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We use Reddy's third order plate theory to study buckling and steady state
vibrations of a simply supported functionally gradient isotropic polygonal plate
resting on a Winkler}Pasternak elastic foundation and subjected to uniform
in-plane hydrostatic loads. Young's modulus and the Poisson ratio for the material
of the plate are assumed to vary only in the thickness direction. E!ects of rotary
inertia are considered. The problem of determining the critical buckling load or the
vibration frequency of the plate is found to be analogous to that of ascertaining the
frequency of a membrane clamped at the edges and whose shape coincides with
that of the plate. The critical buckling load and the vibration frequency are shown
to be positive. Some available results for plates symmetric about the mid-plane can
be retrieved from the present analysis.

( 2000 Academic Press
1. INTRODUCTION

Composite materials are used in all kinds of engineering structures [1]. An
important class of these materials is functionally graded materials in which material
properties vary continuously. This eliminates mismatch between the thermal and
mechanical properties at the interfaces of bonded materials. This is achieved by
gradually changing the composition of the constituent materials in one, usually the
thickness, direction from one end-surface to the other, resulting in smooth variation
of material properties which can be tailored to obtain a predetermined response to
a class of external loads. Because of their specially tailored thermomechanical
sVisiting Research Associate, Virginia Polytechnic Institute and State University.
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properties, they are well suited for thermal protection against large temperature
gradients [2, 3].

Among numerous studies on functionally graded materials (see, e.g., references
[4, 5]), an interesting issue is the correspondence between the buckling load and
vibration frequencies of membranes and plates. From a technical point of view,
such results enable one to bypass more complicated calculations for plate theories,
and instead utilize available results for membranes. Such correspondences have
been established between frequencies of a membrane and those of a single-layer
homogeneous plate [6}11], a sandwich plate [12, 13] and a laminated plate [14]
analyzed by using di!erent plate theories. However, these results are valid only for
plates which are materially and geometrically symmetric about the mid-plane.

In general, functionally graded plates do not have material properties symmetric
about the mid-plane. Therefore, their stretching and bending deformation modes
are coupled. This is, however, not the case for plates symmetric about the
mid-plane. Here we use Reddy's third order plate theory [15] and seek the exact
correspondence between the eigenvalues of membranes and those of the
functionally graded plates subjected to in-plane uniform loads that could be caused
by a through-the-thickness temperature and/or moisture variation. Results for the
classical plate theory and the "rst order shear deformation plate theory can also be
obtained from the present analysis.

2. GOVERNING EQUATIONS

Consider a plate of uniform thickness, h, resting on a Winkler}Pasternak elastic
foundation. Let Mx

i
N (i"1, 2, 3) be a rectangular Cartesian co-ordinate system and

the x
3
"0 plane coincide with the undeformed mid-plane which is also taken as the

reference plane. Hereafter, a comma followed by a subscript i denotes the partial
derivative with respect to x

i
, and a repeated index implies summation over the

range of the index with Latin indices ranging from 1 to 3 and Greek indices from
1 to 2.

The plate consists of a functionally graded material with material properties
varying only in the thickness direction. Such a plate can be made by mixing two
di!erent material phases, for example, a metal and a ceramic. We assume that the
displacement "eld in the plate is given by

va (xi
; t)"ua!x

3
u
3,a

#gua , v
3
(x

i
; t)"u

3
, (1)

where ua, u
3

and ua are independent of x
3
, and

g(x
3
)"x

3 A1!
4x2

3
3h2B, ua"u

3,a
#ta. (2)

The displacement "eld (1) is essentially the same as that presumed by Reddy [13]
for laminated plates, where the function ta was used through a substitution of
equation (2)

2
into equation (1)

1
. With g(x

3
)"x

3
and g(x

3
)"0, the displacement

"eld (1) will correspond, respectively, to that of the "rst order shear deformation
plate theory and of the classical plate theory.
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For the functionally graded plate subjected to in-plane initial hydrostatic
pressure N per unit edge length, the linear governing equations for steady state
deformations with time-harmonic dependence exp (iut) are

Nab,b#I
0
u2ua!I

4
u2u

3,a
#I

5
u2ua"0, (3)
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5
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2
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3
u2ua"0, (5)

where u denotes an angular frequency, k and G are the Winkler}Pasternak
foundation parameters [16], and
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Note that the time-harmonic factor exp (iut) has been omitted and each physical
quantity refers to its spatial part. The components of the elasticity tensor for an
isotropic material are [17]

Habuo"
lE

1!l2
dab duo#

E
2(1#l)

