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We use the three-dimensional Hellinger}Reissner mixed variational principle to derive
a Kth order (K"0, 1, 2,2) shear and normal deformable plate theory. The balance laws,
the constitutive relations and the boundary conditions for the plate theory are deduced. The
constitutive relations incorporate the shear and the normal tractions applied on the top and
the bottom surfaces of the plate. For aKth order plate theory with displacements expressed
as a power series in the thickness co-ordinate z with terms up to z�, the transverse shear and
the transverse normal stresses involve terms upto z��� while in-plane stress components
have terms up to z�. The equations for the plate theory are expressed in a compact form by
taking Legendre polynomials as the basis functions. The plate theory is used to study plane
travelling waves and in particular the lengths of decay of the displacement components; this
allows for a rigorous ordering of the importance of the displacement descriptors in terms of
decaying properties.

Finally, we study the free vibrations of a simply supported rectangular orthotropic thick
plate; results from the present theory are compared with an exact three-dimensional solution
and with other plate theories. To this end, a Kth order compatible plate theory is also
deduced; the term &&compatible'' alludes to the fact that the reduction map for the stress "elds
is induced by the kinematical reduction map, whilst in the &&mixed'' models it is postulated
independently. It is found that the frequencies up to the "fth mode of vibration computed
with the "fth order theory and without introducing any shear correction factors match very
well with the corresponding analytical solution. Also, through-the-thickness distribution of
all of the stress components is found to agree well with the three-dimensional elasticity
solution, while the stress distribution obtained from the compatible plate theories deviates
considerably, especially for the higher modes.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Most of the higher order plate theories available in the literature neglect transverse normal
strains, those due to Mindlin and Medick [1], Soldatos and Watson [2], Babu and Kant
[3], Chao et al. [4], Lee and Yu [5], Batra and Vidoli [6], Messina [7], Carrera [8], Di
Carlo et al. [9] and the Cosserat brothers [10], amongst others, account for them. In
general, all these plate theories are derived from the equations of three-dimensional
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



64 R. C. BATRA E¹ A¸.
elasticity by expanding the kinetic and the kinematic "elds as a power series in terms of the
thickness co-ordinate z, and the plate theory is called higher order if terms involving z� with
K*3 are retained in these expansions. A challenging task is to investigate the least value of
K so that the derived plate theory is manageable and, at the same time, accurate. The
optimal value of K depends upon the aspect ratio of the plate, the boundary conditions
prescribed at its edges, the applied loads and which aspects of the three-dimensional
deformations should be more accurately modelled.

Several approaches are possible in deriving the equations of a shell or plate model. Here
a &&deductive''method is used: by using Legendre polynomials in z as the basis functions and
the mixed Hellinger}Reissner variational principle, we derive from the three-dimensional
elasticity a mixedKth order plate theory that is easily amenable to analysis. It accounts for
both transverse shear and transverse normal deformations of the plate, and boundary
conditions of normal and tangential tractions prescribed on its top and bottom surfaces are
exactly satis"ed through the proposed constitutive relations. We use this theory to study
plane travelling waves in a transversely isotropic plate and to order the displacement
descriptors introduced in terms of their decaying properties: the fastest a wave dominated
by a given displacement component decays, the less its contribution to the overall motion of
the plate. Furthermore, a theorem on the decomposition of plane waves in aKth order plate
is stated; these can be split into four uncoupled types: transverse symmetric, transverse
skew-symmetric, longitudinal membranal and longitudinal #exural.

Finally, frequencies of a simply supported homogeneous orthotropic rectangular plate
found with the "fth order theory match exactly with the analytical solution of Srinivas and
Rao [11]. Also, through-the-thickness variations of di!erent stress components computed
from the plate theory agree well with those obtained from the solution of the three-
dimensional elasticity equations. These results are also compared with results from the
Kirchho! and Mindlin models and from compatible plate theories; these last refer to higher
order shear and normal deformable plate theories whose constitutive relations are obtained
through a minimization of the standard energy functional; the reduction map for the
stresses are, in this case, simpler and do not satisfy the boundary conditions on the upper
and lower surfaces of the plate.

2. FORMULATION OF THE PROBLEM

Consider a prismatic anisotropic linear elastic body occupying the region C"S�I,
whereS�R� is a plane surface andI is the real interval [!h, h]. The boundary of C can
be written as

�C"(�S�I)�S��S�

where �S is the periphery of S, and S� and S� the top and the bottom surfaces of C, i.e.,
S�"S��h�, and S�"S��!h�. M"�S�I is called the mantle or the edges of C.
For a rectangular plate, S equals the rectangular region occupied by the midsurface of the
plate and M the four edges.

Equations governing deformations of an elastic body can be found as a saddle point of
the Hellinger}Reissner mixed functional

H (u, S)"�
/�C
Sn ) (u!u� ) #�

/�C
t ) u#�C (b ) u!S )E(u) #�

�
S ) �S). (1)
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Here u is the displacement of a point, E(u)"[Grad u#(Grad u)�]/2 the in"nitesimal
strain tensor, Grad the three-dimensional gradient operator, t"Sn the surface traction,
n an outward unit normal to the boundary, S the stress tensor, b the body force and � is the
fourth order compliance tensor. Moreover

�
�
C��

�
C"�C, �

�
C��

�
C"0/ ,

where �
�
C and �

�
C are the surfaces on which, respectively, the displacement u is prescribed

as u� and the surface traction Sn as t. To save some writing, the variable of integration has
been omitted in all integrals; the speci"ed domain of integration indicates whether it is an
area, a volume or a line integral. When studying dynamic deformations, the body force b is
replaced by b���!�u� , where b��� is the externally applied body force, � the mass density and
a superimposed dot indicates partial di!erentiation with respect to time.

The variation of H with respect to the displacement "eld u gives the balance equations
and the essential boundary conditions, while its variation with respect to the stress "eld
S provides the constitutive relations and the natural boundary conditions.

We use the following decomposition of the position vector x, the displacement "eld u and
the outward unit normal n:

x"r#z e, u"v#w e, n"n� #n e, (2)

where e is the unit normal to S. Thus v and w denote, respectively, the displacement of
a point within and perpendicular to S. The other "eld variables can now be written as

E(u)"sym grad v#
v�#grad w

2
� e#e �

v�#grad w

2
#w�e� e

":E) #��e#e��#	 e�e,

S"S� #s�e#e�s#
 e�e, b"b<#� e, t"t� #t e,
(3)

and the constitutive relations are partitioned as

�
E�

�

	 �"
� � �

�? � �

�? �? � �
S�

s


 �, (4)

where w�"�w/�z, grad is the two-dimensional gradient operator, sym grad v"(grad v#
(grad v)�)/2. Furthermore, E� represents the in-plane strain tensor, S� the in-plane stress
tensor, � the transverse shear strain, s the transverse shear stress, 	 the transverse normal
strain and 
 the transverse normal stress. a�b equals the tensor product between vectors
a and b; and (a�b)c"(b ) c) a for every vector c. Here E� and S� are three-dimensional
vectors, � and s two-dimensional vectors, and 	 and 
 are scalars. Furthermore, �, � and
�, �, �, � are respectively 3�3, 2�2 symmetric and 3�2, 3�1, 2�1, 1�1 matrices. The
forms of these matrices for a transversely isotropic material are given in section 3.2. In terms
of the quantities introduced in equations (2)}(4), Hellinger}Reissner functional (1) becomes

H(v, w, S� , s, 
)"�C [(b< ) v#�w)!(S� )E� #2s ) �#
	)]#�
/�C

(t� ) v#tw)

#�
/�C

[(S� n� #s n) ) (v!v� )#(s ) n� #
n) (w!wN )]

P

1

2 �C [S� ) (�S� #�s#�
)#s )(�?S� #�s#�
)#
 (�?S� #�?s#�
)]. (5)
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3. TWO HIGHER ORDER PLATE THEORIES

3.1. MIXED HIGHER ORDER PLATE THEORY (M)

For a plate-like body, displacements are usually not prescribed on its top surfaceS� and
the bottom surfaceS�. However, displacements and/or surface tractions may be prescribed
on the mantle or the edges of the plate. Thus

�
�
C"M

�
, �

�
C"M

�
�S��S�,

whereM
�
andM

�
are parts of the mantleM where displacements and surface tractions are

prescribed respectively. Let

¸
�
(z)"

1

�2h
, ¸

�
(z)"�

3

2h

z

h
, ¸

�
(z)"�

5

2h�3
z�

h�
!1��2,

¸
�
(z)"�

7

2h�!

