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Abstract

The generalized plane strain quasi-static thermoelastic deformations of laminated anisotropic thick plates are an-

alyzed by using the Eshelby±Stroh formalism. The laminated plate consists of homogeneous laminae of arbitrary

thicknesses. The three-dimensional equations of linear anisotropic thermoelasticity simpli®ed to the case of generalized

plane strain deformations are exactly satis®ed at every point in the body. The analytical solution is in terms of an

in®nite series; the continuity conditions at the interfaces and boundary conditions at the bounding surfaces are used to

determine the coe�cients. The formulation admits di�erent mechanical and thermal boundary conditions at the edges

of each lamina, and is applicable to thick and thin laminated plates. Results are computed for thick laminated plates

with edges either rigidly clamped, simply supported or traction-free and compared with the predictions of the classical

laminated plate theory and the ®rst-order shear deformation theory. The boundary layer e�ect near clamped and

traction-free edges is investigated. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Advanced composite materials o�er numerous superior properties like high strength-to-weight ratio and
nearly zero coe�cient of thermal expansion in the ®ber direction. Their strength and sti�ness can be tai-
lored to meet stringent design requirements for high-speed aircrafts, spacecrafts and space structures. This
has resulted in their extensive use in structures that are subjected to severe variations in temperature.
Thermal stresses, especially at the interface between two di�erent materials, often represent a signi®cant
factor in the failure of laminated composite structures. Thus, there is a need to accurately predict thermal
stresses in composite structures.

Thermal bending of homogeneous anisotropic thin plates has been investigated by Pell (1946). Subse-
quently, Stavsky (1963) studied the thermal deformation of laminated anisotropic plates. These early

International Journal of Solids and Structures 38 (2001) 1395±1414

www.elsevier.com/locate/ijsolstr

* Corresponding author.

E-mail address: senthil@vt.edu (S.S. Vel).

0020-7683/01/$ - see front matter Ó 2001 Elsevier Science Ltd. All rights reserved.

PII: S00 2 0-7 6 83 (0 0 )0 01 0 8- 6



studies employed the classical laminated plate theory (CLPT) that is based on the Kirchho�±Love hy-
pothesis. Wu and Tauchert (1980a,b) used the CLPT to study the thermal deformation of laminated
rectangular plates. The CLPT neglects transverse shear deformation and can lead to signi®cant errors for
moderately thick plates. Yang et al. (1966) and Whitney and Pagano (1970) developed the ®rst-order shear
deformation theory (FSDT) for laminated elastic plates. It extends the kinematics of the CLPT by in-
corporating transverse shear strains that are constant through the thickness of the laminate. Reddy et al.
(1980) and Reddy and Hsu (1980) extended the FSDT for thermal deformation and stresses. Various
higher-order theories for the thermal analysis of laminated plates have been reported by Cho et al. (1989),
Khdeir and Reddy (1991, 1999) and Murakami (1993). We refer the reader to Tauchert (1991), Noor and
Burton (1992), Jones (1975) and Reddy (1997) for a historical perspective and for a review of various
approximate theories.

The validity of approximate plate theories and ®nite-element solutions can be assessed by comparing
their predictions with the analytical solutions of the three-dimensional equations of anisotropic thermo-
elasticity (Noor et al., 1994; Murakami, 1993; Ali et al., 1999). Srinivas and Rao (1972) obtained a three-
dimensional solution for the ¯exure of laminated, isotropic, simply supported plates. Tauchert (1980) gave
exact thermoelasticity solutions to the plane-strain deformation of orthotropic simply supported laminates
using the method of displacement potentials. Thangjitham and Choi (1991) gave an exact solution for
laminated in®nite plates using the Fourier transform technique and the sti�ness matrix method. Murakami
(1993) generalized the work of Pagano (1970) to the cylindrical bending of simply supported laminates
subjected to thermal loads. Tungikar and Rao (1994), Noor et al. (1994) and Savoia and Reddy (1995,
1997) gave exact three-dimensional solutions for thermal stresses in simply supported anisotropic rectan-
gular laminates. However, simply supported edge conditions are less often realized in practice, and they do
not exhibit a well-known boundary layer/edge e�ects near clamped and traction-free edges. The accuracy of
plate theories near and within the edge layer are yet to be carefully investigated.

The Eshelby±Stroh formalism (Eshelby et al., 1953; Stroh, 1958; Ting, 1996) provides exact solutions to
the governing equations of anisotropic elasticity under generalized plane-strain deformations in terms of
analytic functions. Recently, Vel and Batra (1999, 2000) adopted a series solution for the analytic functions
to study the generalized plane-strain and three-dimensional deformations of laminated elastic plates sub-
jected to arbitrary boundary conditions. Here, the method is extended to thermoelastic problems. The
mechanical equilibrium and steady-state heat conduction equations are exactly satis®ed, and various
constants in the general solution are determined from the boundary conditions at the bounding surfaces
and continuity conditions at the interfaces between adjoining laminae. This results in an in®nite system of
linear equations in in®nitely many unknowns. By retaining a large number of terms in the series, the so-
lution can be computed to any desired degree of accuracy. The formulation admits di�erent mechanical and
thermal boundary conditions at the edges of each lamina and is applicable to thick and thin laminated
plates. The procedure is illustrated by computing results for the cylindrical bending of thick laminated
plates with edges either rigidly clamped, simply supported or traction-free and comparing them with the
predictions of the CLPT and the FSDT.

2. Problem formulation

We use a rectangular Cartesian coordinate system, shown in Fig. 1, to describe the in®nitesimal quasi-
static thermoelastic deformations of an N-layer laminated elastic plate occupying the region �0; L1� �
�ÿ1;1� � �0; L3� in the unstressed reference con®guration. Here, x1 and x2 are the in-plane coordinates
and x3, the thickness coordinate of the plate. Planes x3 � L�1�3 ; L�2�3 ; . . . ; L�n�3 ; . . . ; L�N�1�

3 describe, respectively,
the lower bounding surface, the interface between the bottom-most and the adjoining lamina, the interfaces
between abutting laminae, and the top bounding surface.