(daudbo#daodbu), Ea3u3" k@dau , (9)

where

E"E(x
3
), l"l(x

3
), k@"k@(x

3
) (10)

are Young's modulus, the Poisson ratio and the shear modulus, respectively, and
dab is the Kronecker delta. In order for the results to be applicable to a transversely
isotropic plate, we have not set k@"E/2(1#l) which holds for an isotropic
material. For a laminated plate made of di!erent isotropic materials, the material
moduli will be piecewise constant functions of x

3
. Note that the in-plane

hydrostatic pressure N can also be induced by initial linear hygrothermal e!ects, or
by the sum of both in-plane hydrostatic pressure and hygrothermal e!ects. For
example, a through-the-thickness varying temperature increment H,H(x

3
) is

related to N by

N"P
h@2

~h@2

EaH
1!l

dx
3
, (11)

where a,a (x
3
) denotes the coe$cient of linear thermal expansion for the

functionally graded plate and we have assumed that the heat conduction occurs
only in the thickness direction.
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Substitution from equations (1) and (9) into equations (7) and the result into
equation (6) yields

C
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where
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Note that a
4
, a

5
, b

4
, b

5
, I

4
and I

5
vanish for plates symmetric about the mid-

plane x
3
"0. Substituting from equations (12) into the governing equations (3)}(5),

we obtain the following "ve equations for the determination of "ve displacement
functions ua, u

3
and ua:
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Equations (15) and those obtained by di!erentiating equations (14) and (16) with
respect to xa can be written as

KX"0, (17)

where

X"[ua,a u
3

ua,a]T, 0"[0 0 0]T, (18)
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and K"(K
IJ

) is a 3]3 matrix operator with elements
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and +2 is the two-dimensional Laplace operator. The elimination of ua,a and
ua,a from equations (17) gives

det [K(+ 2)]u
3
"!det (a)(+ 2#j

1
) (+ 2#j

2
) (+ 2#j

3
) (+ 2#j

4
)u

3
"0, (20)

where j
I
(I"1, 2, 3, 4) are four roots of the quartic equation

det [K(!j)]"0. (21)

The characteristic equation (20) gives the eigenvalues and the associated
eigenfunctions for buckling and vibration problems for the functionally graded
plate under the given boundary conditions.

We now recall Gram's theorem [18],

det (G)*0, (22)

where G"(G
IJ

) is a n]n matrix with its elements de"ned by

GIJ"P
b

a

f
I
f
J
dx

3
, (23)

and the equality in equation (22) holds if and only if the real and integrable
functions f

I
(x

3
) (x

3
3[a, b]; I"1,2, n) are linearly dependent. The Gram theorem

implies that

det (a)'0, (24)

for Reddy's third order theory with the function g(x
3
) given by equation (2)

1
, and

det (a)"0, (25)

for the "rst order shear deformation theory with g(x
3
)"x

3
. In the latter case,

equation (20) will degenerate into a cubic equation in the Laplace operator +2.
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3. SIMPLY SUPPORTED POLYGONAL PLATES

We assume that the functionally graded plate is simply supported on its edges for
which the boundary conditions are

NNN"0, M
NN

"0, P
NN

"0, (26)

u
3
"0, u

T
"0, u

T
"0, u

3,T
"0, (27)

where the upper-case subscripts N and ¹ denote respectively the normal and
tangential directions on the boundary; the summation convention does not apply
to the repeated upper-case subscripts. For a polygonal plate, equation (27)

4
is

identically satis"ed due to equation (27)
1
, while the boundary conditions (26) and

the constitutive relation (12) give
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In view of the Gram theorem (24) for the third order theory, equation (28) implies
that

u
N,N

"0, u
3,NN

"0, u
N,N

"0. (29)

Therefore, the boundary conditions at a simply supported rectilinear edge can be
expressed as

u
T
"0, ua,a"0, u

3
"0, + 2u

3
"0, u

T
"0, ua,a"0, (30)

and by using equations (17) as

+ 2Jua,a"0,+ 2Ju
3
"0,+ 2Jua,a"0 (J"1, 2, 3,2). (31)

Note that all of equations (31) are not linearly independent.