3

2

z

h
#

5

2

z�

h��,2
(6)

represent Legendre polynomials de"ned on [!h, h], and normalized as

�¸
�
, ¸

�

 :"�

�

��

¸
�
(z)¸

�
(z) dz"�

��
, i, j"0, 1, 2,2, K, (7)

where �
��
is the Kronecker delta. The displacement "elds v and w are expanded as

v(r, z)"¸
�
(z) v

�
(r), w(r, z)"¸

�
(z)w

�
(r). (8)

Here and below a repeated index implies summation over the range of the index.
Components of the displacements v

�
and w

�
for K"3 are plotted in Figure 1.

For displacements given by equation (8), we have

E� "¸
�
(z)sym grad v

�
": ¸

�
(z) E�

�
,

�"¸
�
(z)�

D
��
v
�
#grad w

�
2 �":¸

�
(z)�

�
, (9)

	"¸
�
(z)D

��
w
�
":¸

�
(z)	

�
,

z

v0 v1 v2

r
v3

z
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r
w3,v0

Figure 1. Components of displacements for a third order plate theory.
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where we have set

¸�
�
(z)"D

��
¸

�
(z) (10)

and D
��
are constants. Note that the "rst row and the last column of the (K#1)�(K#1)

matrix D
��

are identically zero, since di!erentation of a Kth order polynomial yields
a polynomial of order (K!1). This has consequences in the balance equations where, for
instance, the shear force does not appear in the balance of the membranal stress tensor while
it does appear in the balance of bending moments; see equations (15).

The functional H given in equation (5) now reduces to

H"�S (B
�
) v

�
#�

�
w
�
)#�

/�S
[(F

�
!N

�
n� ) ) v

�
#(�

�
!T

�
) n� )w

�
]

#�S [(divN
�
!D

��
T
�
) ) v

�
#(div T

�
!D

��
�
�
)w

�
]#R (S� , s, 
), (11)

where

B
�
"�¸

�
, b< 
#¸

�
(h) t��#¸

�
(!h) t��, F

�
"�¸

�
, t� 
,

�
�
"�¸

�
, �
#¸

�
(h) t�#¸

�
(!h) t�, �

�
"�¸

�
, t
, (12)

N
�
"�¸

�
, S� 
, T

�
"�¸

�
, s
, �

�
"�¸

�
, 

,

div is the two-dimensional divergence operator, and R (S) , s, 
) is the part of H that does not
depend upon the displacements. Superscripts # and ! on a quantity signify its values on
surfacesS� andS� respectively. Furthermore,N

�
is a 2�2 symmetric matrix;N

�
gives the

in-plane (within the plane S) forces and is sometimes called the membranal stress tensor,
N

�
is the matrix of bending moments also called the moment tensor, the matrix

N
�
(i"2, 3,2 ,K) is comprised of a linear combination of matrices of bending moments of

order zero through i, T
�
is the resultant shear force or the shear stress vector, T

�
is the

moment of the internal double forces (i.e., forces acting along the normal e to the midsurface
of the plate), T

�
(i"2, 3,2 ,K) equals the linear combination of moments up to the ith

order of the internal double forces, �
�

is the transverse normal force, and
�
�
(i"1, 2, 3,2, K) the linear combination of the moments up to the ith order of the

transverse normal force. Note that the tangential and the normal surface tractions applied
on the top and the bottom surfaces of the plate appear in the de"nitions of B

�
and �

�
.

Because of the relation ¸
�
(!h)"(!1)�¸

�
(h) in which the index i is not summed,

¸
�
(h)t�#¸

�
(!h)t�"�

¸
�
(h)(t�#t�), i"0, 2, 4,2,

¸
�
(h)(t�!t�), i"1, 3, 5,2,

and similar relations hold for t' .
If the body forces include the inertia forces, i.e.,

b"b���!� u� , (13)

then

B
�
"B���

�
!R

��
v�
�
, �

�
"����

�
!R

��
wK
�
, (14)

where R
��
"�� ¸

�
, ¸

�

. If the mass density � is independent of z, then R

��
"� �

��
.
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The variation of H with respect to v
�
and w

�
gives

divN
�
!D

��
T
�
#B���

�
"R

��
v�
�
,

div T
�
!D

��
�

�
#� ���

�
"R

��
wK

�
,

on S, (15)

N
�
n� "F

�
,

T
�
)n� "�

�
,

on �
�
S, i"0, 1, 2,2, K. (16)

These are the balance equations and the natural boundary conditions for the plate theory.
Equations (15)

�
and (15)

�
are coupled because of the presence of the moments T

�
in both

equations. Recalling that the matrix D
��
is non-diagonal, T

�
, T

�
,2 , T

�
and �

�
, �

�
,2 , �

�
will appear in equations (15)

�
and (15)

�
respectively. Thus in order to solve the problem for

the Kth order theory, the 2(K#1) equations (15) need to be solved simultaneously.
A mixed variational principle requires an Ansatz for the expansion of stress "elds in the

thickness direction. We choose an expansion that automatically satis"es equations (12)
	
�
�

and the boundary conditions

s(r,$h)"$t��, 
 (r,$h)"$t�, (17)

on the top and the bottom surfaces of the plate. To this end we set

S� (r, z)"¸
�
(z)N

�
(r),

s(r, z)" I̧
�
(z)T

�
(r)#�

�
[¸

�
(z)! I̧

�
(z)]t�

�
(r)#�

�
[¸

�
(z)! I̧

�
(z)]t�

�
(r), (18)


(r, z)" I̧
�
(z)�

�
(r)#�

�
[¸

�
(z)! I̧

�
(z)] t

�
(r)#�

�
[¸

�
(z)! I̧

�
(z)] t

�
(r),

where

t�
�
(r)"(t� �!t��)/2, t�

�
(r)"(t��#t��)/2,

t
�
(r)"(t�!t�)/2, t

�
(r)"(t�#t�)/2,

(19)

�
�
"1/¸

�
(h), �

�
"1/¸

�
(h), (20)

� I̧
�
, ¸

�

"�

��
, I̧

�
($h)"0, i, j"0, 1, 2,2,K. (21)

Thus the in-plane stresses, S� , are expressed as a polynomial in z of degree K, but the
transverse shear stresses and the transverse normal stress as polynomials of degreeK#2 in
z. Note that, for z"$h, s and 
 automatically satisfy all the boundary conditions (17). The
I̧
�
(z) are Legendre polynomials of degree (K#2); they are not only orthogonal to all ¸

�
(z),

jOi but must also vanish at z"$h so that traction boundary conditions on the top and
the bottom surfaces of the plate are exactly satis"ed by the last two terms of equations (18)

�
and (18)

�
. They can be uniquely computed through equation (21). ForK"3, the solution of

equations (21)
�
and (21)