1396 S.S. Vel, R.C. Batra / International Journal of Solids and Structures 38 (2001) 1395±1414



The equations of mechanical and thermal equilibrium in the absence of body forces and internal heat
sources are (Carlson, 1972)

rjm;m � 0; qm;m � 0 �j;m � 1±3�; �1a; b�
where rjm are the components of the Cauchy stress tensor and qm, the heat ¯ux. A comma followed by index
m denotes partial di�erentiation with respect to the present position xm of a material particle, and a repeated
index implies summation over the range of the index.

The constitutive equations for a linear anisotropic thermoelastic material are (Carlson, 1972)

rjm � Cjmqreqr ÿ bjmT ; qm � ÿjmrT;r; �2a; b�
where Cjmqr are the components of the elasticity tensor, eqr, the in®nitesimal strain tensor, bjm, the thermal
stress moduli, T, the change in temperature of the material particle from that in the stress-free reference
con®guration and jmr, the thermal conductivity tensor. The in®nitesimal strain tensor is related to the
mechanical displacements uq by

eqr � 1
2
�uq;r � ur;q�:

The mechanical and thermal equations are uncoupled in the sense that the temperature ®eld can ®rst be
determined by solving Eqs. (1b) and (2b), and displacements u can then be found from Eqs. (1a) and (2a).
Material elasticities are assumed to exhibit the symmetries Cjmqr � Cmjqr � Cqrjm. Furthermore, the elasticity
tensor and the thermal conductivity tensor are assumed to be positive de®nite.

The displacement and/or traction components prescribed on the edges x1 � 0 and L1; and bottom and
top surfaces x3 � 0 and L3 are presumed not to depend upon x2; and are speci®ed as follows (Ting, 1996, pp.
497±498):

I�s�u u� I�s�r rs � #�s� on xs � 0;

~I�s�u u� ~I�s�r rs � ~#�s� on xs � Ls �s � 1; 3�; �3�
where �rs�k � rks and I�s�u ; I

�s�
r ;

~I�s�u and ~I�s�r are 3� 3 diagonal matrices, while #�s� and ~#�s� are known vector
functions. For ideal restraints at the edges, these diagonal matrices have entries of either zero or one such
that

Fig. 1. An N-layer laminated thick plate.
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I�s�u � I�s�r � ~I�s�u � ~I�s�r � I �s � 1� �4�
with I being the 3� 3 identity matrix. In other words, we specify on the boundary either a component of the
displacement or traction vector in each coordinate direction. For ideal restraints at the edges, if the surface
x1 � 0 is rigidly clamped (C), then I�1�u � I; I�1�r � 0 and #�1� � 0, i.e. u1 � u2 � u3 � 0: Boundary conditions
for traction-free (F) and simply supported (S) edges may be speci®ed by I�1�u � 0, I�1�r � I;#�1� � 0 and
I�1�u � diag �0; 0; 1�; I�1�r � diag �1; 1; 0�;#�1� � 0; respectively. The speci®cation of the boundary conditions at
a simply supported edge, namely r11 � r12 � 0; u3 � 0, is identical to that used by Pagano (1970). The
method is also applicable when the edges are elastically restrained or when the laminate is on an elastic
foundation in which case the diagonal matrices need not satisfy Eq. (4). The thermal boundary conditions
are speci®ed as

m�s�T � r�s�qs � u�s� on xs � 0;

~m�s�T � ~r�s�qs � ~u�s� on xs � Ls �s � 1; 3�: �5a; b�
By appropriately choosing m�s�; r�s�; ~m�s� and ~r�s� in these equations, various thermal boundary conditions
corresponding to the prescribed temperature, prescribed heat ¯ux and exposure to an ambient temperature
through a boundary conductance can be speci®ed. The interfaces between adjoining laminae are assumed to
be perfectly bonded together and in ideal thermal contact, so that

sut � 0; sr3t � 0; sT t � 0; sq3t � 0 on x3 � L�2�3 ; L�3�3 ; . . . ; L�N�3 : �6a; b; c; d�
Here, sut denotes the jump in the value of u across an interface.

Since the applied loads are independent of x2; the body is of in®nite extent in the x2 direction, and
material properties are uniform, we postulate that the displacement u and temperature T are functions of x1

and x3 only, and thus correspond to generalized plane deformation.

3. Thermoelasticity solution

The Eshelby±Stroh formalism (Eshelby et al., 1953; Stroh, 1958; Ting, 1996) provides a general solution
for the generalized plane-strain deformation of an anisotropic elastic body. It was extended to anisotropic
thermoelasticity by Clements (1973), Wu (1984) and Hwu (1990). The general solution satis®es the gov-
erning Eqs. (1a), (1b), (2a) and (2b) exactly and is in terms of arbitrary analytic functions. We assume an
in®nite series expansion for each analytic function. Boundary conditions (3) and (5), and interface con-
ditions (6) are used to determine the coe�cients in the series expansion. We construct a local coordinate
system x�n�1 ; x�n�2 ; x�n�3 with origin at the point where the global x3 axis intersects the bottom surface of the nth
lamina; the local axes are parallel to the global axes (Fig. 1). The thickness of the nth lamina is denoted by
h�n� � L�n�1�

3 ÿ L�n�3 .

3.1. A general solution

In deriving a general solution of Eqs. (1a), (1b), (2a) and (2b) for the nth lamina, we drop the superscript
n for convenience, it being understood that all material properties and variables belong to this lamina.
Assume that

u � af �z� � cg�zs�; T � g0�zs�; �7�
where

z � x1 � p x3; zs � x1 � sx3;
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f and g are arbitrary analytic functions of their arguments, a, c, p and s are possible complex constants to
be determined, and g0�zs� � dg=dzs. Substitution from Eq. (7) into Eq. (2) and the result into Eq. (1) gives
(Ting, 1996)

D�p�a � 0;

D�s�c � b1 � sb3;

j33s
2 � �j13 � j31�s� j11 � 0;

�8a; b; c�

where

D�p� � Q� p�R� RT� � p2T; Qik � Ci1k1; Rik � Ci1k3;

