð10Þ
The distribution of the hydrodynamic pressure, psð~y; tÞ, on the wetted hull surface is given by
psð~y; tÞ ¼
qh

o2Uhð~y;0� ;tÞ
ot2 ; j~yj < 1;

0; j~yj > 1;

(
ð11Þ
in which qh is the mass density of water, and the contribution from the quadratic term in Bernoulii’s equation
ð1=2ÞðorUh=otÞ � ðorUh=otÞ has been neglected.
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2.3. Governing equations

Since the problem has been assumed to be symmetric about the z-axis, we study deformations of the hull and the water
occupying the region L P y P 0, where L is the length of the hull (see Fig. 2).

The governing equations and the pertinent boundary conditions for the hull can be derived by using the extended Ham-
ilton’s principle (Meirovitch, 1997):
Z t2

t1

ðdT� dUþ dWeÞdt ¼ 0; ð12aÞ
with
dua
j ¼ dud

j ¼ dUc
j ¼ dXc

2 ¼ 0 at t ¼ t1 and t2; ð12bÞ
where j ¼ 2;3, dT and dU denote the virtual kinetic and the virtual strain energies, respectively, while dWe denotes the vir-
tual work done by external forces. For the present problem, expressions for dT, dU and dWe are given below.

� Virtual kinetic energy:
dT ¼
Z L

0

Z tc=2þtf

tc=2
qf ð _vt

2d _vt
2 þ _vt

3d _vt
3Þdx3 þ

Z tc=2

�tc=2
qc _vc

3d _vc
3dx3

(
þ
Z �tc=2

�tc=2�tf
qf ð _vb

2d _vb
2 þ _vb

3d _vb
3Þdx3

)
dx2: ð13Þ
� Virtual strain energy:
dU ¼
Z

V :H:
rijdeijdV ¼

Z L

0

Z tc=2þtf

tc=2
rt

22det
22dx3 þ

Z �tc=2

�tc=2�tf
rb

22deb
22dx3 þ

Z tc=2

�tc=2
ðrc

33dec
33 þ rc

23dcc
23Þdx3

( )
dx2: ð14Þ
Here, qf and qc are mass densities of the face sheets and the core, respectively, and V :H: in Eq. (14) denotes the volume ini-
tially occupied by the right-half wedge. It is noted that the virtual kinetic energy density qc _vc

2d _vc
2 and the virtual strain energy

density rc
22dec

22 are disregarded due to the adoption of weak core (Hohe and Librescu, 2003).
� Virtual work due to external forces:
dWe ¼
Z aðtÞ

0
psð~yðyÞ; tÞdub

3dy: ð15Þ
Here, dWe equals the work done by the hydrodynamic pressure psð~y; tÞ in deforming the hull. We note that psð~yðyÞ; tÞ ac-
counts for the interaction between deformations of the hull and the water underneath it.
We write equations of motion and the associated boundary conditions in terms of the following stress resultants and
couples.
ðNt
22;M

t
22Þ �

Z tc=2þtf

tc=2
ð1; x3Þrt

22dx3; ð16aÞ

ðNb
22;M

b
22Þ �

Z �tc=2

�tc=2�tf
ð1; x3Þrb

22dx3; ð16bÞ

ðNc
33;M

c
33Þ �

Z tc=2

�tc=2
ð1; x3Þrc

33dx3; ð16cÞ

ðNc
23;M

c
23; L

c
23Þ �

Z tc=2

�tc=2
ð1; x3; ðx3Þ2Þrc

23dx3: ð16dÞ
The governing equations associated with variations in different variables are:
dua
2 : Na

22;2 �mf
0
€ua

2 ¼ 0; ð17aÞ

dud
2 : Nd

22;2 �
1
tc Nc

23 �mf
0
€ud

2 ¼ 0; ð17bÞ

dUc
2 : Mc

23 ¼ 0; ð17cÞ

dXc
2 : �Nc

23 þ
12

ðtcÞ2
Lc

23 ¼ 0; ð17dÞ

dua
3 : �ð2mf

0 þmc
0Þ€ua

3 �mc
2

€Uc
3 þ 2qa

3 þ 2Ma
22;22 þ 1þ tf

tc

� �
Nc

23;2 ¼ 0; ð17eÞ

dud
3 : �ð2mf

0 þmc
0 þmc

2Þ€ud
3 �mc

2
€Uc

3 þ 2qd
3 þ 2Md

22;22 �
2
tc Nc

33 ¼ 0; ð17fÞ

dUc
3 : �mc

2€ua
3 �mc

4
€Uc

3 �
8

ðtcÞ2
Mc

33 � Nc
23;2 þ

4

ðtcÞ2
Lc

23;2 ¼ 0: ð17gÞ
In Eqs. (17a)–(17g), mf
0, mc

0, mc
2, and mc

4 are inertial coefficients, and their expressions are listed in Eqs. (B.2a-d) of Appendix B.
In Eqs. (17e) and (17f), qa

3 and qd
3 are defined as:
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qa
3 ¼

qt
3 þ qb

3

2
¼ 1

2
psðy; tÞ; qd

3 ¼
qt

3 � qb
3

2
¼ �1

2
psðy; tÞ: ð18Þ
The corresponding boundary conditions at x2 ¼ 0; L are:
dua
2 : Na

22 ¼ 0 or ua
2 ¼ ûa

2; ð19aÞ
dud

2 : Nd
22 ¼ 0 or ud

2 ¼ ûd
2; ð19bÞ

dua
3 : 2Ma

22;2 þ 1þ tf

tc

� �
Nc

23 ¼ 0 or ua
3 ¼ ûa

3; ð19cÞ

dud
3 : Md

22;2 þ
1
tc Mc

23 ¼ 0 or ud
3 ¼ ûd

3; ð19dÞ

dUc
3 :

4

ðtcÞ2
Lc

23 � Nc
23 ¼ 0 or Uc

3 ¼ bUc
3; ð19eÞ

dua
3;2 : Ma

22 ¼ 0 or ua
3;2 ¼ ûa

3;2; ð19fÞ
dud

3;2 : Md
22 ¼ 0 or ud

3;2 ¼ ûd
3;2; ð19gÞ
in which, quantities with a superimposed hat are specified at the boundaries.In the sequel, we focus on face sheets and
the core comprised of homogeneous and orthotropic materials with the axes of orthotropy coincident with the axes
ðx2; x3Þ of the rectangular Cartesian coordinate system. For simplicity, we consider the case in which the top and the bot-
tom face sheets are made of the same homogeneous and orthotropic material, and the lay-ups are identical and symmet-
ric with respect to their individual mid-surfaces.Constitutive equations for the stress resultants and couples defined in
Eqs. (16a)–(16d) can be written as
Na
22 ¼ Af