�
is

I̧
�
(z)"

�2

��
(5#30(�

�
)�!35(�

�
)
),

I̧
�
(z)" �

��
��

�
(!21 �

�
#210(�

�
)�!189(�

�
)	),

I̧
�
(z)" �

��
��

	
(!35#210(�

�
)�!175(�

�
)
),

I̧
�
(z)" �

��
��

�
(!187 �

�
#630(�

�
)�!441(�

�
)	). (22)
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Figure 2. Plots of the polynomial bases I̧
�
used in the representations of the transverse shear and the transverse

normal stresses for K"1, 2, 3, 4 and 5.
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Expressions for these functions forK"1, 2,2, 7 are given in reference [6]. ForK ranging
from 1 to 5, the polynomial I̧

�
(z) is plotted in the (i#1)th column of Figure 2. Note that

each I̧
�
(z) depends on the order K of the theory; however, the polynomials in each row

contain the polynomials of the following row. For instance, the parabolic distribution
represented by I̧

�
for K"1 in the "rst row can be represented as a linear combination of

the z-even polynomials in the second row, namely I̧
�
���

and I̧
�
���

. We also remark that
these polynomials, as well as their inner products, can be computed exactly, i.e., without any
numerical approximation, for every order K.

Substitution from equation (18) into equation (5) and setting the variation of H with
respect to N

�
, T

�
, and �

�
gives the constitutive relations

�
E�
�

�
�

	
�
�"�

�
��

�
��

�
��

�?
��

�
��

�
��

�?
��

�?
��

�
��
� �
N

�
T
�

�
�
�#�

0

(�
��
!P

��
) �

�
(� t�

�
#� t

�
)

(�
��
!P

��
) �

�
(�? t�

�
#� t

�
)� (23)

and the essential boundary conditions

v
�
"v��

�
, w

�
"wN I

�
, on �

�
S, (24)

where �
�
"0 for j*2, and

�
��
"��¸

�
, ¸

�

, �

��
"��¸

�
, I̧

�

, �

��
"��¸

�
, I̧

�

,

�
��
"�� I̧

�
, I̧

�

, �

��
"�� I̧

�
, I̧

�

, �

��
"[� I̧

�
, I̧

�

, (25)

P
��
"� I̧

�
, I̧

�

, v�

�
"�¸

�
, v� 
, wNI

�
"� I̧

�
, wN 
, i, j"0, 1, 2,2, K.
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In the second term on the right-hand side of equation (23), the index i is not summed. For
a homogeneous plate, or when the material properties do not vary in the thickness
direction, �

��
"��

��
, etc.

Balance laws (15), constitutive relations (23), boundary conditions (16) and (24) and the
strain}displacement relations (9) form a complete set of equations for the Kth order shear
and normal deformable plate theory. ForK"1 and 3, the present plate theory di!ers from
the "rst order shear deformation theory (FSDT) and the third order shear deformation
theory (TSDT) at least in the following two respects. Whereas these theories assume that
both the transverse normal strain and the transverse normal stress vanish identically, we do
not; as a matter of fact, the simultaneous vanishing of the transverse normal strain and the
transverse normal stress is mutually incompatible. Also, in the FSDT and the TSDT, the
transverse shear stresses are taken to be polynomials of degree 0 and 2 respectively. Here
these stresses are expressed as polynomials of degree 3 and 5 respectively. We note that in
the derivation of the TSDT, Reddy [12] and Hanna and Leissa [13] required that the
tangential tractions identically vanish on the top and the bottom surfaces of the plate. The
present plate theory accounts for non-zero tangential tractions applied on the top and/or
the bottom surface of the plate.

Results obtained from this theory are identi"ed with the letterM to signify the use of the
mixed variational principle in the derivation of the theory.

3.2. A COMPATIBLE HIGHER ORDER PLATE THEORY (C)

Mindlin and Medick [1], following the suggestion of W. Prager, also used Legendre
polynomials to expand the displacements as an in"nite power series in z, substituted
expressions (9) for strains in the constitutive relation S"���E, and employed the principle
of virtual work to derive the constitutive relations for stress resultants and moments of the
plate theory. This kind of procedure is called &&compatible'' since, after having de"ned the
kinematical reduction map (8), the reduction map for stresses is based on the same set of
polynomial functions and is only constrained to satisfy equations (12)

	
�
�
induced by the

kinematical reduction map (8); the only functional needed, in this case, is represented by the
principle of virtual power. In the literature several authors have used &&compatible''
identi"cation procedures both for deducing plate or beam equations or to implement "nite
element codes; see for instance reference [14].

In order to compare results with our model, we here sketch the compatible identi"cation
procedure for a Kth order plate; it consists in substituting for E� , � and 	 from equations (9)
into equation (4), solving it for S� , s and 
, and then use de"nitions (12)

	
�
�
ofN

�
, T

�
and �

�
to

derive expressions for them in terms of the displacements. We call the so derived plate
theory a compatible higher order shear and normal deformable plate theory, and signify
results computed from it by the letter C.

Assuming that constitutive relation (4) is invertible, we write its inverse as

�
S�

s


�"
� 	 �

	? 
 �

�? �? � �
E�

�

	 � (26)

and, substituting for stresses into de"nition (12)
	
�
�

of N
�
, T

�
and �

�
and for strains from

equation (9), we get

N
�
"�¸

�
, S� 
"�¸

�
, ¸

�
�
E�

�
#�¸

�
, ¸

�
	
 �

�
#�¸

�
, ¸

�
�
	

�
,
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T
�
"�¸

�
, s
"�¸

�
, ¸

�
	?
E�

�
#�¸

�
, ¸

�


 �

�
#�¸

�
, ¸

�
�
 	

�
, (27)

�
�
"�¸

�
, 

"�¸

�
, ¸

�
�?
E�

�
#�¸

�
, ¸

�
�?
 �

�
#�¸

�
, ¸

�
�
 	

�
.

These can be written as

�
N

�
T
�

�
�
�"�

�
��

	
��

�
��

	?
��



��

�
��

�?
��

�?
��

�
��
� �
E�
�

�
�

	
�
�, (28)

where

�
��
"�¸

�
, ¸

�
�
, 	

��
"�¸

�
, ¸

�
	
, �

��
"�¸

�
, ¸

�
�
,



��
"�¸

�
, ¸

�


, �

��
"�¸

�
, ¸

�
�
, �

��
"�¸

�
, ¸

�
�
. (29)

When the material properties do not vary in the thickness direction, �
��
"��

��
, etc. and the

stress "elds of order i are independent of the deformation "elds of order jOi; on the
contrary, when using the mixed constitutive relations (23), this does not hold true, since they
involve the non-diagonal matrix P

��
. Thus mixed relations (23) lead to a more coupled

systems of equations but, as we will see, give better results.
In the expansions of all six components of the stress tensor in the z direction, terms upto

z� are kept in this compatible plate theory in contrast to expansions (18) for stresses wherein
the transverse shear and the transverse normal stresses have terms up to z���. Also,
constitutive relations (28) of the higher order compatible plate theory do not necessarily
satisfy boundary conditions on the top and the bottom surfaces of the plate but constitutive
relations (18) of the higher order plate theory derived from the mixed variational principle
do.