Tik � Ci3k3; �bk�i � bik �i; k � 1±3�:
The eigenvalue s depends on the components of the heat conduction tensor and satis®es the quadratic
equations (8c). Since jij is positive de®nite, s obtained by solving Eq. (8c) cannot be real (Clements, 1973;
Ting, 1996). We denote the root with positive imaginary part by s and its complex conjugate by �s: The
eigenvalues p and their associated eigenvectors a are obtained by solving the eigenvalue problem (8a). Since
Cjmqr is a positive de®nite tensor, p cannot be real (Eshelby et al., 1953; Ting, 1996). Therefore, there are
three pairs of complex conjugates for p: Let

Im�pa� > 0; pa�3 � �pa; aa�3 � �aa �a � 1±3�: �9a; b; c�
The vector c associated with the thermal eigenvalue s is obtained by solving the system of equations (8b). If
the eigenvalues pa and s are distinct, a general solution of Eqs. (1) and (2) obtained by superposing so-
lutions of the form (7) is

u �
X3

a�1

�aa fa�za� � �aa fa�3��za�� � cg1�zs� � �cg2��zs�;

T � g01�zs� � g02��zs�;
�10�

where fa �a � 1; 2; . . . ; 6�; g1 and g2 are arbitrary analytic functions, and za � x1 � pax3: Substitution of Eq.
(10) into Eq. (2) gives

r1 �
X3

a�1

�ÿpaba f 0a�za� ÿ �pa
�ba f 0a�3��za�� ÿ sdg01�zs� ÿ �s�dg02��zs�;

r3 �
X3

a�1

�ba f 0a�za� � �ba f 0a�3��za�� � dg01�zs� � �dg02��zs�;

q � ÿ�j1 � sj3�g001�zs� ÿ �j1 � �sj3�g002��zs�;

�11�

where

ba � �RT � paT�aa; d � �RT � sT�cÿ b3; �jm�j � jjm:

The general solution (10) and (11) is also applicable when (a) there exist three independent eigenvectors aa

even when the eigenvalues pa �a � 1±3� are not distinct, and (b) either s is not equal to one of the p's or, if
s � p; then Eq. (8b) can be solved for c: Anisotropic materials that do not satisfy these conditions are called
degenerate thermoelastic materials. Isotropic materials are a special group of degenerate materials for which
pa � s � i: Wu (1984) and Yang et al. (1997) have described how the general solution for degenerate
materials can be constructed. Consider a degenerate material for which p1 � p2 6� p3; s 6� pa and there is
only one eigenvector a1 associated with the double root p1. A second independent solution associated with
the eigenvalue p1 is
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u � d

dp1

�a1 f2�z1�� � da1

dp1

f2�z1� � a1

df2�z1�
dp1

: �12�

Here, da1=dp1 is obtained by di�erentiating Eq. (8a):

D
da1

dp1

� dD

dp1

a1 � 0: �13�

Dempsey and Sinclair (1979) have proved the existence of a non-trivial solution for a1 and da1=dp1 of Eqs.
(8a) and (13). Therefore, the general solution is

u �
X3

a�1

�aa fa�za� � �aa fa�3��za�� � a1

df2�z1�
dp1

� �a1

df5��z1�
d�p1

� cg1�zs� � �cg2��zs�;

T � g01�zs� � g02��zs�;
�14�

where a2 � da1=dp1. The corresponding general solution for the stress tensor and the heat ¯ux is obtained
by substituting Eq. (14) into Eq. (2). It is important to note that, irrespective of whether the material is
degenerate or not, there are eight arbitrary analytic functions, namely fa �a � 1; 2; . . . ; 6�; g1 and g2: Our
treatment of the degenerate case di�ers from that of Wu (1984) and Yang et al. (1997) only in one aspect,
namely, we do not require f2�z1� � f1�z1� as they do.

3.2. A series solution

Even though Eq. (10) satis®es Eq. (1) for all choices of the analytic functions fa; g1 and g2, a choice based
on the geometry of the problem and boundary conditions can reduce the algebraic work involved. We select
for the nth lamina

fa�za� �
X1
m�0

fv�1�ma exp�gma za� � w�1�ma exp�gma�lÿ za��g �
X1
k�0

fv�3�ka exp�kka za�

� w
�3�
ka exp�kka�pa hÿ za��g;

fa�3��za� � fa�za� �a � 1±3�;

�15a; b�

where 06 x16 l; 06 x36 h;

gma �
ÿ m0pi

pah if m � 0

ÿ mpi
pah if m P 1

(
; kka �

k0pi
l if k � 0

kpi
l if k P 1

�
; �16�

i � �������ÿ1
p

and m0; k0 2 �0; 1�. The functions g1 and g2 are chosen as

g1�zs� �
X1
m�0

fv̂�1�m exp�nm zs� � ŵ�1�m exp�nm�lÿ zs��g �
X1
k�0

fv̂�3�k exp�fk zs�

� ŵ
�3�
k exp�fk�shÿ zs��g;

g2��zs� � g1�zs�;

�17a; b�

where zs � x1 � sx3 and

nm � ÿ m0pi
sh if m � 0

ÿ mpi
sh if m P 1

�
; fk �

k0pi
l if k � 0

kpi
l if k P 1

�
: �18�

The function exp�gmaza� in Eq. (15) varies sinusoidally on the surface x1 � 0 of the nth lamina and decays
exponentially in the x1 direction. With increasing k, higher harmonics are introduced on the surface x1 � 0
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accompanied by steeper exponential decay in the x1 direction. Similarly, functions exp�gma�lÿ za��,
exp�kkaza� and exp�kka�pahÿ za�� vary sinusoidally on surfaces x1 � l, x3 � 0 and x3 � h, respectively. In
essence, single Fourier series in the x1 and x3 directions are superposed for each lamina to solve the problem.
This idea of superposing single Fourier series dates back to Mathieu (1890), who used it to analyze the
plane strain deformation of a rectangular region of isotropic material subjected to arbitrary tractions on
the boundaries. The inequality in (9a) ensures that all functions decay exponentially towards the interior of
the lamina. The choices (15b) and (17b) for fa�3��za� and g2��zs� ensure that the mechanical displacements,
stresses, temperature change and heat ¯ux are real valued. The functions involving m0 and k0 play the role
of a constant term in the Fourier series expansion.