22ua
2;2; Nd

22 ¼ Af
22ud

2;2; Ma
22 ¼ �Df

22ua
3;22; ð20a-cÞ

Md
22 ¼ �Df

22ud
3;22; Nc

33 ¼
2
tc Ac

33ud
3; Mc

33 ¼
8

ðtcÞ2
Dc

33U
c
3; ð20d-fÞ

Nc
23 ¼

2
tc Ac

23ud
2 þ 1þ tf

tc

� �
Ac

23ua
3;2 þ

24

ðtcÞ2
Dc

23 � 2Ac
23

" #
Xc

2 þ
4

ðtcÞ2
Dc

23 � Ac
23

" #
Uc

3;2;

Mc
23 ¼

8

ðtcÞ2
Dc

23U
c
2 þ

2
tc Dc

23ud
3;2; ð20gÞ

Mc
23 ¼

8

ðtcÞ2
Dc

23U
c
2 þ

2
tc Dc

23ud
3;2; ð20hÞ

Lc
23 ¼

2
tc Dc

23ud
2 þ 1þ tf

tc

� �
Dc

23ua
3;2 þ

Fc
23

ðtcÞ2
� 2Dc

23

" #
Xc

2 þ
4Fc

23

ðtcÞ2
� Dc

23

" #
Uc

3;2: ð20iÞ
Here Af
22, Df

22, etc. are stiffnesses that equal integrals over the thickness of moments of different orders with respect to
the x2-axis of material elasticities; their expressions are given in Eqs. (B.6a-g).It is noted that in Eqs. (19a)–(19e), there is
no boundary condition for Uc

2 and Xc
2 since we have neglected in Eq. (14) the strain energy due to axial deformations of

the core. Furthermore, because the kinetic energy due to axial displacements of the core particles has been neglected, no
time derivatives of Uc

2 and Xc
2 appear in Eqs. (17c) and (17d).

Based on Eqs. (17c) and (17d), and 20g, 20h and 20i, the following kinematic relations are obtained:
Uc
2 ¼ �

tc

4
ud

3;2; Xc
2 ¼ R1ud

2 þR2ua
3;2 þR3U

c
3;2; ð21a;bÞ
where
R1 �
1
Rd

2
tc Ac

23 �
24

ðtcÞ3
Dc

23

" #
; R2 �

1
Rd

1þ tf

tc

� �
Ac

23 �
12

ðtcÞ2
Dc

23

" #
; ð22a;bÞ

R3 �
1
Rd

16Dc
23

ðtcÞ2
� Ac

23 �
48Fc

23

ðtcÞ4

" #
; Rd �

12Fc
23

ðtcÞ4
� 48Dc

23

ðtcÞ2
þ 2Ac

23; ð22c;dÞ
with Rd being assumed to be different from zero.
Eqs. (21a,b) reduce the number of unknowns in Eqs. (17a)–(17g) from 7 to 5 (i.e., ua

2, ud
2, ua

3, ud
3, Uc

3). We note that Eqs. (17a),
(19a) and (20a) involve only ua

2. Hence, they can be solved for ua
2 without considering the remaining governing equations. For

the case when the wedge’s initial conditions are ua
2ðx2; t ¼ 0Þ ¼ 0 and _ua

2ðx2; t ¼ 0Þ ¼ 0, then ua
2ðx2; tÞ � 0 during the entire
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slamming impact. In the sequel, we adopt these initial conditions for ua
2. Thus, the basic unknowns reduce to four, i.e., ud

2, ua
3,

ud
3 and Uc

3, which are to be determined by simultaneously solving Eqs. (17b) and 17e, 17f, 17g under appropriate initial and
boundary conditions.

Substitution from Eqs. (21a,b) into Eqs. (17e)–(17g) gives the following governing equations for ud
2, ua

3, ud
3 and Uc

3.
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Eqs. (23a)–(23d) are to be supplemented with values of functions ud
2ðx2;0Þ, _ud

2ðx2;0Þ, ua
3ðx2;0Þ, _ua

3ðx2;0Þ, Uc
3ðx2;0Þ, _Uc

3ðx2;0Þ,
ud

3ðx2;0Þ, and _ud
3ðx2;0Þ, which form initial conditions for the problem.

3. Solution

3.1. State-space formulation of the problem

An interesting feature of the above formulated problem is that even though the structural and the hydrodynamic prob-
lems by themselves are linear, the coupled one is nonlinear because the unknown contact point aðtÞ is a nonlinear function of
deformations ua

3 and ud
3, and deformations ua

3, ud
3 and Uc

3 depend on aðtÞ. We solve the nonlinear problem numerically by the
Extended Galerkin’s method (EGM) (see e.g., Librescu et al., 1997; Palazotto and Linnemann, 1991) for the structural part,
and the fourth-order Runge–Kutta method for the hydrodynamic part.

We spatially semi-discretize the structural part of the governing Eqs. (23a)–(23c), rewrite the Wagner condition (8) in a
differential form (Korobkin, 1995), cast these differential equations in the state-space form, and assume the following essen-
tial boundary and initial conditions:
ua
3ð0; tÞ ¼ ud

3ð0; tÞ ¼ ua
3;2ð0; tÞ ¼ ud

3;2ð0; tÞ ¼ ud
2ð0; tÞ ¼ Uc

3ð0; tÞ ¼ 0; ð24aÞ
ua

3ðL; tÞ ¼ ud
3ðL; tÞ ¼ ua

3;2ðL; tÞ ¼ ud
3;2ðL; tÞ ¼ ud

2ðL; tÞ ¼ Uc
3ðL; tÞ ¼ 0; ð24bÞ

ua
3ðx2;0Þ ¼ ud

3ðx2; 0Þ ¼ ud
2ðx2;0Þ ¼ Uc

3ðx2;0Þ ¼ 0: ð24cÞ
We approximate the four unknown functions as follows:
ud
2ðy; tÞ � WT

2ðyÞx2ðtÞ; ua
3ðy; tÞ � WT

aðyÞxaðtÞ; ð25a;bÞ

ud
3ðy; tÞ � WT

dðyÞxdðtÞ; Uc
3ðy; tÞ � WT

wðyÞxwðtÞ; ð25c;dÞ
in which W2, Wa, Wd and Ww are vectors of basis functions, while x2, xa, xd and xw are vectors of generalized coordinates. In
order to identically satisfy boundary conditions (24a) and (24b), the following basis functions are used.