4. CONSTITUTIVE RELATIONS CORRESPONDING TO DIFFERENT
MATERIAL SYMMETRIES

Whereas constitutive relations (28) of the compatible plate theory involve elasticities of
the material, constitutive relations (23) are in terms of material compliances. For a
non-homogeneous and anisotropic plate, the matrix of elasticities can be inverted only
numerically to obtain the compliance matrix. However, for a homogeneous orthotropic
plate with one plane of symmetry coincident with its midsurface, the matrix of elasticities
can be inverted analytically. This inversion becomes simpler as the material symmetry
increases. For example, for a homogeneous transversely isotropic plate with the unit vector
e as the axis of transverse isotropy, the matrices �, �, �, etc. in constitutive relation (4) are

�"

2�
�
#�

�
�
�

0

�
�

2�
�
#�

�
0

0 0 2�
�

, (30)

�"0, �"�


I� , �"(�

�
/2)I� , �"0, �"�

	
,

where �
�
, �

�
, �

�
, �



and �

	
are material parameters, I� "�1, 1, 0�? and I� is the 2�2 identity

matrix.



72 R. C. BATRA E¹ A¸.
Similarly the matrices appearing in constitutive relation (26) have the representations

�"

2�
�
#�

�
�
�

0

�
�

2�
�
#�

�
0

0 0 2�
�

, (31)

	"0, �"�


I� , 
"(�

�
/2)I� , �"0, �"�

	
,

where �
�
, �

�
, �

�
, �



and �

	
are material parameters. In terms of the in-plane and transverse

Young's moduli (E and E
	
), the in-plane and transverse Poisson ratios (� and �

	
) and the

transverse shear modulus (G
	
), we have

�
�
"

1#�
2E

, �
�
"!

�
E
, �

�
"

1

G
	

, �


"!

�
	
E
, �

	
"

1

E
	

,

�
�
"

E

2(1#�)
, �

�
"

E (� �
	
#��

	
)

�
	
!2 ��

	
!�� �

	
!2 � ��

	

, �
�
"4G

	
, (32)

�


"!

�
	
E

��
	
!�

	
#2 ��

	

, �
	
"

(�!1)E

��
	
!�

	
#2��

	

, �
	
"

E

E
	

, �
	
"

E

G
	

.

For an isotropic homogeneous plate, relations (32) simplify to

4�
�
"�

�
"

1#�
2E

, �
�
"�



"!

�
E
, �

	
"

1

E
, �

	
"1, �

	
"2(1#�),

4�
�
"�

�
"

2E

(1#�)
, �

�
"�



"!

�E
�!1#2��

, �
	
"

(�!1)E

�!1#2��
.

(33)

Constitutive relations (23) for a transversely isotropic plate with e as the axis of transverse
isotropy and the top and the bottom surfaces traction free can be written as

E�
�
"2�

�
N

�
#(�

�
(trN

�
)#�



�

�
) I� ,

	
�
"�



trN

�
#�

	
P
��
�

�
, 2�

�
"�

�
P

��
T
�
;

(34)

and these equations can be inverted to get

N
�
"2�

���
E�

�
#(�

���
trE�

�
#�


��
	
�
) I� ,

�
�
"�


��
trE�

�
#�

	��
	
�
, T

�
"2 �

���
�
�
.

(35)

Here tr N
�
equals the sum of the diagonal terms of the matrix N

�
. In general, explicit

expressions for the coe$cients � can be given only in some special cases (depending on the
order of the theory). Also, since the matrix P

��
is not diagonal and depends on the order of

the theory, expressions for all of the parameters � cannot be computed analytically for an
arbitrary order K of the theory. However, we can show that

�
���

"

1

4 �
�

�
��
":�

�
�
��
, �

���
"

1

�
�

P��
��

":�
�
P��
��

, (36)
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and that for a"1, 2, 3, 4, 5, �
���

"0 when i#j is odd. We will analyze the consequences of
this last property in the following section. Because of the presence of P

��
in equations (34)

�
and (34)

�
, the transverse shear strains and the transverse normal strain at the ith order may

depend upon the transverse shear force and the transverse normal force of all orders up to
and including the ith order.

5. PLANE WAVE SOLUTIONS IN A TRANSVERSELY ISOTROPIC PLATE

Ericksen [15] has studied plane in"nitesimal waves in a homogeneous elastic plate by using
the Cosserat theory of plates [10], and discussed conditions under which frequencies
corresponding to real wave vectors must be real. Yang et al. [16] have used the "rst order
shear deformation theory to study wave propagation in an in"nite two-layer isotropic plate
undergoing plane strain deformations.

We seek solutions of equations (15) and (23) in the form of travelling plane waves, i.e.,

�
v
�
(r, t)

w
�
(r, t)�"Re��

V
�
=

�
� exp [I (� t!k ) r)]�, (37)

where I"�!1, � is the circular frequency, V
�

and =
�

are constants, k"��,
�"cos � e

�
#sin � e

�
is the direction of propagation of the plane wave, e

�
and e

�
are

orthonormal vectors in the plane S and Re( ) ) denotes the real part of ( ) ). Using the Euler
relation we obtain

Re[(a#I b) exp(c#I d)]"exp(c) [a cos(d)!b sin(d)], (38)

where a, b, c and d are real numbers. Thus, in our representation, the real and the imaginary
parts of � equal, respectively, the inverse of the wavelength and the inverse of the length of
decay; the real and the imaginary parts of the associated eigenvectors are the sine and the
cosine components of the wave form. Moreover, the ratio �/Re(�) is the phase speed. In the
following we omit writing Re( ) ) on the right-hand side.

Substitution for v
�
and w

�
from equation (37) into equation (9) yields

E�
�
"!I� sym (V

�
��) exp[I (� t!k ) r)],

�
�
"�

�
(D


�
V



!I�=

�
�) exp[I (�t!k ) r)], (39)

	
�
"D


�
=



exp[I (� t!k ) r)],

while, using constitutive relations (35) for a transversely isotropic material, the stress
resultant "elds become

N
�
"[!2 I��

���
sym (V

�
� �)#(�


��
D


�
=



!I� �

���
V

�
) �) I� ] exp[I(� t!k ) r)],

�
�
"[!I��


��
(V

�
) �)#�

	��
D


�
=



] exp[I (� t!k ) r)],

T
�
"�

���
(D


�
V



!I�=

�
�) exp[I (� t!k ) r)]. (40)
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Substituting for N
�
, �

�
and T

�
from equation (40) into balance laws (15), we get the

following set of simultaneous linear equations in V
�
and =



:

[�� (�
���

(I� #���)#�
���

���)!��� �
��
I� ]V

�

#D
��
�
���
D


�
V


#I� (�


��
D


�
!D

��
�
��


)=


�"0,

(�
���

��!��� �
��
)=

�
#D

��
�
	��
D


�
=



#I � (�

���
D


�
!D

��
�

�


) (V


) �)"0,

i, j, k, h"0, 1,2 ,K. (41)

The requirement that system of equations (41) have a non-trivial solution leads to the
dispersion relation

�
�
"F

�
(�), n"1, 2,2, 6(K#1), (42)

where for each frequency �, the real part of F
�
(�) represents the inverse of the associated nth

wavelength, while the imaginary part represents the inverse of its length of decay. For each
set ��, F

�
(�)�, the non-trivial solution of equations (41) gives the associated wave form

(V
�
,=

�
, V

�
,=

�
,2, V

�
,=

�
).

5.1. SHEAR, MEMBRANAL AND FLEXURAL PROBLEMS

In this section, we adopt the classical partition of wave-propagation problems into simplest
cases appropriate for plate theories of arbitrary order K.

De5nition. An n�n matrix M is said to be chessboard-0 (chessboard-1) if its components
satisfy the relationM

��
"0 when i#j is odd (even). We denote by C0 (C1) the vector space of

chessboard-0 (chessboard-1) matrices. Thus, for instance, the even components of the vector
(Mv) do not depend on the odd components of the vector v if M3C0.

