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We analyze the e!ect of inertia forces on damping induced during large shearing
deformations of an isotropic, incompressible and homogeneous viscoelastic layer
constrained between two rigid circular cylinders. The layer is deformed by holding the inner
solid cylinder "xed and rotating the outer one by applying to it a time-harmonic
axisymmetric tangential velocity. It is assumed that the layer sticks to the cylinder walls and
the length of each cylinder is very large as compared to the inner radius of the outer cylinder
so that the end e!ects can be neglected. Thus, a material particle undergoes only tangential
displacement which is assumed to be a function of the radial co-ordinate, r and time, t.
That is,

r"R, h"H#f (r, t), z"Z (1)

represent the deformation "eld. The unknown function, f, is found by satisfying the balance
of linear momentum,
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and the boundary conditions

uh(r1, t)"0, uh(r2, t)"r
2
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0
cosut. (3)

Here we have used a cylindrical co-ordinate system with the origin at the centre of the
inner cylinder, and (r, h) are the co-ordinates in the present con"guration of the material
particle that occupied the place (R, H) in the stress-free reference con"guration.
Furthermore, ¹

rr
, ¹hh and ¹

rh are the physical components of the Cauchy stress tensor, T,
and u

r
and uh are the physical components of the displacement vector, u. In equations (2)

a superimposed dot indicates the material time derivative. The balance of mass is identically
satis"ed by the assumed displacement "eld. We presume that su$cient time has elapsed so
that the applied time-harmonic tangential displacement (3)

2
produces a time-harmonic

displacement "eld within the layer. Thus, initial conditions are not needed.
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Equations (1)}(3) are supplemented by the following constitutive relation for the
viscoelastic layer:
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Here p is the hydrostatic pressure not determined by the deformations of the body and is
generally non-zero in the stress-free reference con"guration, b equals the shear modulus in
quasistatic deformations at zero strain, B is the left Cauchy}Green tensor, k is the classical
Newtonian viscosity, A

1
and A

2
are the "rst and second Rivlin}Ericksen tensors, and

a
1

and a
2

are higher order viscosities. The constitutive relation (4) with k"a
1
"a

2
"0

represents a neo-Hookean elastic solid, and with b"0 a #uid of grade 2. Fosdick et al. [1]
and Fosdick and Yu [2] have investigated shock waves, stability, and non-linear
oscillations in bodies made of the viscoelastic material described by equation (4). Markovitz
and Coleman [3] have analyzed the Couette #ow of a second order #uid, which is di!erent
from the second grade #uid (see, e.g., Truesdell and Noll [4]). We note that the second law of
thermodynamics expressed as the Clausius}Duhem inequality requires that k*0, a

1
*0,

and a
1
#a

2
"0. Henceforth, we set a

1
"!a

2
.

For the deformation "eld (1), the physical components in the (r, h) plane of the
deformation gradient, F, the left Cauchy}Green tensor, B"FFT, and the two
Rivlin}Ericksen tensors, A
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, where

L"F0 F~1 have the following expressions:
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Here, a comma followed by r denotes the partial derivative with respect to r.
We note that D

rh"Dhr is the only non-zero component of the strain-rate tensor, D. Thus,
the energy dissipation rate per unit volume given by tr(TvD) is determined by ¹v

rh, where
Tv equals the viscous part of the stress and is given by the sum of the last three terms on the
right-hand side of equation (4). Hence, in order to compute the dissipation, we need not "nd
the hydrostatic pressure, p. The deformation "eld, f, is determined by equation (2)
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Note that even when a
2
O!a

1
the material coe$cient a

2
does not appear in the equation

of motion (6) because for the deformation "eld (3) all terms in A2
1

vanish.
In terms of the non-dimensional variables
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equation (6) becomes
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where we have dropped the superimposed bar. In equations (7), o
0

equals the mass density
of the viscoelastic material in the reference con"guration and b

0
the shear modulus

for a typical viscoelastic material. Henceforth, unless otherwise speci"ed, we use
non-dimensional variables.

We write the time-harmonic displacement "eld as

f (r, t)"Re MN (r)e*utN, (9)

where N (r) may be a complex function. Thus, there may be a phase di!erence between f and
the applied tangential displacement.