The unknowns v
�s�
ka , w

�s�
ka , v̂

�s�
k , ŵ

�s�
k �s � 1; 3� are assumed to be complex for k 6� 0 and real when k � 0:

The superscript s indicates that the exponential function associated with the unknown has a sinusoidal
variation on the surface xs � constant. Substitution of Eqs. (15a), (15b), (17a) and (17b) into the general
solution (10) and (11) results in the following expressions for the displacements and the temperature change
for nondegenerate materials:

u � A
X1
m�0

(
hexp�gm�z��iv�1�m

� � hexp�gm��lÿ z���iw�1�m

�
�
X1
k�0

hexp�kk�z��iv�3�k

h
� hexp�kk��p�hÿ z���iw�3�k

i)

� c
X1
m�0

(
exp�nmzs� v̂�1�m

h
� exp�nm�lÿ zs�� ŵ�1�m

i
�
X1
k�0

exp�fkzs� v̂�3�k

h
� exp�fk�shÿ zs�� ŵ�3�k

i)
� conjugate;

T �
X1
m�0

nm exp�nmzs�v̂�1�m

h
ÿ nm exp�nm�lÿ zs��ŵ�1�m

i
�
X1
k�0

fk exp�fkzs�v̂�3�k

h
ÿ fk exp�fk�shÿ zs��ŵ�3�k

i
� conjugate;

�19a; b�

where

A � �a1; a2; a3�; hw�z��i � diag�w�z1�;w�z2�;w�z3��;
�v�s�m �a � v�s�ma; �w�s�m �a � w�s�ma; a � 1±3;

and conjugate stands for the complex conjugate of the explicitly stated terms. Expressions for stresses and
heat ¯ux are derived by substituting from Eq. (19) into Eq. (2). Our choice of analytic functions remains the
same for a degenerate material, and the corresponding expressions for the displacement and the temper-
ature change are obtained by substituting them into the appropriately modi®ed general solution. As an
example, for the degeneracy considered earlier, the expressions for the displacements and the temperature
are obtained by substituting Eqs. (15) and (17) into Eq. (14).

3.3. Satisfaction of boundary and interface conditions

Each lamina has its own set of unknowns v
�s�
k ;w

�s�
k ; v̂

�s�
k ; ŵ

�s�
k �s � 1; 3�: These are determined from the

interface continuity conditions and boundary conditions on all surfaces of the laminate by the classical
Fourier series method.
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Since the heat conduction problem is uncoupled from the mechanical problem, we ®rst determine the
temperature ®eld by imposing the thermal boundary conditions on the four bounding surfaces of the
laminate and the continuity of temperature and heat ¯ux across the interfaces between the adjoining
laminae. On the top surface x�N�3 � L�N�1�

3 of the laminate, we extend the component functions de®ned over
�0; L1� in Eq. (19b) to the interval �ÿL1; 0� in the x1 direction. The functions exp �fkzs�and exp �fk�shÿ zs��
that are sinusoidal in the x1 direction are extended without modi®cation since they form the basis functions
on this surface, except for exp �f0zs�and exp �f0�shÿ zs�� that are extended as even functions since they
represent the constant terms in the Fourier series representation. The functions exp �nmzs� and exp �nm�lÿ
zs�� are extended as even functions since they vary exponentially in the x1 direction. We multiply Eq. (5b)
for s � 3 by exp �jpix1=L1� and integrate the result with respect to x1 from ÿL1 to L1 to obtainZ L1

ÿL1

f ~m�3�T � ~r�3�q3 ÿ ~u�3�g exp�jpix1=L1�dx1 � 0 �x3 � L3; j � 1; 2; 3; . . .�: �20�

The same procedure is used to enforce the thermal boundary conditions (5a) and (5b) for the bot-
tom surface, the edges and the interface thermal continuity conditions (6c) and (6d). Substitution of T and
q into Eq. (20) and the other equations that enforce the thermal boundary and interface continuity con-
ditions results in a nonstandard in®nite set of linear equations for the unknowns v̂

�s�
k ; ŵ

�s�
k �s � 1; 3�:

The mechanical boundary conditions (3) and interface continuity conditions (6a) and (6b) for the dis-
placement and traction are also enforced in a similar manner. For example, the mechanical boundary
conditions on the surface x3 � L3 will giveZ L1

ÿL1

~I�3�u u
n

� ~I�3�r r3 ÿ ~#�3�
o

exp�jpix1=L1�dx1 � 0; �x3 � L3; j � 1; 2; 3; . . .�: �21�

Enforcing all the mechanical boundary and interface conditions will give another nonstandard in®nite set
of linear equations for v�s�m ;w

�s�
m : A general theory for the resulting in®nite system of equations does not exist.

However, reasonably accurate solutions may be obtained by truncating the series involving summations
over m and k in Eqs. (15a), (15b), (17a) and (17b) to K1 and K�n�3 terms, respectively. In general, we try to
maintain approximately the same period of the largest harmonic on all interfaces and boundaries
by choosing K�n�3 � Ceil K1h�n�=L1

ÿ �
, where Ceil�y� gives the smallest integer greater than or equal to y. The

truncated set of coe�cients v̂
�s�
k ; ŵ

�s�
k are determined ®rst by solving the truncated set of linear equations

corresponding to the heat conduction problem. The truncated set of coe�cients v�s�m ; w�s�m are determined
next by solving the truncated system of linear equations obtained by enforcing the mechanical boundary
and interface continuity conditions.