Proposition. ¹he following statements are true:

M3C0, and M�� exists N M��3C0,

M,N3C0, or M, N3C1
N (M

3
N)3C0, (43)

M3C0, N3C0
N (M

3
N)3C1,

where M
3
N denotes the multiplication of matrices M and N.

We are now able to prove the

Theorem. ¹he 3(K#1) scalar equations (41) can be partitioned into the direct sum of four
di+erent uncoupled problems of sizes (K#1)/2, (K#1)/2,K#1 and K#1.

Proof. Let;
�
and<

�
represent, respectively, components of the ith displacement parallel and

normal to the direction of wave propagation. That is,

V
�
";

�
�#<

�
�, � ) �"0, � ) �"1.
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Then equations (41) reduce to

(���
�
!���)<

�
#�

�
D

��
P��

��
D


�
<


"0,

[��(�
�
�
��
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���
)!����
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�
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�
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��
��D
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#I� (�
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��
P��
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P��
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!��� �
��
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�
#D
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	��
D


�
=



#I� (�

�
P��
��
D


�
!D

��
�

�


);


"0. (44)

Since the polynomials ¸
�
and I̧

�
are, by construction, alternatively even and odd on the

interval [!h, h], we "nd that D
��

3C1 and P
��

3C0. Moreover, we have �
��

3C0 and �
���

3C0

for a"1, 2, 3, 4 and 5. By means of the above proposition, D
��
P��

��
D


�
3C0, but both �

���
D


�
and P��

��
D

�

belong to C1.

It follows that the following partition of the eigenvectors

�;
�
, <

�
,=

�
,2,;

�
, <

�
,=

�
,2, �"�<

�
, <

�
, <
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��<
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, <

�
, <
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��;
�
,=

�
,;

�
,=

�
,;



,=

	
,2�

��=
�
,;

�
,=

�
, ;

�
,=



,;

	
,2� (45)

induces a partition of equations (44) into the four respective uncoupled problems: transverse
symmetric (T0), transverse skew-symmetric (T1), longitudinal membranal (LM) and
longitudinal #exural (LF) waves. �

The adjectives &&transverse'' and &&longitudinal'' imply that in the "rst case the
displacement is purely orthogonal to the direction of propagation while in the second case
there are also components of the displacement parallel to the propagation direction.

Finally, we remark that equations (44) and, as a consequence, their decomposition still
holds for a compatible higher order plate theory but is not valid when either (a) the material
anisotropy is such that tensors � and � (or 	 and �) are not zeroes (this will be the case
when the axis of transverse isotropy is not along the normal to the midsurface of the plate);
or (b) the material, although isotropic, has properties varying in the thickness direction, e.g.,
a plate made of an inhomogeneous material. In these cases the constitutive relations (44)
could be inverted numerically, but no a priori prediction of the decomposition of the wave
forms is possible.

In terms of the non-dimensional variables denoted below by a superimposed tilde,
equations (44) become

(�J �!��)<I
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�
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��
P��
��
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��
!�� �

��
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#DI

��
�I
	��
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�
=I



#I�J (�I

�
P��
��
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!�I

��
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);I



"0, (46)

where

�J "h�, �I
���

"�
���
/�

�
, v�



"v



/h, DI

��
"hD

��
, ��"h� ���/�

�
. (47)

Since the thickness of the plate appears in the de"nition of the dimensionless frequency �,
a thin plate at high frequencies behaves similar to a thick plate at low frequencies.



Figure 3. Solutions of dispersion relation (42). (a) Longitudinal membranal (LM) waves for K"1; components
;

�
(red) and=

�
(green). (b) Longitudinal #exural (LF) waves for K"1; components=

�
(red) and ;

�
(green). (c)

LM waves for K"2; components ;
�
(red), =

�
(green) and ;

�
(blue). (d) LF waves for K"2; components

=
�
(red), ;

�
(green) and=

�
(blue).
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�A wave is said to be non-dispersive if the group velocity equals the phase velocity, i.e.,

��

�Re(�J )
"

�

Re(�J )
;

thus if the relation between Re(�J ) and � is linear, then the wave is non-dispersive.

5.2 COMPLEX ROOTS OF THE DISPERSION RELATION AND INTERACTIONS

A complete description of the solutions of dispersion formula (42) is shown in Figures 3}5
for a homogeneous isotropic material with the Poisson ratio �"0)33. In Figure 3, the
colors indicate the displacement components of the associated eigenvectors.

In Figure 3(a), the green branch is for=
�
and means a wave of uniform stretching of the

thickness, while the red branch is associated with;
�
and signi"es a pure longitudinal wave

with constant displacement through the thickness; these kind of waves, involving in-plane
deformations and thickness distension, have been analyzed also by Di Carlo et al.
[9]. After a certain value of the non dimensional frequency � the=

�
waves do not decay

anymore. Moreover, a veering phenomenon between the red and the green branches occurs
at �K3; in the region of distortion there is neither a purely red nor a purely green wave. In
other words, in that region the longitudinal waves necessarily involve a change in thickness
and vice versa. Finally, for high values of � all of the branches tend to become straight lines
(non-dispersive waves�). Figure 3(c) depicts a re"nement of these phenomena through the
introduction of ;

�
(blue color); this describes a longitudinal (in the direction of �)

displacement "eld parabolic in z, whose average value over the thickness and the "rst
moment vanish, as shown in Figure 1. As Figure 3(c) shows, for high frequencies this "eld is
intrinsically coupled with the =

�
waves.



Figure 4. Solutions of dispersion relation (42) for K"3. The imaginary part of �J is represented by gray curves,
the real part by black curves.
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Results for the longitudinal #exural waves are shown in Figures 3(b) and 3(d). ForK"1,
they involve the usual shear waves associated with=

�
(red branches) and the conventional

rotation waves associated with;
�
(green branches). For low dimensionless frequencies they

are coupled together and give rise to the conventional bending waves; this coupling
vanishes after a certain value of �. Note that the shear-wave branch is non-dispersive.
Finally, for K"2 the descriptor =

�
(blue color) is also involved; it does not change the

aforementioned behavior for low values of � but interacts through a double veering with
both the red and the green branches for �3(5, 10) (cf., Figure 3(d)).

For K'2 there is no way to associate an independent color to each component of the
eigenvector, so the waves are represented as follows. Figures 4 and 5, respectively, represent
the wave solutions for K"3 and 4; the gray color indicates the imaginary part of �J while
the dark curves signify the real part.

As expected, with an increase in the order K of the plate theory, we get new wave
solutions that describe the propagation of the high order displacement "elds. For low



Figure 5. Solutions of dispersion relation (42) for K"4. The imaginary part of �J is represented by gray curves,
the real part by black curves. (a) LF, (b) LM, (c) T0}T1.
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dimensionless frequencies these higher order solutions show relevant imaginary parts of the
wavelength or, in other words, small lengths of decay. However, there are some critical
values of frequencies beyond which all waves have vanishing damping ratios and exhibit
non-dispersive behaviors. Typically, the higher is the polynomial order of the displacement
descriptor introduced, the smaller is the associated length of decay, i.e., the size of the
induced boundary layer.

The following questions arise: do the displacement "elds of order K always decay faster
than the displacement "elds of order (K!1)? Which components of the displacement decay
the most? How do the material properties in#uence this ordering?