4. MEMBRANE ANALOGY

In order to facilitate the subsequent analysis, equation (20) is written as
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1
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1
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From equation (20) it follows that j
1

can be any one of its four roots. In view of
equations (30)

3,4
, (31)

2
and (32)

2
, the Helmholtz equation (32)

1
is associated with

the boundary condition
H

1
"0. (33)

Therefore, the eigenvalue problem for Reddy's third order theory for functionally
graded plates consists of the Dirichlet problem de"ned by equation (32)

1
and the

boundary condition (33). This boundary value problem is mathematically similar
to that of a uniform membrane whose shape coincides with that of the plate, is "xed
at the edges and is executing small transverse vibration. Thus, we may designate the
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eigenvalue j
1
of the plate as that of a vibrating membrane with the same contour as

the plate. We will show later that the eigenvalues of the functionally graded plate
are always positive.

The eigenvalue of the membrane vibration problem [19] is given by

j
M
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o
M
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M

>
, (34)

where o
M
, > and u

M
are respectively the mass density, constant tension and the

vibration frequency of the membrane.
It is obvious that the eigenvalue j

1
of the Dirichlet boundary value problem,

equations (32)
1

and (33), is the same as j
M

, i.e.,

j
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M
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Since j
1

is a root of the quartic equation (21), substitution of equation (35) into
equation (21) yields
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or, after some rearrangements,
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Since the material of the functionally graded plate is in general not symmetric
about its mid-plane, bending deformation of the plate will occur in the prebuckled
state and thus a buckling problem will not arise in practice. In theory, however, it is
always possible to apply in-plane tractions so that the plate is #at prior to buckling.
Therefore, a theoretical buckling load can be found. For the buckling problem
using the Reddy plate theory, the critical in-plane hydrostatic pressure can be
obtained by setting u"0 in equation (37), i.e., det (R)"0, which gives
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and R8 co is the matrix of cofactors of the elements of the matrix R3 .
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For the free vibration problem the eigenfrequencies of the functionally graded
plate can simply be obtained from equation (37), which is cubic in u2 and will give
three eigenfrequencies. Irschik's [8] work on homogeneous plates suggests that
there are three di!erent types of motion for simply supported homogeneous
polygonal plates. The "rst two of these eigenmotions, termed #exural and
thickness-shear modes, are independently generated by Dirichlet's boundary
conditions and the third mode, i.e., thickness-twist mode, by Newmann's boundary
conditions. The aforestated membrane analogy only corresponds to a membrane
with "xed edges, i.e., Dirichlet's boundary conditions. Thus, eigenvectors associated
with the vibration frequencies given by equation (37) exhibit #exural and
thickness-shear modes, as well as stretching mode. Due to the likely asymmetric
material properties of the functionally graded plate about its mid-plane, the plate
will execute coupled stretching, #exural and thickness-shear modes.

5. THE FIRST ORDER THEORY

When g(x
3
)"x

3
, it can be seen from equation (1) that the displacement "eld is

essentially that for the "rst-order plate theory [1]. It follows from equations (8) and
(13)

1
that

a
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3
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4
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5
. (41)

As is well known, the shear correction factor i should be introduced in the "rst
order plate theory, i.e., the parameter c in equation (13)

3
ought to be replaced by

c
F
"iP

h@2

~h@2

k@dx
3
. (42)

The characteristic equation for the functionally graded plate is the same as the
matrix equation (17), which upon eliminating ua,a and ua,a reduces to a cubic
equation in the Laplace operator + 2, i.e., a degenerated form of equation (20) due
to equation (25).

Although the boundary conditions at the simply supported edges are slightly
di!erent from those in equations (30), by following the procedure of the last section,
it can be shown that the critical buckling load and the free vibration frequency of
the functionally graded plate are given by equations (39) and (37) wherein relations
(41) should be incorporated and c should be replaced by c

F
.

6. THE CLASSICAL THEORY

Equations (1) with g(x
3
)"0 represent the displacement "eld of the classical

Kirchho! theory [1] for functionally graded plates. Thus, from equations (8) and
(13), we obtain

a
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Similarly, the eigenvalue equation becomes
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from which the free vibration frequency can be computed. In particular, by setting
u"0, the critical buckling load is found to be

Ncr
K
"Aa1!
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a
0
B j

M
#G#

k
j
M

. (45)

7. POSITIVE DEFINITENESS OF EIGENVALUES

We now show that the membrane analogy always furnishes positive eigenvalues
for buckling and vibration problems. Based on Green's formula, it can be proved
that a Dirichlet-type eigenvalue problem contains a denumerably in"nite sequence
of discrete positive eigenvalues corresponding to non-trivial real eigenfunctions
[20]. Therefore,

j
M
'0. (46)

According to the Gram theorem (22),

det (R3 )'0, RI co
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0
a
1
!a2

4
'0. (47)

Using inequalities (46) and (47) it is easily seen from equations (39) and (45) that

Ncr'0, Ncr
K
'0. (48)

Therefore, the uniform in-plane critical buckling hydrostatic loads obtained by
using the third order, "rst order and classical theories for functionally graded plates
are positive.