The solution (19) indicates that the component functions decrease exponentially from the boundary/
interfaces into the interior of the nth lamina. By truncating the series, we have e�ectively ignored coe�-
cients with su�ces greater than a particular value and approximated the coe�cients which have small
su�ces. Due to the rapid decay of component functions associated with large su�ces, the truncation of the
series will not greatly in¯uence the solution at the interior points. A larger value of K1 is expected to give a
more accurate solution at points close to the boundary and interfaces. Note that the coe�cients v

�3�
k and w

�3�
k

in the expressions for the stresses are multiplied by kk�, and v�1�m and w�1�m are multiplied by gm�. However, the
coe�cients of these terms in the expressions (19a) for displacements are unity. Since kk� and gm� increase as
the su�ces k and m increase, the terms with large su�ces are more signi®cant for the stresses than for the
displacements. Thus, the stresses will converge more slowly than the displacements. Once the coe�cients
have been determined by satisfying the boundary and interface conditions, the displacements, stresses,
temperature and heat ¯ux for each lamina are obtained from Eq. (19).
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4. Solutions from the CLPT and the FSDT

We assume the following uni®ed displacement ®eld:

u1�x1; x3� � u0
1�x1� � x3 c0

du0
3

dx1

�
� c1/1�x1�

�
;

u2�x1; x3� � u0
2�x1� � c1x3/2�x1�;

u3�x1; x3� � u0
3�x1�;

�22�

where u0
a�x1� are the displacements of a point on the bottom surface x3 � 0 which was taken as the reference

surface. The displacement ®eld of the CLPT is obtained by setting c0 � ÿ1; c1 � 0 in Eq. (22), and that of
the FSDT, also known as the Reissner±Mindlin plate theory, is obtained by taking c0 � 0; c1 � 1: The
functions /1 and /2 in the FSDT are the rotations of the normals about the x2 and x1 axes, respectively. The
in®nitesimal strains associated with the displacement ®eld (22) are

e11 � du0
1

dx1

� x3 c0

d2u0
3

dx2
1

�
� c1

d/1

dx1

�
; 2e12 � du0

2

dx1

� c1x3

d/2

dx1

;

2e13 � �1� c0� du0
3

dx1

� c1/1; 2e23 � c1/2; e22 � 0:

�23�

The in-plane and transverse stresses for the nth lamina are related to the strains by the constitutive rela-
tionship:

r11

r22

r12

8><>:
9>=>;
�n�

�
�Q11

�Q12
�Q16

�Q12
�Q22

�Q26

�Q16
�Q26

�Q66

264
375
�n� n

e11

e22

2e12

8><>:
9>=>;

0BB@ ÿ
a11

a22

2a12

8><>:
9>=>;
�n�

T

1CCA;
r23

r13

� ��n�
�

�Q44
�Q45

�Q45
�Q55

" #�n�
2e23

2e13

� �
;

�24�

where �Qij and aij are the reduced elastic sti�nesses and thermal expansion coe�cients, respectively (Jones,
1975).

The governing equations, obtained by using the principle of virtual work, are

dN11

dx1

� 0;
dN12

dx1

� 0;

c1

dM11

dx1

ÿ c1Q1 � 0; c1

dM12

dx1

ÿ c1Q2 � 0;

�1� c0� dQ1

dx1

ÿ c0

d2M11

dx2
1

� f̂ �x1� � 0;

�25�

where the resultants are de®ned by

�Nab;Mab;Qa� �
Z L3

0

�rab; rab x3;Kra3�dx3 �a; b � 1; 2�; �26�

and f̂ is the distributed transverse mechanical load per unit length along the span. The parameter K that
appears in the computation of the shear resultants Qa is called the shear-correction coe�cient. Although the
shear-correction coe�cient depends on the laminate properties and the lamination scheme, we assume that
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K � 5=6 which is widely used in the FSDT literature (Whitney and Pagano, 1970). We assume the fol-
lowing boundary conditions for simply supported (S), clamped (C) and traction-free (F) edges:

S: N11 � N12 � 0; c1M11 � c1M12 � 0; c0M11 � 0; u0
3 � 0;

C: u0
1 � u0

2 � u0
3 � 0; c1/1 � c1/2 � 0; ÿc0

du0
3

dx1

� 0;

F : N11 � N12 � 0; c1M11 � c1M12 � 0; c0M11 � 0; �1� c0�Q1 ÿ c0

dM11

dx1

� 0:

�27�

Some of the boundary conditions in Eq. (27) will be identically satis®ed depending on our choice of c0 and
c1. The equilibrium equations (25) and boundary conditions (27) can be expressed in terms of the dis-
placements and rotations by substituting Eqs. (23) and (24) into Eq. (26) and the result into Eqs. (25) and
(27). For the linear problem considered, we obtain a set of coupled linear ordinary di�erential equations for
the displacements and rotations with the associated boundary conditions at x1 � 0; L1. They are solved by
using Mathematica for the displacements and rotations, and hence the stresses.

In the CLPT, the interlaminar shear stresses r13 and r23 are identically zero when computed from the
constitutive equation. However, these stresses and the transverse normal stress r33 may be computed by
using the equilibrium equation (1a) after the in-plane stresses r11; r12 and r22 have been determined:

r13�x1; x3� � ÿ
Z x3

0

or11

ox1

�x1; n�dn;

r23�x1; x3� � ÿ
Z x3

0

or12

ox1

�x1; n�dn;

r33�x1; x3� � r33�x1; 0� ÿ
Z x3

0

or13

ox1

�x1; n�dn;

�28�

where it is assumed that the shear traction vanishes on the top and bottom surfaces. The transverse stresses
thus obtained are continuous across the interfaces between adjoining laminae. The same procedure is
employed for the FSDT since the transverse shear stresses obtained from the constitutive equations, al-
though nonzero, may be discontinuous across the interfaces between adjoining laminae.