In the case of T0}T1 waves in a transversely isotropic plate, for every order K, the
intercepts of the gray lines with the axes �"0 and Im(�J )"0 are proportional to
�(1#�)G

	
/E. In other words, the lengths of decay under static conditions and the critical

frequencies*after which the waves do not decay anymore*are proportional to the ratio
between the transverse and the in-plane shear moduli. The ordering of the T0}T1
displacement descriptors <

�
is then trivial; refer to Figures 4 and 5.
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For the LM and the LF waves the situation is more complicated, and depends on the
order of the theory. An analytical solution cannot be found for an arbitrary order of the
plate theory. ForK"1 and the LM waves (or forK"2 and the LF waves) the intercept of
the green (blue) curve with the plane �"0 in Figures 3(a) and 3(d) is proportional to

��
	
/4 (�

	
!��

	
); while the critical frequency, the intercept of the same curve with the plane

Im(�)"0, is proportional to �2 (1!��)/�
	
(1!�)!2 ��

	
. Thus, in a material very soft in

the thickness direction and very sti! in the in-plane directions, the critical frequency, after
which the =

�
wave (or the =

�
wave) has vanishing damping, can be small; thus a plate

model without the descriptors=
�
(=

�
) can have a small range of predictability. Anyway,

the ordering of the ¸M and ¸F displacement descriptors ;
�
and=

�
, in terms of decaying

properties is not obvious and will be analyzed in detail in the following section.

5.3. LENGTHS OF DECAY

We now analyze in more detail the wave solutions under quasistatic conditions, i.e.,
�K0, and elucidate upon the relative importance of various displacement "eld descriptors
(namely the "elds ;

�
, <

�
,=

�
), i.e., which ones decay the most and at what distances from

a unitary source. It will enable one to choose a plate theory of orderK that is not complete,
i.e., in which some components of the displacement "elds are neglected due to their decay
properties: two di!erent examples, considering both an isotropic and a transversely
isotropic material, are presented in order to elucidate this concept.

Recall that, the amplitude of the plane wave associated with �3� is reduced by the factor
exp(!�) at a distance d"�h/ �Im(�J ) � where 2h equals the plate thickness. For an isotropic
material with the Poisson ratio �"0)33, Table 1 shows for the four di!erent waves the
TABLE 1

¸engths of 95% decay in the wave amplitude and the associated eigenvectors for the four
di+erent waves in an isotropic homogeneous plate

95% decay 1P0)8 0)8P0)6 0)6P0)4 0)4P0)2

¸F waves
R =

�0)800h =
�

;
�

=


,;

	0)562h ;
	

;
�

=


,=

�0)381h =


, ;

	
,=

�
=

�
,;

�0)083h =
�

=



=
�

¸M waves
1)424h =

�
;
�

=
�0)567h ;



, =

�
,=

	
=

�
,;

�0)330h ;
�
,=

�
,=

	
,=

�
=

�0)074h =
�

=
	

=
�
,=

�
¹0}¹1 waves

R <
�1)910h <
�0)955h <
�

<

0)637h <

�
<
	0)467h <



<
�

<
�0)376h <

	
, <

�
<
�0)209h <

�
<

0)202h <

�
<
	

<
�



TABLE 2

¸engths of 95% decay in the wave amplitude and the associated eigenvectors for the four
di+erent waves in a transversely isotropic homogeneous plate

95% decay 1P0)8 0)8P0)6 0)6P0)4 0)4P0)2

¸F waves
R =

�
3)480h =

�
;
�

;
	

2)021h =
�

;
	
,;

�
;

�
1)078h =

�
=

�
,;

�
;

	
0)608h =

�
=



0)293h =



=

�
=

�
0)084h =

�
=



=

�

¸M waves
4)925h ;

�
=

�
,;



2)393h ;



=

�
,;

�
;

�
1)168h =

�
0)400h =

�
=

	
0)239h =

	
,=

�
=

�
0)077h =

�
=

	
=

�

¹0}¹1 waves
R <

�
5)971h <

�
2)986h <

�
<



1)990h <
�

<
	

1)462h <



<
�

<
�

1)176h <
	
, <

�
<
�

0)654h <
�

<



0)633h <
�

<
	

<
�
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lengths of a 95% decay and the associated eigenvectors. The components of eigenvectors
normalized to have unit Euclidean norm are divided into four columns of relative
importance. Because of this normalization, a displacement component can have
a maximum value of one. For each wave type, the amplitudes of the displacement vector are
divided into four groups with magnitudes in the range 0)2}0)4, 0)4}0.6, 0)6}0.8 and 0)8}1)0;
those with amplitude less than 0)2 are ignored. For instance, the second row of Table
1 implies that for the LF waves the eigenvector, constituted by the contribution of
=

�
between 0)8 and 0)6,;

�
between 0)6 and 0)4, and=



and;

	
between 0)4 and 0)2, decays

after a distance of 0)8h from the unitary source to 5% of its initial amplitude. Since the
initial amplitude (i.e., the square root of the sum of squares of displacement components) of
the wave equals 1, after the 95% decay it is reduced to 0)05. Even though we have not listed
the magnitude of each component, their relative magnitudes remain unaltered because they
are the components of an eigenvector.

Table 2 shows analogous results in terms of 95%-decay lengths for a transversely
isotropic material with �"0)33, �

	
"0)33, �

	
"10, �

	
"26. Again the components of

eigenvectors, normalized to have unit Euclidean norm, are divided into four columns of
relative importance.

From the aforestated results, it is evident that, while the hierarchy of the T0}T1 waves is
straightforward, that of LM and LF waves containing displacements ;

�
and =

�
is more

involved. Depending on the material of the plate and the problem being examined, a higher
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order descriptor "eld can decay less than a lower order descriptor "eld. For example in
Table 2 for the LFwaves, the contributions of;

	
and;

�
to the eigenvectors are between 0)4

and 0.6 while that of ;
�
is between 0)2 and 0)4. Similarly, from Table 2, one can conclude

that for studying deformations associated with the LM waves, one can use an incomplete
theory with kinematic variables ;

�
, ;

�
,=

�
,;



and ;

�
, and neglect=

�
and=

	
since the

waves involving=
�
and =

	
have a much smaller length of decay.

6. MODAL ANALYSIS FOR A SIMPLY SUPPORTED PLATE

In a rectangular plate of sides a and b let e
�
, e

�
be the two orthonormal vectors parallel to

the sides; moreover let r"x e
�
#y e

�
. At the simply supported edges we apply the

boundary conditions

wN "v�
�
"t

�
"0, on x"0, a,

wN "v�
�
"t

�
"0, on y"0, b,

(48)

or in terms of the plate theory

w
�
"v

��
"N

���
"0, on x"0, a,

w
�
"v

��
"N

���
"0, on y"0, b, i"0, 1, 2,2 ,K. (49)

The boundary conditions (48) are the same as those presumed by Srinivas and Rao [11].
These authors employed the three-dimensional elasticity equations to study free vibrations
of a simply supported rectangular plate. For studying free vibrations of the plate, we assume
that there are neither body forces nor surface tractions acting on the top and the bottom
surfaces of the plate.

We seek solutions of balance equations (15), constitutive relations (23) and boundary
conditions (49) in the form

v
��

";
���

e
�	 cos(m�x/a) sin (n� y/b),

v
��

"<
���

e
�	 sin (m �x/a) cos (n� y/b), m, n"1, 2,2M. (50)

w
�
"=

���
e
�	 sin (m �x/a) sin (n� y/b),

For each given pair (m, n) we obtain a linear eigenvalue problem for the determination of the
frequency � and the corresponding mode vector �,2,;

���
, <

���
,=

���
,2�. The procedure

is standard and we do not provide, for sake of brevity, the "nal form of the eigenvalue
problem.

The present results are compared with those of Srinivas and Rao; to this aim the plate is
assumed to be made of an Aragonite crystal, whose material parameters are listed in
reference [11], an homogeneous and orthotropic material with one plane of symmetry
coincident with the midsurface of the plate.