We have only considered linear eigenvalue problems. Hence the condition

!R(N)Ncr (49)

is used since N'Ncr corresponds to a non-linear postbuckling behavior of the
functionally graded plate. A negative value of N implies an initial uniform tension
in all in-plane directions.

Using equation (39) to rewrite equation (38)
1

as
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we see that the principal minors of the matrix R satisfy

R
11

'0, det C
a
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a
5

a
5

a
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#

c
j
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D'0, det (R)"

Ncr!N
j
M

RI co
22
*0. (51)

Thus, the real symmetric matrix R is positive semide"nite for both the third order
and the "rst order plate theories. More speci"cally, the matrix R is positive de"nite
when N(Ncr, and positive semide"nite when N"Ncr.

Similarly, it can be shown that the real symmetric matrix S is positive de"nite for
both the third order and the "rst order theories. Therefore, there exists
a non-singular matrix V such that

S"VTV, (52)

and equation (37) can be written as

det (R<!u2E)"0, (53)

where E is an identity matrix and

R<"j
M

(V~1)TRV~1 (54)
is positive semide"nite.

Equation (53) describes a standard eigenvalue problem. Since R is a 3]3 matrix,
and according to equation (51), rank(R)"3 for N(Ncr and rank(R)"2 for
N"Ncr, we conclude that

u2
1
'0,u2

2
'0,u2

3
'0, for N(Ncr, (55)

u2
1
"0,u2

2
'0,u2

3
'0, for N"Ncr. (56)

Thus, equation (37) has three positive roots except when N"Ncr. For N"Ncr,
buckling occurs, the null frequency is the lowest one and is related dominantly to
the transverse #exural mode of the functionally graded plate rather than to the
thickness-shear and stretching modes. For N(Ncr, however, all three natural
frequencies given by equation (37) are positive. Note that the discussion in this
section applies to both the third order and the "rst order plate theories.

Following the procedure given above we conclude that equation (44) which is
associated with the classical plate theory provides two positive eigenfrequencies u2

K
,

except when N"Ncr which corresponds to the buckling of the plate; in this case,
u2

K1
"0 and u2

K2
'0.

8. NUMERICAL RESULTS

The functionally graded materials can be made by mixing two distinct materials
such as a metal and a ceramic. The e!ective material properties at a point are
usually assumed to be given by the &&rule of mixture'' [2, 3]:

P
eff

"P
m
<
m
#P

c
<
c
, <

m
#<

c
"1, (57)

where P stands for the material property, subscripts m and c for the metal and
ceramic, and <

m
and <

c
are the volume fractions of the metal and ceramic
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phases respectively. The model (57) provides exact values for the mass density, o,
and fairly good values of other mechanical properties. Although a more accurate
determination of the macroscopic material properties requires a better
understanding of the microstructure and deformation, the e!ective properties
calculated from equation (57) may be used for an examination of the macroscopic
response of the functionally graded plate.

The functionally graded plate is taken to be made of aluminum and zirconia with
material properties [3]

E
m
"70 GPa, l

m
"0)3, o

m
"2707 kg/m3, for aluminum,

E
c
"151 GPa, l

c
"0)3, o

c
"3000 kg/m3, for zirconia. (58)

For simplicity, the Poisson ratio, l, is chosen as 0)3 for both aluminum and
zirconia. The volume fraction of the ceramic phase is assumed to be given by

<
c
"A

h#2x
3

2h B
n
. (59)

Figure 1 shows through-the-thickness variation of the volume fraction of the
ceramic for n"0)2, 0)5, 1, 2, and 5. Note that the bottom surface of the functionally
graded plate is metal-rich and the top surface is ceramic-rich.

We set the Winkler}Pasternak elastic foundation constants to zero in the
computation of the buckling load and vibration eigenvalues and the initial uniform
inplane hydrostatic pressure to zero for the vibration problem. We also take the
shear correction factor i"5/6 in the "rst-order theory. The dimensionless
eigenvalues are de"ned by

j1 "j
M
h2, NM cr"

Ncr

E*h
, uN "S

o*h2

E*
u , (60)

where the reference values are taken as E*"1 GPa and o*"1000 kg/m3. Figures
2(a}c) depict the critical buckling loads and Figures 3(a}c), 4(a}c) and 5(a,b) depict
Figure 1. Through-the-thickness distribution of the volume fraction of the ceramic.