5. Results and discussion

We consider layers of unidirectional ®ber reinforced graphite±epoxy material, model each layer as or-
thotropic and assign the following values to its mechanical and thermal material parameters:

EL � E0; ET � E0=10; GLT � E0=20; GTT � E0=50; mLT � mTT � 1=4;

aL � a0; aT � 7:2a0; jL � 100j0; jT � j0;
�29�

where E is the Young's modulus, G, the shear modulus, m, the Poisson's ratio, a, the coe�cient of thermal
expansion, j, the thermal conductivity, and subscripts L and T indicate directions parallel and perpen-
dicular to the ®bers, respectively. The material properties are identical to those used by Tauchert (1980).
For values given in Eq. (29), the nonzero components of the elasticity matrix Cijkl, thermal stress moduli bij

and heat conduction tensor jij are listed in Table 1 for four di�erent orientations of the ®ber with respect to
the x1 axis on the x1±x2 plane. The lamination scheme of the laminate is denoted by �h1=h2= � � � =hN �; where
hn is the angle between the ®bers and the x1 axis in the nth lamina (Fig. 1) and all laminae are of equal
thicknesses. In this section, we denote the thickness of the plate by H�� L3�.
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The edges x1 � 0 and L1 are either clamped (u1 � u2 � u3 � 0), or traction-free with (r11 � r12 � r13 � 0)
or simply supported �r11 � r12 � 0; u3 � 0�. The notation C±F denotes a plate that is clamped at x1 � 0 and
traction-free at x1 � L1, i.e. a cantilever laminate. The top surface x3 � H is subjected to the sinusoidal
temperature increase

T �x1;H� � T0 sin
px1

L1

;

while the bottom surface and the two edges are maintained at the reference temperature. Since the tem-
perature ®eld is assumed to be known in the CLPT and the FSDT, we substitute the temperature ®eld (19b)
into Eq. (24). The surfaces x3 � 0;H are traction-free, i.e. r3�x1; 0� � r3�x1;H� � 0: Thus, the stresses in the
laminate are solely due to the temperature distribution applied on the top surface. We do not consider
mechanical loads here since the deformation induced by them has been studied by Vel and Batra (2000).
For a linear problem, the results for combined mechanical and thermal loading can be obtained by su-
perposition of the corresponding results.

The problem of a simply supported laminate studied by Tauchert (1980) was analyzed by the present
method with K1 � 500 terms, and the two sets of results for the temperature, displacements and stresses
were identical. The e�ect of truncation of the series on the accuracy of the solution is investigated for a 0�

homogeneous C±S plate. Computed results for the displacements and stresses at speci®c points in the
laminate are listed in Table 2 for L1=H � 5. The following nondimensionalization has been used:

~uj�x1; x3� � uj�x1; x3�=T0a0L1; ~rjk�x1; x3� � rjk�x1; x3�=E0a0T0;

~e�x1� � �u3�x1;H� ÿ u3�x1; 0��=u3�x1;H=2�;
where ~e is the normalized change in the thickness of the plate. The Table 2 shows that the values of the
normalized displacements and stresses do not change upto third decimal place when K1 is increased from

Table 1

Non-vanishing material properties of the graphite±epoxy lamina

Property Lamina

0� 90� 45� ÿ45�

C1111=E0 1.0169 0.1078 0.3481 0.3481

C2222=E0 0.1078 1.0169 0.3481 0.3481

C3333=E0 0.1078 0.1078 0.1078 0.1078

C1122=E0 0.0339 0.0339 0.2481 0.2481

C1133=E0 0.0339 0.0278 0.0308 0.0308

C2233=E0 0.0278 0.0339 0.0308 0.0308

C2323=E0 0.02 0.05 0.0350 0.0350

C3131=E0 0.05 0.02 0.0350 0.0350

C1212=E0 0.05 0.02 0.2642 0.2642

C1112=E0 0 0 0.2273 ÿ0.2273

C2212=E0 0 0 0.2273 ÿ0.2273

C3312=E0 0 0 0.0031 ÿ0.0031

C2331=E0 0 0 0.0150 ÿ0.0150

b11=a0E0 1.5051 1.0102 1.2576 1.2576

b22=a0E0 1.0102 1.5051 1.2576 1.2576

b12=a0E0 0 0 0.2475 ÿ0.2475

b33=a0E0 1.0102 1.0102 1.0102 1.0102

j11=j0 100.0 1.0 50.5 50.5

j22=j0 1.0 100.0 50.5 50.5

j12=j0 0 0 49.5 ÿ49.5

j33=j0 1.0 1.0 1.0 1.0
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400 to 500 terms while reasonable accuracy may be obtained with 100 terms. The corresponding CLPT and
FSDT solutions are listed for comparison. It should be noted that the present solution with just 50 terms
gives substantially better results than those obtained with either the CLPT or the FSDT for stresses and
displacements in a thick plate. Whereas the CLPT underpredicts the transverse de¯ection of the centroid of
the laminate by 15:9%; the FSDT overpredicts it by 7:6%. The CLPT and the FSDT overpredict the
magnitude of the longitudinal stress r11 by 17:9% and 12:5%, respectively. According to the 3-D theory, the
change in the plate thickness at the midspan equals 150.8% of the de¯ection there. While k0 and m0 in Eqs.
(16) and (18) were chosen to be 0:5 for this study, a similar convergence behavior was observed for other
values of k0 and m0.

Having established the convergence of the thermoelasticity solution, we plot and compare results from
the present method with those obtained from the CLPT and the FSDT. The transverse de¯ection of the
midplane of a 0� C±S homogeneous laminate for two di�erent span-to-thickness ratios is depicted in Fig.
2(a) and (b). For L1=H � 5, the CLPT underestimates the magnitude of the midplane de¯ection and the
FSDT overestimates it. The agreement between all three solutions is very good for L1=H P 20. For
L1=H � 5, the slope at the clamped edge of the de¯ection curve predicted by the FSDT and the 3-D theory
are nonzero; however the two theories give di�erent values of this slope. Fig. 2(c) and (d) show the through-
thickness variation of the transverse displacement at the midspan of the plate. While the CLPT and the
FSDT yield a constant value for u3 through the thickness, the thermoelasticity theory predicts a nonlinear
distribution. The CLPT and the FSDT underestimate the transverse de¯ection of the top surface by 66%
and 56%, respectively for L1=H � 5. The error reduces to 14% and 12%, respectively for L1=H � 20. If an
accurate solution for the transverse displacement is desired, then one should use higher-order plate theories
which assume a quadratic or higher-order variation of the transverse displacement through the thickness
and take the reference plane other than the midsurface of the plate. Otherwise, a full three-dimensional
analysis of the equations of anisotropic thermoelasticity is recommended.