2018 Z. Qin, R.C. Batra / International Journal of Solids and Structures 46 (2009) 2011–2035
WaðyÞ ¼ WdðyÞ ¼ W1ðyÞ;W2ðyÞ; � � � ;WNs ðyÞf gT
; ð26aÞ

W2ðyÞ ¼ WwðyÞ ¼ sin
py
L
; sin

2py
L
; � � � ; sin

Nspy
L

� 	T

: ð26bÞ
Here Ns denotes the number of basis functions, and Wi is the normalized ith eigenmode (i ¼ 1;Ns) of a clamped–clamped
Euler–Bernoulli beam defined as
WiðyÞ ¼
W0

i ðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR L
0 W0

i ðyÞ
h i2

dy

r ð27Þ
with
W0
i ðyÞ ¼ sin b̂i

y
L


 �
� sinh b̂i

y
L


 �h i
� sin b̂i � sinh b̂i

cos b̂i � cosh b̂i

cos b̂i
y
L


 �
� cosh b̂i

y
L


 �h i
; ð28Þ
and b̂i is the positive ith root of the equation cos b̂ cosh b̂� 1 ¼ 0.
In terms of the representation (25b,c) of ua

3 and ud
3, the displacement ub

3 of the bottom face sheet can be written as
ub
3ðy; tÞ ¼ ua

3ðy; tÞ � ud
3ðy; tÞ ¼ WT

aðyÞxaðtÞ �WT
dðyÞxdðtÞ: ð29Þ
In order to evaluate the singular integral in Eq. (9) which involves ub
3 (cf. Eq. (7)) and hence basis functions WaðyÞ and WdðyÞ,

we approximate these basis functions by polynomials. This is accomplished via the curve-fitting utility in Mathematica 6
(Wolfram Research, Inc, 2007), and the polynomials are listed in Eqs. (B.7a,b). The key step in evaluating the singular integral
in Eq. (9) is the evaluation of the following two integrals:
I
4

kð~yÞ �
Z 1

0

~yk
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~y2
0

q
ð~y0 � ~yÞ

d~y0; ð30aÞ

Ikð~yÞ �
Z 1

�1

j~y0jkffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~y2

0

q
ð~y0 � ~yÞ

d~y0 ¼ I
4

kð~yÞ � I
4

kð�~yÞ; ð30bÞ
where k is a nonnegative integer.
By using the Hilbert transform (Erdélyi et al., 1954) and the following recurrence relation
I
4

kþ1ð~yÞ ¼ ~y I
4

kð~yÞ þ
Z 1

0

~yk
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~y2
0

q d~y0; ð31Þ
integrals in Eqs. (30a) and (30b) can be evaluated for all desired values of k; values of I0; I1; . . . ; I16 are listed in Appendix A.
Omitting details of deriving the Galerkin approximation of a set of partial differential equations, we write governing Eqs.

(23a)–(23d) in the following form:
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where superscripts h and s denote, respectively, quantities associated with the hydrodynamic and the structural parts. Matri-
ces Mh

aa, Mh
ad, Mh

da and Mh
dd are referred to as added-mass matrices, and they depend upon aðtÞ; Ch

aa, Ch
ad, Ch

da and Ch
dd are referred

to as added-damping matrices, and they depend upon both aðtÞ and _aðtÞ; while Kh
aa, Kh

ad, Kh
da and Kh

dd are referred to as added-
stiffness matrices, and they depend upon aðtÞ, _aðtÞ and €aðtÞ. Matrices Eh

aa and Eh
dd on the right hand side of Eq. (32) also depend

on aðtÞ, _aðtÞ and €aðtÞ, and cb is a constant vector that defines the hull profile. Expressions for matrices with superscripts s, h
and the vector cb are given, respectively, by Eqs. (B.1a-g), (B.3a-j) and (B.10a-o). Recall that aðtÞ equals the wetted length and
is to be determined as a part of the solution of the problem.

The state-space representation of Eq. (32) is
_xðtÞ ¼AðtÞxðtÞ þ Q ðtÞ ð33Þ
with x ¼ fx2;xa;xd;xw; _x2; _xa; _xd; _xwgT.
From Eq. (8), and following the approach of Korobkin (1995), the differential equation which governs the wetted length

aðtÞ is obtained as
_aðtÞ ¼ CnðtÞ
CdðtÞ

; ð34Þ
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in which
CnðtÞ �
p
2

_hðtÞ � 1
2

Cn1½aðtÞ� _xaðtÞ þ Cn2½aðtÞ� _xdðtÞf g; ð35aÞ

CdðtÞ � Cd0½aðtÞ� þ
1
2

Cd1½aðtÞ�xaðtÞ þ Cd2½aðtÞ�xdðtÞf g; ð35bÞ

Cn1½aðtÞ�;Cn2½aðtÞ�f g �
Z p=2

0
WT

aðaðtÞ sin hÞ;WT
dðaðtÞ sin hÞ

� �
dh; ð36Þ
and
Cd0½aðtÞ�;Cd1½aðtÞ�;Cd2½aðtÞ�f g �
Z p=2

0

df ðcÞ
dc

;
dWT

aðcÞ
dc

;
dWT

dðcÞ
dc

� 	����
c¼aðtÞ sin h

dh: ð37Þ
When the right hand side of Eq. (34) goes to infinity, bow flare-type slamming occurs (Korobkin, 1995).
In terms of solutions of Eqs. (33) and (34), the hydrodynamic pressure distribution on the wetted hull’s surface can be

represented as
;

ð38Þ
in which a superimposed dot indicates partial differentiation with respect to time, and vectors fIIg, fIIIag, fIIIdg are defined in
Eqs. (B.9a-c). Term underlined by the single solid line on the right hand side of Eq. (38) denotes contribution from the un-de-
formed hull, while terms underlined by the wavy lines represent contributions from the hull’s deformations.