Substituting from equation (9) into equation (8) yields

rN@@#3N@!
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"0, (10)

where N @"dN/dr. A solution of equation (10) is
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where constants c
1

and c
2

are determined by the boundary conditions, I
1
( ) ) and K

1
( ) ) are

modi"ed Bessel functions of the "rst and second kind, respectively, and

x"Ju2/(!b!iku#a
1
u2).

Writing N (r)"p (r)#iq(r), where p and q are, respectively, the real and imaginary parts
of N, we obtain

f (r, t)"p (r) cos (ut)!q(r) sin (ut)"Jp2#q2cos (ut#d), (12)

where tan d"q/p. Substituting from equation (12) into equation (5) and the result into
equation (4) gives expressions for B, A

1
, A

2
and ¹

rh. The energy dissipated, per unit length of
the cylinder, during a cycle of deformation equals
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r3(p@2#q@2) dr. (13)

Besides the explicit dependence of W upon k and u as exhibited in equation (13)
2
, the energy

dissipation also depends upon b and a
1
through the dependence of p and q on k, u, b and a

1
.

The moment, M, per unit length of a cylinder of radius r is given by

M"2nr2¹
rh(r, t)

"2nr3[(b!a
1
u2) (p@ cosut!q@ sinut)!ku(p@ sinut#q@ cosut)], (14)
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and the work,=, during one cycle of deformation done per unit cylinder length by external
forces applied to the outer cylinder is found to be
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Thus,= depends explicitly upon values of all three material parameters, and also implicitly
upon them through the dependence of p and q upon b, k and a

1
. The changes in the kinetic

energy and the energy stored per unit length of the viscoelastic cylinder over a cycle of
deformation vanish because f (r, t) is a harmonic function of time t. Hence, the energy
balance gives ="W.

In the absence of inertia e!ects, f
,tt
"0, the deformation "eld is
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That is, the deformation "eld for very slow deformations of the viscoelastic material is
independent of the values of material parameters; this is because displacements are
prescribed on the inner and outer surfaces of the viscoelastic layer. The angular
displacement of every material point is in phase with the tangential displacement prescribed
on the outer cylinder, and d"0. Here and below, we denote quantities for the inertialess
problem by a superposed hat. Yu and Batra [5] have scrutinized the damping in
a viscoelastic layer enclosed between a rigid cylinder and a hollow rubber cylinder. They
neglected the e!ect of inertia forces and modeled the viscoelastic layer by a history type
constitutive relation.

The energy dissipated and the work done by external forces over a cycle of deformation,
and the moment applied on the outer cylinder per unit cylinder length under the
assumption of negligible inertia forces are
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Thus, the energy dissipated per cycle of deformation depends linearly upon the Newtonian
viscosity k, and the frequency of the applied tangential displacement. However, the moment
required to twist the outer cylinder also depends upon the elastic modulus of the viscoelastic
layer.

We delineate below the e!ect on the deformation "eld and the energy dissipated of
various material parameters, the frequency u of the displacement "eld prescribed on the
outer surface of the cylinder, and the radii r

1
and r

2
of the inner and outer cylinders. The

reference values of non-dimensional variables used in the computation of results are b"1,
u"3, k"0)1, a

1
"0)03, r

2
"2, K

0
"1, o"1. Values of the corresponding dimensional

and the other reference variables are b
0
"0)35 MPa, o

0
"1200 kg/m3, k"40)98 Pa s,

q"11)71 ms, r
1
"0)2 m, r

2
"0)4 m, a

1
"0)4799 Pa s2.

These values of material parameters, except possibly those of k and a
1

are for a
rubber-like material. Except for the non-dimensional thickness, we study the e!ect of
varying each parameter over a large range.

Figures 1(a)}1(d) exhibit for di!erent values of u, k, a
1

and b, the variation through the
thickness of the magnitude, D f D, or (p2#q2)1@2, of the angular displacement f; its value for
negligible inertia e!ects is plotted in Figure 1(a). Recall that the latter is independent of the



Figure 1. Through-the-thickness variation of the magnitude of the angular displacement, D f D or (p2#q2)1@2, for
(a) "ve values of the frequency u: (* * *), u"0)0 and 0)04; (- - - - -), u"1; (**), u"4; (} } } }), u"40.
(b) four values of the Newtonian viscosity k: (**), k"0)01; (- - - - -), k"0)1; (***), k"0)2; (} } } }) k"0)5;
(c) four values of the higher order viscosity a

1
: (**) a

1
"0)03; (} } } }), a

1
"0)1; (* * *), a

1
"0)3; (- - - - -),

a
1
"3; and (d) four values of the elastic modulus b: (**) b"0)2; (- - - - -) b"1; (***), b"2; (} } } }) b"20.