Following the reasoning similar to that used to prove the theorem of section 4.1, this
system is decomposed into two sets of uncoupled equations, namely a membranal problem
*with deformations symmetric about the midplane and labelled by Srinivas and Rao with
the letter &&S''*involving the variables �;

���
, <

���
,=

���
, ;

���
, <

���
,=

���
,;


��
,

<

��

,=
	��

,2� and a #exural problem*with deformations antisymmetric about the
midplane and labelled by Srinivas and Rao with the letter &&A''*involving the variables
�;

���
, <

���
,=

���
, ;

���
, <

���
,=

���
, ;

	��
, <

	��
,=


��
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6.1. COMPARISON OF EIGENVALUES

In Table 3, for 2mh/a"0)5 and 2nh/b"0)1, 0)2, 2, 0)5, the "rst eight dimensionless
eigenvalues

� :"2�h�
�

�
��

, (51)

computed for plate theories of di!erent order (i.e., di!erent values ofK), are compared with
the exact results of Srinivas and Rao [11]. Results for the Kirchho! plate theory and the
Mindlin plate theory are taken from their paper. Symbols 1C, 3C, etc. signify results
computed with the "rst order (K"1) and third order (K"3) plate theories but using
compatible constitutive relations (28). Symbols 1M, 3M, etc. denote results obtained with
the "rst and the third order plate theories and constitutive relations (23). All results are
compared in terms of percent errors, i.e., 100(�

��
!�

����
)/�

��
.

We note that the Kirchho! plate theory and the Mindlin plate theory are incapable of
predicting any of the S-modes of vibration which involve in-plane deformations of the plate.
The order of the plate theory that gives accurate values of frequencies increases with the
mode number considered. For example, for modes I-A, I-S, II-A and II-S, the present "rst
order shear and normal deformable plate theory gives frequencies within 0)65% of their
exact values. However, for modes III-A and III-S, one needs a third order shear and normal
deformable plate theory to compute frequencies within 0.42% of their analytical values. For
modes IV-S and V-S, a "fth order shear and normal deformable plate theory is needed to
obtain accurate values (within 0.3% of the exact values) of the frequencies, and frequencies
computed with the present and hence any third order shear and normal deformable plate
theory have errors of about 10%. For 2h/a"2h/b"0)1 and m, n"1, 2 and 3, Chao et al.
[4] show that their third order shear and normal deformable plate theory (which is identical
to the present compatible plate theory withK"3) gives frequencies that agree exactly with
the analytical solution of Srinivas and Rao [11]. Kant and Swaminathan [17] have
compared the analytical frequencies of Srinivas and Rao [11] with those obtained from "ve
di!erent plate theories, four of which neglect the transverse normal strains and one is
essentially identical to that of Chao et al. [4] but published prior to Chao et al.'s work.
However, both Chao et al. [4] and Kant and Swaminathan [17] consider only modes of
vibration that are antisymmetric about the midplane of the plane. Results presented in
Table 3 reveal that the errors in the frequencies of the fourth and the "fth modes of
vibrations symmetric about the midplane and computed with the third order shear and
normal compatible plate theory are about 10 and 35% respectively. At least a "fth order
either compatible or the present shear and normal deformable plate theory is needed to
reduce these errors to less than 0)6%. The present shear and normal deformableKth order
plate theory involves 3(K#1) unknowns at each point of the midsurface of the plate. For
every "xed value of K, results computed with the mixed constitutive relations (23) yield
considerably less error than those computed with the compatible constitutive relations (28);
as a matter of fact, only in the former model the boundary conditions on the top and bottom
surfaces of the plate exactly are satis"ed.

6.2. COMPARISON OF STRESS DISTRIBUTIONS

Recalling that the exact solution is found by the method of separation of variables, the
ratios S

��
(r, z)/S

��
(r, zN ), S

��
(r, z)/S

��
(r, zN ), 2, 
 (r, z)/
(r, zN ), for z and zN 3 (!h, h), are



TABLE 3

For an Aragonite crystal (orthotropic) simply supported rectangular plate, comparison of exact frequencies with those computed from the present
higher order plate theory

% error

2mh/a 2nh/b Exact value Kirch. Mindlin 1C 1M 3C 3M 5C 5M

Mode I-A
0)5 0)1 0)45265 62)10 !0)393 9)475 !0)394 0)062 0)008 0)002 0)000
0)5 0)2 0)48680 63)95 !0)446 9)453 !0)445 0)066 0)010 0)006 0)000
0)5 0)3 0)54160 67)02 !0)523 9)462 !0)524 0)079 0)014 0)015 0)000
0)5 0)4 0)61465 71)25 !0)621 9)518 !0)621 0)101 0)020 0)029 0)000
0)5 0)5 0)70338 76)52 !1)031 9)615 !0)726 0)130 0)028 0)045 0)000

Mode I-S
0)5 0)1 0)81720 * * 0)030 0)005 0)008 0)000 0)004 0)000
0)5 0)2 0)85223 * * 0)112 0)021 0)026 0)000 0)014 0)000
0)5 0)3 0)90962 * * 0)226 0)051 0)048 0)000 0)025 0)000
0)5 0)4 0)98732 * * 0)351 0)094 0)065 0)000 0)034 0)000
0)5 0)5 1)08240 * * 0)476 0)149 0)075 0)001 0)038 0)000

Mode II-S
0)5 0)1 1)5890 * * 0)011 0)003 0)001 0)000 0)000 0)000
0)5 0)2 1)6425 * * 0)027 0)008 0)002 0)000 0)001 0)000
0)5 0)3 1)7266 * * 0)074 0)026 0)005 0)000 0)002 0)000
0)5 0)4 1)8350 * * 1)087 0)084 0)010 0)001 0)004 0)000
0)5 0)5 1)9596 * * 6)178 0)277 0)023 0)007 0)005 0)000

Mode II-A
0)5 0)1 1)8056 * 0)521 16)24 0)519 0)040 0)001 0)001 0)000
0)5 0)2 1)7974 * 0)517 15)32 0)514 0)057 0)004 0)005 0)000
0)5 0)3 1)7999 * 0)533 14)59 0)534 0)086 0)009 0)009 0)000
0)5 0)4 1)8187 * 0)577 12)88 0)575 0)124 0)018 0)013 0)000
0)5 0)5 1)8559 * 0)571 7)116 0)630 0)168 0)028 0)016 0)000
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TABLE 3

Continued

% error

2mh/a 2nh/b Exact value Kirch. Mindlin 1C 1M 3C 3M 5C 5M

Mode III-A
0)5 0)1 2)0667 * 0)498 10)29 0)499 0)107 0)025 0)000 0)000
0)5 0)2 2)1344 * 0)614 10)86 0)613 0)156 0)039 0)002 0)000
0)5 0)3 2)2288 * 0)767 11)08 0)771 0)234 0)062 0)005 0)000
0)5 0)4 2)3412 * 0)970 16)18 3)532 0)341 0)095 0)008 0)000
0)5 0)5 2)4665 * 1)216 22)85 1)216 0)480 0)141 0)011 0)000

Mode III-S
0)5 0)1 2)2395 * * 28)16 5)351 0)891 0)418 0)004 0)002
0)5 0)2 2)2386 * * 29)13 5)968 0)878 0)403 0)004 0)001
0)5 0)3 2)2380 * * 30)67 6)957 0)868 0)386 0)004 0)001
0)5 0)4 2)2394 * * 26)91 5)560 0)868 0)376 0)006 0)000
0)5 0)5 2)2468 * * 21)99 9)629 0)872 0)371 0)011 0)000