During slamming impact, the total hydrodynamic load P0ðtÞ at time t, per unit length (in the x or x1-direction) of the hull,
is given by
P0ðtÞ �
Z aðtÞ

0
psðy; tÞdy: ð39Þ
Similar to the stress intensity factor at a crack tip, we define the following slamming pressure intensity factor
PIFðtÞ ¼ lim
y!a�ðtÞ

psðy; tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðtÞ � y2

q
; ð40Þ
which is a measure of the peak pressure at the extremity of the wetted length.

3.2. Solution procedure and associated numerical issues

The solution can not be simply obtained by combining Eqs. (32) or (33) and (34) because the added-stiffness matrices Kh
aa,

Kh
ad and Kh

dd, and matrices Eh
aa and Eh

dd in Eq. (32) depend on €aðtÞ, which in turn depends on €xa and €xd (see Eq. (34)). We use the
central-difference method to estimate €aðtÞ. That is,
€a½tk� ¼
a½tk�1� � 2a½tk� þ a½tkþ1�

Dt2 ; k P 1; ð41Þ
where Dt is the time step size, and tk ¼ kDt. We take Dt to be a constant.
Differentiation with respect to time t of both sides of Eq. (34) gives
€aðtÞ ¼
_CnðtÞ
CdðtÞ

�
_CdðtÞ
CdðtÞ

_aðtÞ; ð42Þ
where based on Eqs. (35a) and (35b), _CnðtÞ and _CdðtÞ are given by
_CnðtÞ ¼
p
2

€hðtÞ �
Z p=2
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dWT
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When t ¼ t0 ¼ 0, i.e., when the wedge begins to dip into the water, the wetted length aðt0Þ ¼ 0. Physically, there is no hydro-
dynamic load acting on the wedge at this moment. Consequently, €xa and €xd can be obtained from Eq. (33) by disregarding the
hydrodynamic loads. Then €aðt0Þ is obtained from Eq. (42).

The numerical procedure is summarized as follows.

Step 1: Given initial conditions a½t0�, x½t0�, find _a½t0� and €a½t0� from Eqs. (34) and (42), respectively;
Step 2: for k ¼ 0, calculate sequentially a½t1�, x½t1� and _a½t1�;
Step 3: for k ¼ 1, calculate sequentially a½t2�, €a½t1�, x½t2�, and _a½t2�;
Step 4: for k P 2, calculate sequentially a½tkþ1�, €a½tk�, x½tkþ1�, and _a½tkþ1�;
Step 5: k( kþ 1, repeat step (4) until the slamming process ends or aðtÞP amax.

It is noted that a½tkþ1� is obtained by applying the fourth-order Runge–Kutta method to Eq. (34), €a½tk� is obtained from Eq.
(41), x½tkþ1� is derived from Eq. (C.2) given in Appendix C, and _a½tkþ1� is obtained from Eq. (34). The truncation error for the
fourth-order Runge–Kutta method is OðDt5Þ, and it is OðDt2Þ for the central-difference method. For the recurrence relation
(C.2), Dt is restricted by the numerical stability requirement and a prescribed truncation error es [see e.g., Meirovitch
(1997), pp. 212–213]
Dt
ng

� �nt

	 ½@ðA½tk�Þ�nt

nt
<

es

ng
; with es 
 1: ð44Þ
Here, @ðA½tk�Þ denotes the largest modulus of eigenvalues of matrix A½tk�, ðnt þ 1Þ is the number of terms used in the eval-
uation of the transition matrix expðA½tk�Dt=ngÞ in Eq. (C.2), and ng is the number of subdivisions of Dt. Numerical calculations
have shown that the hydroelastic effect has negligible influence on @ðA½tk�Þ and it remains unchanged during the entire
slamming process.

Due to the high stiffness to weight ratio of a typical sandwich panel, its natural frequencies are very high. This can cause
ill conditioning of the system matrix A in Eq. (33). This is overcome by using the dimensionless time variable x1t, with x1

being the fundamental frequency of the dry panel.

4. Verification of the algorithm

In order to verify the preceding numerical procedure, we simplify Eqs. (32) and (34) of the hydroelastic system in such a
way that the added-mass, -damping and -stiffness terms in Eq. (32) and the structural deformation terms in Eq. (34) drop
out. We further assume that the panel is a uniform straight single layer. Due to the availability of the analytical solution,
we assume the beam to be simply supported at both ends. The small deadrise angle is denoted by b, and as a result,
z ¼ f ðyÞ ¼ y tan b describes the initial profile of the panel. In this case, governing Eqs. (23a)–(23d) and (18) reduce to
Df
22

o4w
oy4 þmf

0
o2w
ot2 ¼

1
2

psðy; tÞ; 0 < y < L; ð45Þ
where w denotes the deflection of the beam and ps is the hydrodynamic pressure acting on the beam without considering its
deformations. The initial conditions associated with Eq. (45) are taken as wðy; 0Þ ¼ _wðy;0Þ ¼ 0, while the pertinent boundary
conditions are wð0Þ ¼ wðLÞ ¼ w00ð0Þ ¼ w00ðLÞ ¼ 0 where w0 ¼ ow=oy.

We now find an expression for ps. The Wagner condition (8) can be written as
aðtÞ ¼ p
2 tan b

hðtÞ; ð46Þ
and the distributed vortex intensity cb as
cbð~y; tÞ ¼ �
4a2ðtÞ tan b

p
~y ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~y2

p
~y

�����
�����: ð47Þ
In dimensional (i.e., physical) variables, the displacement and the velocity potentials are given by
Uhðy;0�; tÞ ¼
1
2

hðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðtÞ � y2

q
� tan b

p
y2 ln

aðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðtÞ � y2

p
y

�����
�����; ð48aÞ

oUhðy;0�; tÞ
ot

¼ _hðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðtÞ � y2

q
: ð48bÞ
Eq. (46) is exactly the same as Eq. (9.17) in Faltinsen (1990) while Eq. (48b) is exactly the same as Eq. (2) in Mizoguchi and
Tanizawa (1996). Substitution from Eq. (48a) into Eq. (11) gives the hydrodynamic pressure acting on beam’s wetted surface
(i.e., 0 < y < aðtÞ 6 L) as
psðy; tÞ ¼ qh
€hðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðtÞ � y2

q
þ p _h2ðtÞ

2 tan b
aðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2ðtÞ � y2
p" #

; ð49Þ
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and the corresponding total hydrodynamic load by
Fig. 3.
V = 10 m
P0ðtÞ ¼ qh
p
4

a2ðtÞ€hðtÞ þ p2aðtÞ _h2ðtÞ
4 tan b

" #
: ð50Þ
For constant speed of penetration V , we have hðtÞ ¼ Vt. Then, the solution of Eq. (45) can be represented as [see e.g., Mei-
rovitch (1997), p. 387]:
wðy; tÞ ¼
X1
k¼1