LETTERS TO THE EDITOR 917
values of u, k, a
1

and b. It is clear from the plots of Figure 1(a) that for u"0)04, the
variation of D f D through the thickness of the viscoelastic layer is essentially the same as for
the inertialess problem. With an increase in the frequency of the applied angular
displacement and hence of the e!ect of inertia forces, the variation of D f D versus r changes
from concave downwards to concave upwards. For u"4, the curve consists of two
parts-concave downwards near the periphery of the inner cylinder and concave upwards at
points close to the outer cylinder. The plots in Figure 1(b) reveal that for very low values of
the Newtonian viscosity, k, the variation of D f D is not monotonic through the thickness of
the viscoelastic layer; the maximum value, D f D

m
, of D f D occurs at a point within the layer and

D f D
m

decreases with an increase in the value of k till for k"0)5, D f D
m

occurs at the outermost
surface. For 0)1)k)0)5, the variation of D f D with r is very gradual at points close to the
outer cylinder. Results plotted in Figure 1(c) suggest that very low values of the higher order
viscosity, a

1
, have a negligible in#uence on the through-thickness variation of D f D. However,

as a
1

is increased from 0)1 to 3, the graph of D f D versus r changes from concave upwards
to concave downwards. Higher values of the elastic shear modulus, b, change the pro"le
of D f D versus r from concave downwards to concave upwards, and reduce the maximum
value of D f D.

The through-thickness variation of the phase-di!erence angle, d, for di!erent values of u,
k, a

1
and b is exhibited in Figures 2(a)}2(d); note that d"0 when the e!ect of inertia forces

is negligible. The magnitude of d is maximum at r"1 and monotonically decreases to zero
at r"2 for low (uK2) and high (uK10) frequencies, large values of the Newtonian
viscosity (k*0)2), small (a

1
K0)01) and large (a

1
K0)2) values of the higher order viscosity

a
1

and large values of the elastic shear modulus b. There is a range of values of u, k, a
1

and



Figure 2. Through-the-thickness variation of the phase angle, d for (a) four values of the frequency u: (***),
u"2; (**), u"3; (- - - - -), u"5; (} } } }), u"10; (b) four values of the Newtonian viscosity k: (- - - - -),
k"0)01; (**), k"0)1; (} } } }), k"0)2; (* * *), k"0)5; (c) four values of the higher order viscosity a

1
:

(} } } }), a
1
"0)01; (**), a

1
"0)03; (- - - - -), a

1
"0)2; (***), a

1
"0)2; (d) four values of the elastic modulus:

(**), b"0)1; (- - - - -), b"0)2; (* * *), b"1; (} } } }), b"2.

Figure 3. The dependence of the energy dissipated per cycle per unit cylinder length, W, upon (a) the frequency
u, (b) the Newtonain viscosity k, (c) the higher order viscosity a

1
and (d) the elastic modulus b: (**), with inertia;

(- - - - -), without inertia.
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b for which the variation of d versus r is not monotonic and its value suddenly jumps from
a large positive value to a large negative value across the surface r"r

c
, 1(r

c
(2.

The dependence of the energy dissipated per cycle per unit length of the cylinder, W, upon
u, k, a

1
and b is plotted in Figures 3(a)}3(d). The energy dissipated "rst increases almost
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linearly with an increase in the value of u from 0 to 1)5 and then increases quite rapidly,
attains a maximum at uK3 rad/s and is almost constant for u56 rad/s; a somewhat
similar pattern is observed when other parameters are varied. The energy dissipated stays
essentially unchanged for k50)5, a

1
*0)5 and b*4. Thus, higher values of the Newtonian

viscosity or the higher order viscosity beyond a certain value do not increase the energy
dissipated per cycle. However, when the e!ect of inertia forces is neglected, W increases
linearly with the Newtonain viscosity and does not depend upon a

1
and b. Thus, the

solution of the inertialess problem does not provide even qualitatively a correct dependence
of the energy dissipated upon di!erent material variables.
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