Fig. 3 depicts the longitudinal variation of the transverse shear stress r13 on the midsurface for three
di�erent combinations of boundary conditions and for span-to-thickness ratios of 5 and 10. When the edges
are simply supported, the percentage error of the CLPT and the FSDT with respect to the thermoelasticity
solution remains essentially the same at every point along the span of the plate. The percentage errors near
the clamped and traction-free edges of a cantilever plate are signi®cantly larger than those at the midspan,
as shown in Fig. 3(c) and (d). This is due to the presence of boundary layers at the clamped and traction-
free edges. The width of the boundary layers may be equated with the distance from the edges x1 � 0 or L1

of the point, where the curvature of the curve r13 vs. x1 suddenly changes. This de®nition gives the
boundary layer width as approximately 0:25L1 and 0:08L1 at the clamped and traction-free edges, re-
spectively, for a cantilever plate with span-to-thickness ratio of 5. The boundary layer widths reduce to
0:15L1 and 0:04L1, respectively when the span-to-thickness ratio equals 10. Thus, the boundary layer width

Table 2

Convergence study for a 0� homogeneous graphite±epoxy C±S laminate subjected to thermal load, L1=H � 5

Theory 10~u1

�L1;H�
10~u3

�L1=2;H=2�
10~r11

�L1=2;H�
100~r13

�L1=8;H=2�
1000~r33

�L1=8;H=2�
~e�L1=2�

Analytical

K1 � 50 2:3771 1:9144 ÿ6:7562 1:5637 ÿ3.1507 1:5059

K1 � 100 2:3884 1:9123 ÿ6:7542 1:5606 ÿ3.1782 1:5076

K1 � 200 2:3927 1:9118 ÿ6:7547 1:5611 ÿ3.1844 1:5080

K1 � 400 2:3942 1:9116 ÿ6:7549 1:5612 ÿ3.1859 1:5081

K1 � 500 2:3945 1:9116 ÿ6:7549 1:5612 ÿ3.1861 1:5081

CLPT 1:8058 1:6080 ÿ7:9608 2:4643 1.4796 ±

FSDT 2:1644 2:0563 ÿ7:5999 2:1034 1.4796 ±
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strongly depends upon the span-to-thickness ratio of the plate. There is a signi®cant discrepancy between
the thermoelasticity solution and the predictions of the CLPT and the FSDT within the boundary layer.
The longitudinal variation of the transverse shear stress for a C±S plate is depicted in Fig. 3(e) and (f). Fig.
3(a), (b), (e) and (f) reveal the absence of boundary layers at simply supported edges. The through-thickness
variation of the transverse normal stress r33 is shown in Fig. 4 for a C±S plate with the span-to-thickness
ratio of 5. As is evident from Fig. 4(a), the CLPT and the FSDT overestimate r33 at the midspan. Fig. 4(b)
depicts the through-thickness distribution of r33 at the section x1 � 0:1L1 which is located near the clamped
edge. Although the two plate theories give a tensile transverse normal stress, the thermoelasticity theory
predicts it to be compressive.

The through-thickness variation of the longitudinal stress is shown in Fig. 5 for thick (L1=H � 5) cross-
ply C±F and C±S laminates. Fiber orientations [0/90] and [90/0] are considered. Fig. 5(a) and (b) evince the
through-thickness variation of the longitudinal stress at a section close to the traction-free edge of a
cantilever laminate, while Fig. 5(c) and (d) depict corresponding results for a section near the clamped edge
of a C±S laminate. The approximate plate theories show good agreement for r11 with the thermoelasticity
solution even within the boundary layers at the two edges. The longitudinal stress distribution for cross-ply
simply supported laminates are not shown here since they are identical to those given by Tauchert (1980).
The transverse shear stress distribution at x1 � 0:1L1 for thick cross-ply antisymmetric and symmetric C±S
laminates is depicted in Fig. 6. Although the FSDT accounts for the transverse shear deformation, its
prediction of the transverse shear stress is in considerable error near the clamped edge. The axial variation

Fig. 2. (a, b) The longitudinal distribution and (c, d) through-thickness distribution of the nondimensional transverse de¯ection of a

clamped-simply supported 0� homogeneous plate for span-to-thickness ratios of 5 and 20. The plate is subjected to a thermal load on

the top surface.
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of the transverse shear stress on the midsurface of antisymmetric and symmetric cross-ply laminates is given
in Fig. 7(a) and (b). The midsurface coincides with the interface in the case of the [0/90] laminate. The
transverse shear stress in this case exhibits severe oscillations at points on the interface between the 0�

lamina and the 90� lamina that are near the clamped edge. This may be due to the presence of a singularity
in the stress ®eld at the point �0;H=2� where two right-angle wedges of di�erent materials meet. The ex-
istence of a singularity can be con®rmed only by performing an asymptotic analysis (Ting and Hwu, 1991).
The high-frequency oscillation in the transverse shear stress is associated with component functions in-
volving large values of the index k in the series solution (19a,b). Due to our choice of basis functions in Eqs.

Fig. 3. The longitudinal distribution of the nondimensional transverse shear stress for a 0� homogeneous plate with span-to-thickness

ratios of either 5 or 10 and subjected to a thermal load on the top surface: (a, b) simply supported on both edges, (c, d) clamped-free

and (e, f ) clamped-simply supported.
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(15a) and (15b) that exponentially decay towards the interior of each lamina, the high-frequency oscilla-
tions decay very rapidly away from the interfaces. In the beam theories, the traction-free boundary con-
ditions at the edge x1 � L1 are not satis®ed pointwise but on the average, i.e., the resultant force there
vanishes. In the present thermoelasticity solution, the longitudinal stress vanishes at all points on the
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simply supported cross-ply laminate, L1=H � 5, and subjected to a thermal load on the top surface.

S.S. Vel, R.C. Batra / International Journal of Solids and Structures 38 (2001) 1395±1414 1409



Fig. 6. The through-thickness distribution of the nondimensional transverse shear stress for a clamped-simply supported (a, b) 2-layer

and (c, d) 3-layer cross-ply laminates, L1=H � 5. A thermal load is applied on the top surface of the plate.