WkðyÞckðtÞ; ð51Þ
in which the generalized coordinate ckðtÞ is given by
ckðtÞ ¼
qhp

3V3

16ðtan2 bÞxskMkk

Z t

0
sin½xskðt � sÞ�sH0½

kp
L

aðsÞ�ds: ð52Þ
Here, H0½�� denotes the Struve function of order 0, while xsk and Mkk are defined as
xsk ¼
k2p2

L2

ffiffiffiffiffiffiffiffi
Df

22

mf
0

vuut ; Mkk ¼
L
2

mf
0; k ¼ 1;2; � � � : ð53Þ
For values of various variables listed in the figure caption, Fig. 3 shows time histories of evolution of c1, c2 and c3. It is clear
that for t P 4 ms, jc2j and jc3j are considerably smaller than jc1j. In fact, jc2j and jc3j are essentially zero. Thus even one mode
in Eq. (51) gives a fairly accurate solution. Similar results on including a small number of terms in Eq. (51) have been re-
ported in the literature (see e.g., Faltinsen, 1999).

For values of different parameters listed in the caption of Fig. 4, we compare the analytical solution of the problem with
its numerical solutions computed by taking Dt ¼ 1=ð5x0Þ and Dt ¼ 1=ð20x0Þ where x0 is the fundamental natural frequency
of the simply supported beam. It is evident that the two time steps give very close results, and the numerical solution agrees
well with the analytical solution of the problem.

5. Results and discussion

The {3,2}-order sandwich panel theory used here is based on a general 3D curved sandwich shell theory proposed by
Hohe and Librescu (2003). For validating the structural model developed in the present paper and the numerical ap-
proach based on EGM, we calculate natural frequencies of a dry sandwich panel and compare them in Table 1 with
those obtained by using the commercial code ABAQUS�. Both the top and the bottom face sheets are made of an ortho-
tropic material, while the core is made of an isotropic material. Values of material and geometric parameters of the pa-
nel are: Ef

22 ¼ 138 GPa, Ef
33 ¼ 8:96GPa, mf

23 ¼ 0:3, Gf
23 ¼ 7:1 GPa, Ec ¼ 2:8 GPa, mc ¼ 0:3, qf ¼ 31;400 Kg=m3, qc ¼ 150 Kg/m3,
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Fig. 4. Comparison of the analytical solution with the numerically computed time histories of the mid-span deflection with two different values of the time
step. The associated parameters are: Df

22 ¼ 7:29	 105 Nm, mf
0 ¼ 135 Kg/m2, V = 10 m/s, b ¼ 10� , L = 1.0 m, x0 ¼ 725:4 rad/s.

Table 1
Convergence of the first four frequencies with increase in the number of basis functions

Ns kth natural frequency (rad/s)

k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4

2 738.0(5.0%a) 1922.2(25.3%) – –
3 731.2(4.0%) 1631.5(6.38%) 2921.4(16.3%) –
4 725.7(3.2%) 1614.4(5.2%) 2670.1(6.3%) 3991.8(12.4%)
5 721.9(2.7%) 1604.9(4.6%) 2649.2(5.4%) 3779.9(6.4%)
6 721.1(2.6%) 1595.4(4.0%) 2639.4(5.1%) 3759.0(5.8%)
7 719.2(2.3%) 1593.6(3.9%) 2627.7(4.6%) 3750.2(5.6%)
8 719.0(2.3%) 1588.8(3.5%) 2625.7(4.5%) 3738.5(5.2%)

By ABAQUS� 703.1 1534.4 2512.3 3552.3

a Relative error, ([prediction by the present model] � [result by ABAQUS�])/[result by ABAQUS�] 	 100%.
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tf ¼ 12 mm, tc ¼ 30 mm, L ¼ 1:0 m. In using ABAQUS�, the quadratic plane-strain element CPE8R is used for both the
core and the face sheets. Ends of the face sheets are taken to be clamped, whereas those of the core are taken as hinged.
The discretization of the panel into finite elements is shown in Fig. 5. Nodes of the core and the face sheets at their
common interfaces are tied to ensure continuity of displacements.

It is seen from Table 1 that natural frequencies predicted by the present {3,2}-order theory are close to those computed
with ABAQUS�, and the convergence is fast. Table 2 lists the corresponding prediction of the mode shapes. Recalling that
even one term in Eq. (51) gives an accurate solution for transient deformations of the simply supported beam, we henceforth
take Ns ¼ 3 in Eqs. (26a) and (26b). Besides aðtÞ, the number of unknowns in Eqs. (32) and (33) are 12 and 24, respectively.
Polynomials of degree 16 in y approximate the first three shape functions in Eq. (27) with the variance less than 3	 10�20,
and expressions of these polynomials are given in Eqs. (B.7,8).

For results given in Figs. 6–14, the material properties of the face sheets and the core are the same as those used
above to compute frequencies. In order to consider the nonstructural mass associated with the hull and to avoid bow
flare slamming, the mass density of the material of the face sheets is taken as qf ¼ 31;400 Kg/m3. Unless otherwise sta-
ted, the deadrise angle b is taken as 5�. Other parameters used in calculations are: x1 ¼ 731:2 rad/s, Dtx1 ¼ 0:1, ng ¼ 10,
nt ¼ 30, es 6 10�6.

In the present problem, the hydroelastic effect manifests itself in two places: (1) the added-mass, -damping and -stiffness
in Eq. (32); (2) the contact point aðtÞ whose position is influenced by structural deformations, as shown by Eqs. (34) and
Fig. 5. Finite element mesh used for the analysis with ABAQUS/Standard.