Mode I<-S
0)5 0)1 3)0334 * * * * 28)80 10)30 0)411 0)195
0)5 0)2 3)0174 * * * * 29)42 10)59 0)405 0)192
0)5 0)3 3)0040 * * * * 29)99 10)84 0)398 0)188
0)5 0)4 3)0000 * * * * 30)29 10)95 0)390 0)183
0)5 0)5 3)0082 * * * * 30)25 10)90 0)381 0)178

Mode <-S
0)5 0)1 3)3648 * * * * 36)66 13)17 0)464 0)218
0)5 0)2 3)4204 * * * * 35)57 12)75 0)479 0)226
0)5 0)3 3)4991 * * * * 34)27 12)30 0)500 0)237
0)5 0)4 3)5931 * * * * 32)99 11)91 0)529 0)251
0)5 0)5 3)6979 * * * * 31)83 11)60 0)565 0)270
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Figure 6. Comparison of through-the-thickness distribution of stresses computed from the present plate theory
with the exact solution of Srinivas and Rao which is denoted by "lled circles. (a) Mode I-A: (*) 1M, 1C; (---) 3M,
3C. (b) Mode I-S: (*) 1C; (---) 1M, 3C. (c) Mode II-S: (*) 1C; (---) 1M; (} }) 3C. (d) Mode III-A: (*) 3M; (---) 3C;
(} }) 1M; (**) 1C.

PLANE WAVE SOLUTIONS AND MODAL ANALYSIS 85



86 R. C. BATRA E¹ A¸.
independent of the values of the in-plane position vector r. Thus in Figure 6, for several
choices of zN 3(!h, h) indicated in the axes labels, the ratios of di!erent stress components
are plotted as a function of z/h for mh/a"nh/b"0)15 and four modes of vibration. The
"lled circles denote exact values taken from Table 6 of Srinivas and Rao [11]. The order of
the plate theory used is the minimum one that gives a good agreement with the analytical
values. It is evident that the third order shear and normal deformable plate theory (3M) not
only gives accurate values of the frequencies but also of the through-the-thickness
distribution of stresses. Because of the expansion of the transverse shear and normal stresses
in terms of the basis functions I̧

�
(z), even the "rst order shear and normal deformable plate

theory is able to match the cubic or the parabolic distributions of the transverse normal and
the transverse shear stress components. The values of these stresses are obtained from
expressions (18) of the presented plate theory rather than by integrating the three-
dimensional elasticity equations as is often done in the conventional third order shear
deformation plate theory.

For the three antisymmetric modes of vibration, and formh/a"nh/b"0)15, we compare
in Table 4 the maximum values of di!erent stress components computed from the plate
theory with those obtained from the exact solution of Srinivas and Rao [11]. These
comparisons reveal that the present "fth order shear and normal deformable plate theory
(5M) gives maximum values of stresses which are within 1)7% of their analytical values. The
largest error occurs in the value of the transverse normal stress, and the maximum error in
the other components of the stress tensor is around 0)6%. For modes I-A and II-A, the
TABLE 4

For an Aragonite crystal (orthotropic) simply supported rectangular plate, comparison of the
exact maximum values of di+erent stress components with those computed from the present

,fth-order shear and normal deformable plate theory

S� ���
��
S� ���
��


���

S� ���
��

S� ���
��
S� ���
��

s���
�
S� ���
��

s���
�
S� ���
��

Mode I-A
Exact value 0)7278 0)0301 0)4759 0)2827 0)229
% error Kirchho! !15)61 !100)00 !10)23 3)71 !11)66
% error Mindlin 5)70 !100)00 3)74 16)94 15)46
% error 1M 5)73 !100)00 3)76 16)93 15)49
% error 3M 0)90 25)12 0)04 0)28 0)17
% error 5M 0)02 !1)68 0)00 0)02 0)02

Mode II-A
Exact value 0)0565 0)0002 0)1396 0)6128 0)5355
% error Mindlin !69)20 !100)00 11)96 !23)04 !27)06
% error 1M !9)24 !100)00 1)61 !20)65 !21)79
% error 3M 0)15 246)90 0)02 0)81 0)75
% error 5M 0)03 !0)00 0)00 !0)01 !0)02

Mode III-A
Exact value 0)8624 0)1657 0)5336 0)4407 1)3100
% error Mindlin !44)29 !100)00 !30)70 134)17 !56)53
% error 1M !0)37 !100)00 !0)25 !23)83 !22)67
% error 3M !3)31 13)46 !0)11 !0)84 !0)83
% error 5M !0)30 !0)72 !0)07 !0)58 !0)59
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maximum value of the transverse normal stress is an order of magnitude smaller than that
of the other components of the stress tensor. However, for mode III-A, the maximum value
of 
 is about one-"fth of S� ���

��
, although the plate studied is only moderately thick. Chao

et al. [4] and Kant and Swaminathan [18] have not compared stresses computed from the
plate theories with those obtained from the solution of the three-dimensional elasticity
equations.

7. CONCLUSIONS

We have derived a Kth order shear and normal deformable plate theory by "nding
a saddle point of the Hellinger}Reissner functional. The three components of the
displacement and the six components of the stress tensor are expanded in the thickness
direction, z, by taking Legendre polynomials as basis functions for the displacements and
in-plane stresses and polynomials of two degree higher for the transverse normal and the
transverse shear stresses. The traction boundary conditions on the top and the bottom
surfaces of the plate are exactly satis"ed by the presumed stress "elds. Thus, the present
higher order plate theory di!ers from those available in the literature in two respects,
namely, the transverse shear and normal stresses are expressed as polynomials in z of degree
2 higher than the displacements, and the tractions applied on the top and the bottom
surfaces of the plate explicitly appear in the constitutive relations.

For a homogeneous transversely isotropic plate, we prove that the problem of plane
travelling waves for every orderK can be partitioned into four uncoupled simpler problems
corresponding to the symmetric transverse, skewsymmetric transverse, longitudinal
membranal and longitudinal #exural waves.

A complete analysis of the longitudinal membranal and #exural waves in a second order
plate theory is performed and results are depicted by associating to each displacement
component in the waveform a di!erent color. Several coupling phenomena between the
in-plane and through-the-thickness displacement components are found; for instance, in
a given range of the dimensionless frequency, longitudinal membranal waves necessarily
involve a change in thickness and a longitudinal displacement "eld that varies quadratically
through the thickness. Since the dimensionless frequency � is proportional to the plate
thickness h, the range of frequency at which a given phenomenon occurs can di!er
considerably for thin and thick plates.

The lengths of decay of the wave solutions under quasistatic conditions are also studied.
This will enable one to retain terms in the expansions for displacements that are most
appropriate for the plate problem being studied. For example, from the results given in
Table 2, one can conclude that for studying deformations associated with the LM waves,
one can use an incomplete theory with kinematic variables ;

�
, ;

�
,=

�
, ;



and ;

�
, and

neglect=
�
and =

	
since the waves involving =

�
and =

	
have a much smaller length of

decay.
Frequencies upto the "fth mode of free vibration of a thick homogeneous orthotropic

plate computed with the present "fth order, shear and normal deformable plate theory are
found to match very well with those obtained from an analytical solution of the three-
dimensional elasticity equations. We note that in the fourth mode of vibration symmetric
about the midplane, the present third order shear and normal deformable plate theory has
an error of at least 10%. These errors are reduced to less than 0)6% when a "fth order plate
theory is used.

The proposed plate theory is also very accurate in evaluating the stress distributions since
the "fth order plate theory has an error of at most 0)6% in the maximum values of the



88 R. C. BATRA E¹ A¸.
transverse normal and the transverse shear stresses. These stresses are computed from the
equations of the plate theory rather than by integrating the three-dimensional elasticity
equations.
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