Fig. 7. The longitudinal distribution of the nondimensional transverse shear stress on the midplane of (a, b) a clamped-free and (c, d) a

clamped-simply supported cross-ply laminates, L1=H � 5, with a thermal load applied on its top surface.
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surface x1 � L1. The corresponding transverse shear stress on the midplane of clamped simply supported
laminates is given in Fig. 7(c) and (d). In this case too, the oscillations are present at points on the interface
between the adjoining laminae that are near the clamped edge. Fig. 8(a) and (b) depict the through-
thickness distribution of the transverse shear stress r23 for antisymmetric and symmetric angle-ply C±S
laminates. The corresponding plots of the displacement u2 are given in Fig. 8(c) and (d). The thermo-
elasticity solution exhibits a highly nonlinear through-thickness behavior for u2. The predictions from the
CLPT and the FSDT that can at best represent an a�ne behavior for u2 are in considerable error.
Numerical results for 2-ply and 3-ply laminates subjected to various boundary conditions are given in
Tables 3 and 4. They can be used to compare predictions from various plate theories and ®nite-element
solutions.

Fig. 8. The through-thickness distribution of (a, b) the nondimensional transverse shear stress r23 and (c, d) displacement u2 for 2-layer

and 3-layer angle-ply laminates, L1=H � 5, and a thermal load applied on the top surface.

Table 3

Displacement and stresses at speci®c locations for 2-ply laminates subjected to various boundary conditions, L1=H � 5: A thermal load

is applied to the top surface of the laminate

Variable [0/90] [90/0] [45/ÿ45]

S±S C±F C±S S±S C±F C±S S±S C±F C±S

10~u1�L1=4;H� ÿ10.495 2.880 ÿ4.203 ÿ1.642 0.483 ÿ0.125 ÿ5.654 1.702 ÿ1.601

10~u2�3L1=4;H� 0.000 0.000 0.000 0.000 0.000 0.000 1.734 3.535 0.551

~u3�L1=2;H=2� 2.603 ÿ1.528 1.179 0.502 ÿ0.332 0.213 1.657 ÿ1.000 0.717

10~r11�L1=2;H� ÿ2.805 ÿ2.818 ÿ4.441 ÿ4.531 ÿ4.559 ÿ5.910 ÿ2.906 ÿ2.913 ÿ4.723

10~r11�L1=2; 0� ÿ9.171 ÿ9.302 ÿ2.414 ÿ0.278 ÿ0.278 0.044 ÿ2.049 ÿ2.042 ÿ0.232

10~r13�L1=4;H=4� 0.400 0.308 0.702 0.032 0.020 0.046 0.098 0.086 0.204

10~r23�L1=4; 3H=4� 0.000 0.000 0.000 0.000 0.000 0.000 ÿ0.144 ÿ0.125 ÿ0.168

100~r33�L1=2; 3H=4� 0.289 0.278 0.276 0.175 0.168 0.166 0.148 0.148 0.147
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6. Conclusions

We have used the Eshelby±Stroh formalism to study the generalized plane strain thermoelastic defor-
mations of anisotropic thick laminated plates subjected to arbitrary mechanical and thermal boundary
conditions at the edges. The three-dimensional equations of quasi-static, linear, anisotropic thermoelasticity
simpli®ed to the case of generalized plane strain deformations are exactly satis®ed at every point in the
body. The analytical solution is in terms of an in®nite series; the continuity conditions at the interfaces and
boundary conditions on the bounding surfaces are used to determine the coe�cients.

Results for a thermal load applied on the top surface are presented for antisymmetric and symmetric
cross-ply and angle-ply laminated plates with clamped, traction-free or simply supported edges. Our
computed results for simply supported plates agree with those of Tauchert. The thermoelasticity results
are compared with the predictions of the classical laminated plate theory and the ®rst-order shear de-
formation theory. The thermoelasticity solution depicts a quadratic through-thickness variation of the
transverse displacement. For a single layer 0� homogeneous cantilever laminate of thickness 0:2L1, the
longitudinal distribution of the transverse shear stress exhibits boundary layers of width 0:25L1 and 0:08L1

at the clamped and traction-free edges, respectively, where L1 equals the span of the plate. We note that
the width of the boundary layer will generally decrease with an increase in the value of L1=H . The
transverse shear and transverse normal stresses computed from the CLPT and the FSDT exhibit signi®-
cant errors near the clamped and traction-free edges where the in¯uence of the boundary layer is sig-
ni®cant. The CLPT and the FSDT give good results for the longitudinal stress. In the case of angle-ply
laminates, the FSDT and the CLPT are not able to capture the complicated through-thickness behavior of
the displacement u2.

The computed results prove the versatility of the proposed technique for obtaining accurate stresses for
thick laminates subjected to various boundary conditions. The tabulated results presented herein should
help establish the validity of various plate theories.
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Table 4

Displacement and stresses at speci®c locations for 3-ply laminates subjected to various boundary conditions, L1=H � 5: A thermal load

is applied to the top surface of the laminate

Variable [0/90/0] [90/0/90] [45/ÿ45/45]

S±S C±F C±S S±S C±F C±S S±S C±F C±S

10~u1�L1=4;H� ÿ1.743 0.512 ÿ0.168 ÿ8.243 2.221 ÿ3.211 ÿ4.567 1.063 ÿ1.128

10~u2�3L1=4;H� 0.000 0.000 0.000 0.000 0.000 0.000 ÿ0.700 ÿ0.912 ÿ0.696

~u3�L1=2;H=2� 0.405 ÿ0.247 0.217 2.723 ÿ1.583 1.177 1.219 ÿ0.596 0.607

10~r11�L1=2;H� ÿ4.083 ÿ4.100 ÿ5.502 ÿ3.812 ÿ3.821 ÿ5.058 ÿ3.505 ÿ3.519 ÿ5.051

10~r11�L1=2; 0� ÿ0.795 ÿ0.790 0.618 ÿ1.924 ÿ1.921 ÿ0.687 ÿ1.631 ÿ1.621 ÿ0.088

100~r13�L1=4;H=2� 0.134 0.073 1.247 1.863 1.744 4.219 0.268 0.278 1.814

100~r23�L1=4;H=2� 0.000 0.000 0.000 0.000 0.000 0.000 1.112 0.721 1.287

1000~r33�L1=2;H=2� 0.279 0.239 0.231 6.763 6.664 6.624 2.913 2.894 2.882
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