Table 2
Comparison of the first four modes shapes computed with the present {3,2}-order sandwich theory and with the commercial code ABAQUS�

Mode Shape # Mode shape predicted by the present model (Ns ¼ 8). By ABAQUS

1

2

3

4

These four modes correspond to flexural deformations in which the averaged deflection ua
3 is dominant, and the other three displacement components have

negligible values as compared to that of ua
3 and are omitted from mode shapes depicted in the second column.
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(35a), (35b). The evaluation of the added-mass, -damping and -stiffness takes more CPU time than that for evaluating aðtÞ. To
facilitate efficient evaluation of the hydroelastic effect on the slamming response, we consider individual contributions from
each of these two manifestations. The model which accounts for both effects is termed below as Model I, while the one
accounting for only the second part is called Model II. When neither effect is incorporated, the model is referred to as Model
III. We note that in model III, the pressure distribution on the deformable wedge equals that on the rigid wedge. Fig. 6 shows
time histories of the mid-span deflection computed with the three models. It is clear that the hydroelastic effect noticeably
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Fig. 6. Time history of the mid-span deflection during the slamming impact (V = 10 m/s).
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decreases the deflection of the slammed wedge, and as the slamming impact progresses, this decrease becomes more signif-
icant. Furthermore, as far as the deflection response is concerned, Model II captures nearly all of the hydroelastic effect.

Fig. 7 depicts the time history of length aðtÞ of the wetted surface computed with the three models. It is seen that neglect-
ing of the hydroelastic effect results in earlier wetting of the entire length of the wedge. Once again, results computed with
Model II agree very well with those obtained from Model I. Henceforth, we use Model II to compute results.

Fig. 8 displays, for different wetted lengths, the hydrodynamic pressure distributed along the wetted part of the wedge.
Each curve corresponds to a different stage of the slamming process, as marked by the values of aðtÞ and the corresponding
times. According to the Wagner theory of water impact developed in Section 3, there is a reciprocal square root singularity at
the end of the wetted wedge, see e.g., Eq. (49) for a rigid straight wedge. The order of singularity remains the same for a
deformable wedge. For results presented in Fig. 8, the numerical evaluation of the pressure was terminated at
y ¼ 0:9875aðtÞ. Note that the pressure at a point within the wetted wedge varies with time t during slamming.
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At three locations of the wedge during the slamming process, Fig. 9 shows the hydrodynamic pressure versus time. For
comparison, results for a rigid wedge computed from Eq. (49) are also included. Notice the merge of the three pressures for
the deformable wedge at the terminal stage of the slamming process. This agrees with the results plotted in Fig. 8 where the
hydrodynamic pressure along most of the wedge length is uniform at the terminal stage of the slamming.

For a rigid wedge, from Eqs. (46) and (49), we get
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PIFrgðtÞ ¼
p

2 tan b

� �2

qhV3t; ð54Þ
Fig. 10 shows the ratio of the pressure intensity factor of the (deformable) wedge, PIFdf ðtÞ, over PIFrgðtÞ. We see that defor-
mations of the wedge significantly reduce the peak pressure intensity over the entire slamming process, and the maximum
reduction of 44% occurs when the wetted length aðtÞ ¼ 0:73 m.

Fig. 11 depicts the lengthwise distribution of the average displacement ua
3ðx2; tÞ of the two face sheets’ mid-surfaces at five

selected impact stages corresponding to t = 2.735, 3.247, 4.026, 5.471 and 6.018 ms. It is interesting to notice that the loca-
tion of the peak value of ua

3ðx2; tÞ shifts with time t, but not monotonically to one direction. In Fig. 12, the deformed shapes of
the entire panel at t ¼ 2:735 and 6.018 ms are displayed. We note that the peak deflection at the terminal stage of the slam-
ming occurs at x2 � 0:57 m.

Fig. 13a and b exhibit distributions of the strain energy density stored in the two face sheets and the core at an early
and at a terminal stage of the slamming impact, respectively. The strain energy density at a point in the panel can be
represented as
. Deformed shapes of the panel at (a) an early stage of slamming t = 2.735 ms, and (b) an ending stage t = 6.018 ms. (V = 10 m/s). Results are
ed with Model II.
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: ð55Þ
Here, terms underlined by the single solid straight line denote the strain energy density at a point of the face sheets,
terms underscored by the double solid line equal the strain energy density at a point in the core associated with the
transverse normal strain, and terms underscored by the wavy line denote the strain energy density at a point in the core
associated with the transverse shear strain. From results shown in Fig. 13a and b, it is readily seen that (1) the core
absorbs considerable portion of the energy of deformation; (2) the strain energy in the core is dominantly contributed
by the transverse shear strain; (3) the portion of the strain energy due to the transverse normal strain in the core is
negligibly small; (4) locations of the wedge where the strain energy density in the core is large have small values of
the strain energy density in the core, and vice versa. This implies that the core can be effectively used to absorb a major
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part of the slamming impact energy. As should be evident from the scales on the vertical axes in Fig. 13a and b, the
strain energy density at the terminal stage t ¼ 6:018 ms of the slamming is nearly 15 times that at t ¼ 2:735 ms. Of
course, deformations of the sandwich structure depend upon boundary conditions, and results presented herein are
applicable only when the two edge surfaces are clamped.

For penetration speeds of 5, 7 and 10 m/s, Fig. 14 shows the total slamming load P0ðtÞversus the wetted length aðtÞ. Recalling
that P0ðtÞ is defined by Eq. (39), the total slamming load for a given value of aðtÞequals area under the curve of Fig. 8. We note that
(1) during most of the slamming process, the total slamming load on the deformable wedge is considerably smaller than that on
the rigid wedge, and with the increase of the penetration speed, the difference between the two loads increases; (2) in the sec-
ond half stage of the slamming process, the hydroelastic effect induces a more rapid increase of the slamming load on the
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deformable wedge than the increase observed on the rigid wedge. As evidenced by the slope of the curves, the rate of increase of
the total slamming load with respect to the wetted length during the second half of the impact process is intensified with an
increase in the penetration speed. Results plotted in Fig. 14 suggest that the consideration of loads acting on a rigid wedge will
give a conservative design of the wedge unless deformations also depend upon the loading rate.