Figure 2. Critical buckling load versus the membrane eigenvalue when using (a) the third order
theory, (b) the "rst order theory, and (c) the classical theory for the plate: , ceramic; } } }, n"0)2;
-----, n"0)5; })})}), n"1; } }))} }, n"2; **, n"5; , metal.
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Figure 3. Natural vibration frequency of the dominant #exural mode versus the membrane
eigenvalue when using (a) the third order theory, (b) the "rst order theory, and (c) the classical theory
for the plate: , ceramic; } } }, n"0)2; -----, n"0)5; })})}), n"1; } }))} }, n"2; **, n"5;

, metal.
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Figure 4. Natural vibration frequency of the dominant stretching mode versus the membrane
eigenvalue when using (a) the third order theory, (b) the "rst order theory, and (c) the classical theory
for the plate: , ceramic; } } }, n"0)2; -----, n"0)5; })})}), n"1; } }))} }, n"2; **, n"5;

, metal.
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Figure 5. Natural vibration frequency of the dominant thickness-shear mode versus the membrane
eigenvalue when using (a) the third order theory, and (b) the "rst order theory for the plate:

, ceramic; } } }, n"0)2; -----, n"0)5; })})}), n"1; } }))} }, n"2; **, n"5; , metal.
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the vibration frequencies versus the membrane eigenvalue, when (a) the third order
theory, (b) the "rst order theory and (c) the classical theory are used to study the
deformations of the plate. Because three vibration frequencies are calculated from
equation (37) for the third and "rst order plate theories and two vibration
frequencies from equation (44) for the classical plate theory, they correspond to the
dominant #exural (Figures 3(a}c)), stretching (Figures 4(a}c)) and thickness-shear
(Figures 5(a,b)) vibration modes respectively; the thickness-shear mode is absent in
the classical plate theory due to the assumption that a normal to the mid-plane of
the undeformed plate remains normal to the mid-plane during deformation.
Consequently, there is no thickness-shear motion in the classical plate theory.

It is seen that all of the buckling loads and vibration eigenvalues calculated by
using the third order plate theory closely match with the corresponding ones
computed with the "rst order plate theory. The vibration frequency calculated by
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the classical plate theory in Figure 4(c), which is essentially associated with the
stretching mode, is slightly higher than that obtained by the shear deformation
theories and plotted in Figures 4(a,b). However, the critical buckling load in Figure
2(c) and the vibration frequency in Figure 3(c) obtained by the classical theory are
much higher than those computed from the shear deformation theories and
exhibited in Figures 2(a,b) and 3(a,b) respectively; the di!erence between the two
increases with an increase in the eigenvalue of the membrane. This implies that the
critical buckling load and the #exural vibration frequency estimated by the classical
plate theory are grossly in error for a thick plate and/or for higher order modes. As
the ceramic constituent increases in the functionally graded plate, i.e., the volume
fraction exponent n decreases, all of the critical buckling loads and vibration
frequencies increase. In particular, the buckling load and the vibration frequency of
a homogeneous ceramic plate and a homogeneous metal plate are, respectively, the
upper and lower bounds of that of the functionally graded plate.

9. CONCLUDING REMARKS

From equations (37), (39), (44) and (45), we conclude that the critical buckling
load and the vibration frequency for functionally graded plates under in-plane
hydrostatic pressure and resting on a Winkler}Pasternak elastic foundation have
readily been given in terms of the eigenvalue of the membrane with the shape of the
plate, and clamped at the edges. Therefore, the exact correspondence between the
buckling and vibration eigenvalues of the third order plate theory, the "rst order
plate theory and the classical plate theory for functionally graded polygonal plates
with simply supported rectilinear edges and the vibration eigenvalue of the
corresponding membrane has been established. Some available analogies between
single-layer homogeneous plates, symmetric sandwich plates and laminated plates
and membranes are special cases of the present results.

The present results also apply to a transversely isotropic plate because we have
not required the shear modulus to satisfy k@"E/2(1#l). For a transversely
isotropic material with the plane of isotropy parallel to the mid-plane of the plate,
E and l are respectively Young's modulus and the Poisson ratio in the plane of
isotropy, and k@ is the shear modulus in the transverse direction. A typical example
is a laminated composite plate with transversely isotropic laminae, which is widely
used in missiles and re-entry vehicles [21] due to its special thermomechanical
properties suited for the thermal protection and its high #exibility in transverse
shear.
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