For V ¼ 10 m/s, the total slamming load decreases from aðtÞ ¼ 0:57 to aðtÞ ¼ 0:67 m, and subsequently increases
monotonically. For V ¼ 5 and 7 m/s, the total slamming load increases monotonically during the entire slamming
process.
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Fig. 15 delineates the influence of the penetration speed on _aðtÞ and €aðtÞ. The decrease of _aðtÞ at the beginning of the
slamming process and the oscillations in €aðtÞ are due to the hydroelastic effect. We observe that with the increase of V
from 5 to 10 m/s, the location where _aðtÞ reaches minimum shifts to the right end of the wedge in Fig. 15a while €aðtÞ
plotted in Fig. 15b becomes more oscillatory and its peak amplitude increases dramatically.

Fig. 16 shows the time histories of the mid-span deflection of the wedge for three deadrise angles b ¼ 5�;10� and 14�.
We note that as b increases from 5� to 10� (14�), the time taken to wet the entire wedge increases by 90% (170%), while
the mid-span deflection at the end of the slamming process decreases by 45% (58%).

Figs. 17 and 18 show, respectively, time histories of the deflection at the mid-span y ¼ L=2 and the variation with the wet-
ted length of the total slamming load on the panel when either the elastic modulus Ef

22 of the face sheets or Ec of the core is
reduced by a factor of two. Other parameters are: ng ¼ 10, nt ¼ 30. For ðEf

22; E
cÞ¼ ð138;1:4Þ GPa, x1 ¼ 599:9 rad/s,

Dtx1 ¼ 0:02; and for ðEf
22; E

cÞ = (69,2.8) GPa, x1 ¼ 598:0 rad/s, Dtx1 ¼ 0:1. It is clearly observed from the results depicted
in Figs. 17 and 18 that the weakening of the core noticeably intensifies the rate of increase of the slamming load with respect
to the wetted length during the second half of the impact process, while decreasing the axial modulus Ef

22 of the face sheets
has a marginal influence on the slamming load. It is also seen from Fig. 18 that the largest dip in the slamming load occurs for
ðEf

22; E
cÞ = (138,1.4) GPa.

Fig. 19 displays the time history of the wetted length aðtÞ and of _aðtÞ during the entire slamming process of the
weakened wedge with ðEf

22; E
cÞ ¼ ð69;2:8ÞGPa. It is clear that during most of the slamming process, deformations of

the wedge decrease _aðtÞ.
6. Conclusions

A comprehensive model to study the fluid–structure interaction during hull’s slamming entry into calm water
has been developed. It predicts the slamming load and the response of the sandwich composite hull. The
slammed area of the hull is idealized as a deformable sandwich wedge. The structural part of the model incor-
porates core’s transverse flexibility and has been validated by comparing natural frequencies of a dry sandwich
panel with those computed by using the commercial finite element code ABAQUS�. Wagner’s water impact theory
is extended to account for deformations of the structure. The governing equations are nonlinear because the a
priori unknown wetted area depends upon deformations of the structure which themselves are to be found. A
numerical solution procedure has been developed to solve the coupled nonlinear governing equations. The numer-
ical algorithm has been verified by comparing results for a simple problem with those from its analytical solution.
Major conclusions are:

� the hydroelastic effect has a noticeable influence on the deflection response, and it significantly changes the hydrody-
namic load,

� the core absorbs a considerable part of the strain energy due to its transverse shear deformations, which implies that the
core can be effectively used for slamming impact alleviation,

� major influence of the hydroelastic effect can be effectively captured by Model II, which disregards the time-consuming
evaluation of added-mass, -damping and -stiffness matrices and only considers the influence of structural deformations
on the wetted length aðtÞ, and the hydrodynamic pressure.

Acknowledgments

The financial support of the Office of Naval Research, Solid Mechanics Program, Grants N00014-06-1-0913 and
N00014-06-1-0567 to Virginia Polytechnic Institute and State University, and the interest and encouragement of the Pro-
gram Manager, Dr. Y.D.S. Rajapakse, are gratefully acknowledged. The authors are indebted to Dr. Davresh Hasanyan for
bringing to their attention the use of Hilbert transforms to analytically evaluate some singular integrals, and to Engineer-
ing Mechanics doctoral students S.S. Gupta and G. Gopinath for their help in using the commercial code ABAQUS�. Views
expressed in this paper are those of the authors, and neither of the Program Manager nor other persons acknowledged
herein, nor of the funding agency nor of their institutions.
Appendix A. Expressions for Ik (k ¼ 0;16)
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We note that I2nð~yÞ is a polynomial of degree ~y2n�1, and I2nþ1ð~yÞ has a term involving ln jð1þ
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Appendix B. Expressions for submatrices in Eq. (32)
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Ks
22 ¼ ðtcAf

22Þ
Z L

0
W02ðyÞW

0T
2 ðyÞdyþ a11

Z L

0
W2ðyÞWT

2ðyÞdy;

Ks
2a ¼ a12

Z L

0
W2ðyÞW0Ta ðyÞdy; Ks

2w ¼ a14

Z L

0
W2ðyÞW0TwðyÞdy;

Ks
a2 ¼ a21

Z L

0
WaðyÞW0T2 ðyÞdy; Ks

aw ¼ �a24

Z L

0
W0aðyÞW

0T
wðyÞdy;

Ks
aa ¼ 2Df

22

Z L

0
W00aðyÞW

00T
a ðyÞdyþ a22

Z L

0
WaðyÞW00Ta ðyÞdy;

Ks
dd ¼ 2Df

22

Z L

0
W00dðyÞW

00T
d ðyÞdyþ 4

ðtcÞ2
Ac

33

Z L

0
WdðyÞWT

dðyÞdy;

Ks
w2 ¼ a41

Z L

0
WwðyÞW0T2 ðyÞdy; Ks

wa ¼ a42

Z L

0
WwðyÞW00Ta ðyÞdy;

Ks
ww ¼

64Dc
33

ðtcÞ4
Z L

0
WwðyÞWT

wðyÞdy� a44

Z L

0
W0wðyÞW

0T
wðyÞdy:

ðB:3a-jÞ
The coefficients aij in expressions of Ks
2a, Ks

2w, etc. are defined as follows.
a11 ¼
2
tc Ac

23 þ
24Dc

23

ðtcÞ2
� 2Ac

23

 !
R1;

a12 ¼ 1þ tf

tc

� �
Ac

23 þ
24Dc

23

ðtcÞ2
� 2Ac

23

 !
R2;

a14 ¼
24Dc

23

ðtcÞ2
� 2Ac

23

" #
R3 þ

4Dc
23

ðtcÞ2
� Ac

23

" #
;

a21 ¼ � 1þ tf

tc

� �
a11; a22 ¼ � 1þ tf

tc

� �
a12;

a24 ¼ � 1þ tf

tc

� �
a14; a41 ¼

2
3

a11; a42 ¼
2
3

a12; a44 ¼
2
3

a14:
where R1, R2 and R3 are given in Eqs. (22a)-(22d).
The stiffness quantities are defined as
Ac
23 �

Z tc=2

�tc=2
Gc

23dx3; Dc
23 �

Z tc=2

�tc=2
Gc

23ðx3Þ2dx3; Ac
33 �

Z tc=2

�tc=2
Qc

33dx3;

Dc
33 �

Z tc=2

�tc=2
Qc

33ðx3Þ2dx3; Df
22 �

Z tc=2þtf

tc=2
Q f

22 x3 �
tc þ tf

2

� �2

dx3;

Fc
23 �

Z tc=2

�tc=2
Gc

23ðx3Þ4dx3; Af
22 �

Z tc=2þtf

tc=2
Qf

22dx3;

ðB:6a-gÞ
where Q f
22 is the reduced elastic constant.

In the approximation of the shape functions Wa and Wd in Eq. (25a,b) by polynomials, we denote transformation matrices
as Ta and Td, i.e.,
WaðyÞ � TaPðyÞ; WdðyÞ � TdPðyÞ; ðB:7a;bÞ
in which PðyÞ ¼ f1; y; y2; � � � ; yNpgT. Results computed in this paper are for Np ¼ 16, and Ta ¼ Td. By using the curve-fitting
function NonlinearRegress in Mathematica� 6, Ta is obtained as:
Ta¼
0:0 0:0 22:373 �34:657 0:0 0:0 31:107 �20:652 0:001763 �0:00583 3:104 �1:333 0:0389 �0:0411 0:0956 �0:0359 0:00449
0:0 0:0 61:673 �161:567 �0:023 0:35 648:886 �716:972 �56:699 161:363 152:084 176:373 �596:009 471:691 �162:855 21:7139 0:0
0:0 0:0 120:901 �443:036 �1:779 23:305 4706:35 �6476:2 �5434:6 17644:3 �28454:4 62773:5 �102332:0 97204:7 �53031:4 15658:0 �1957:25

264
375

ðB:8Þ

We adopt the following three definitions:
IIkðy; tÞ � aðtÞkþ1
Z ~y

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~y2

0

q
Ikð~y0Þd~y0

�����
~y¼y=aðtÞ

; t > 0; ðB:9aÞ

IIIa
kðy; tÞ �

XNpþ1

j¼1

Taðk; jÞIIj�1ðy; tÞ; IIId
kðy; tÞ �

XNpþ1

j¼1

Tdðk; jÞIIj�1ðy; tÞ: ðB:9b; cÞ
Here, the operator Taðk; jÞ denotes the (k; j) element of matrix Ta. Same is for the operator Tdðk; jÞ.
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Submatrices associated with the unsteady hydrodynamic loads in Eq. (32) are defined as follows:
Mh
aa �

qh

p

Z aðtÞ

0
WaðyÞ IIIaðy; tÞ

� �Tdy; Ch
aa �

2qh

p

Z aðtÞ

0
WaðyÞ _IIIaðy; tÞ

n oT
dy;

Kh
aa �

qh

p

Z aðtÞ

0
WaðyÞ €IIIaðy; tÞ

n oT
dy; Mh

ad � �
qh

p

Z aðtÞ

0
WaðyÞ IIIdðy; tÞ

n oT
dy;

Ch
ad � �

2qh

p

Z aðtÞ

0
WaðyÞ _IIIdðy; tÞ

n oT
dy; Kh

ad � �
qh

p

Z aðtÞ

0
WaðyÞ €IIIdðy; tÞ

n oT
dy;

Eh
aa �

qh

p

Z aðtÞ

0
WaðyÞ €IIðy; tÞ

n oT
dy;

ðB:10a-gÞ

Mh
da � �

qh

p

Z aðtÞ

0
WdðyÞ IIIdðy; tÞ

n oT
dy; Ch

da � �
2qh

p

Z aðtÞ

0
WdðyÞ _IIIaðy; tÞ

n oT
dy;

Kh
da � �

qh

p

Z aðtÞ

0
WdðyÞ €IIIaðy; tÞ

n oT
dy; Mh

dd �
qh

p

Z aðtÞ

0
WdðyÞ IIIdðy; tÞ

n oT
dy;

Ch
dd �

2qh

p

Z aðtÞ

0
WdðyÞ _IIIdðy; tÞ

n oT
dy; Kh

dd �
qh

p

Z aðtÞ

0
WdðyÞ €IIIdðy; tÞ

n oT
dy;

Eh
dd � �

qh

p

Z aðtÞ

0
WdðyÞ €IIðy; tÞ

n oT
dy; cb � tan b;0; � � � ;0f gT:

ðB:10h-oÞ
Here, the vector fIIIg � fIII1; III2; � � � ; IIINsg
T, f€IIg � f€II1; €II2; � � � ; €IINpg

T, a superimposed dot denotes differentiation with respect
to time t, and cb is Np 	 1 vector.

Appendix C. Discrete-time representation of Eq. (33)

In the sampling period t 2 ½tk; tkþ1Þ, it is assumed that the system matrix AðtÞ and the generalized hydrodynamic load
vector Q ðtÞ in Eq. (33) remain unchanged; AðtÞ ¼A½tk�, Q ðtÞ ¼ Q ½tk�. Using the forward-difference method, the solution
of Eq. (33) can be written as
xðtÞ ¼ eA½tk �ðt�tkÞx½tk� þ
Z t

tk

eA½tk �ðt�sÞdsQ ½tk�: ðC:1Þ
At time t ¼ tkþ1, Eq. (C.1) becomes
x½tkþ1� ¼ eA½tk �Dtx½tk� þ
Z Dt

0
eA½tk �sdsQ ½tk�: ðC:2Þ
Recurrence relation (C.2) is the desired discrete-time representation of the state-space Eq. (33). The group property (Meirov-
itch, 1997) can be used to efficiently evaluate the transition matrix eA½tk �Dt and the integral in Eq. (C.2) by dividing Dt into
smaller intervals.
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