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1. Introduction

Srinivas and Rao [1] and Srinivas et al. [2] have studied free vibrations of homogeneous
isotropic and orthotropic simply supported rectangular plates. Their work has been extended by
Heyliger and Saravanos [3] to free vibrations of a simply supported hybrid piezoelectric plate, and
by Batra et al. [4,5] to simply supported laminated plates made of a non-piezoelectric lamina
either surrounding thin piezoelectric layers or enclosed between them. The key feature of these
analyses is that the three components of displacement are expanded in terms of double Fourier
series in the plane of the plate. The coefficient of each term in the double Fourier series is taken as
a function of the thickness co-ordinate only. These expansions are such that boundary conditions
are exactly satisfied at the edges of the simply supported plate. In all analyses known to the
authors, some solutions involving null transverse displacements have been neglected thereby
tacitly ignoring some of the in-plane modes of vibration. The in-plane modes of vibration may be
important in free vibrations of thick plates for which frequencies of in-plane modes of vibration
are lower than those of the lateral modes of vibration.

2. Analysis of the problem

We use rectangular Cartesian co-ordinates to describe three-dimensional deformations of a
rectangular plate of thickness h and sides of length L1 and L2 along the x1- and x2-axis,
respectively, with the plate occupying the region 0px1pL1; 0px2pL2; 0px3ph: Assuming
that the plate is made of a homogeneous linear elastic material, equations governing its free
vibrations are

Cijklul;kj þ ro2ui ¼ 0; i ¼ 1; 2; 3; ð1Þ
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where C is the elasticity tensor satisfying Cijkl ¼ Cklij ¼ Cijlk; u the displacement of a point, r
the mass density, o the frequency of free vibration, ui;j ¼ @ui=@xj;x the position of a material
particle in the reference configuration and a repeated index implies summation over the range of
the index.

2.1. Simply supported plates

Commonly used boundary conditions for free vibrations of a simply supported plate are

u2 ¼ u3 ¼ 0; s11 ¼ C11klul;k ¼ 0 on x1 ¼ 0;L1;

u1 ¼ u3 ¼ 0; s22 ¼ C22klul;k ¼ 0 on x2 ¼ 0;L2;

si3 ¼ Ci3klul;k ¼ 0 on x3 ¼ 0; h: ð2Þ

Here, sij ¼ Cijklul;k is the stress tensor. Following Srinivas and Rao [1], we assume that

u1 ¼
XN

m;n¼0

Umn
1 ðx3Þ cos

mpx1

L1
sin

npx2

L2
;

u2 ¼
XN

m;n¼0

Umn
2 ðx3Þ sin

mpx1

L1
cos

npx2

L2
;

u3 ¼
XN

m;n¼0

Umn
3 ðx3Þ sin

mpx1

L1
sin

npx2

L2
: ð3Þ

The displacement field (3) identically satisfies boundary conditions ð2Þ1 and ð2Þ2 on the plate
edges. Thus, only boundary conditions ð2Þ3 on the top and the bottom surfaces of the plate and
Eqs. (1) need to be satisfied.
The difference between Eq. (3) and the form assumed by Srinivas and Rao [1] is that we allow

for the possibility of either m ¼ 0 or n ¼ 0 and they do not. For m ¼ n ¼ 0; all displacement
components vanish identically and we have a null solution. However, when either m or n is
positive and the other is zero, we get in-plane pure distortional (i.e., the dilatation ui;i ¼ 0) modes
of vibration neglected in the earlier studies.
Since previous works considered the case of mX1 and nX1; we focus on the case when either m

or n equals zero. Let m ¼ 0: Then, Eqs. (3) become

u1 ¼
XN
n¼1

Un
1 ðx3Þ sin

npx2

L2
; u2 ¼ 0; u3 ¼ 0: ð4Þ

We analyze the problem for the plate material exhibiting different symmetries.

2.1.1. Plate made of an isotropic material

For an isotropic material,

Cijkl ¼
En

ð1þ nÞð1� 2nÞ
dijdkl þ

E

2ð1þ nÞ
ðdikdjl þ dildjkÞ; ð5Þ
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where dij is the Kronecker delta, E Young’s modulus and n the Poisson ratio. The satisfaction of
governing equations (1) and boundary conditions ð2Þ3 on x3 ¼ 0 and h requires that Un

1 ðx3Þ be
independent of x3; and

o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2ð1þ nÞr

s
np
L2

; n ¼ 1; 2;y : ð6Þ

These are natural frequencies of modes

u1 ¼ Un
1 sin

npx2

L2
; u2 ¼ u3 ¼ 0; n ¼ 1; 2;y : ð7Þ

Similarly,

o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2ð1þ nÞr

s
mp
L1

; m ¼ 1; 2;y ; ð8Þ

are natural frequencies for mode shapes:

u1 ¼ 0; u2 ¼ Um
2 sin

mpx1

L1
; u3 ¼ 0; m ¼ 1; 2;y : ð9Þ

Note that frequencies (6) and (8) are independent of the thickness of the plate, and depend only on
the shear modulus G ¼ E=2ð1þ nÞ; the mass density and lengths of the two sides of the
rectangular plate; the dependence upon the shear modulus and the mass density is through the
speed of the shear wave. The corresponding displacement fields induce only the in-plane shear
stress s12 and all fields are uniform through the plate thickness.
For a square plate, frequencies given by Eqs. (6) and (8) coincide and the corresponding mode

shape is

u1 ¼ Un
1 sin

npx2

L
; u2 ¼ Un

2 sin
npx1

L
; u3 ¼ 0; ð10Þ

where L is the length of a side of the plate.
For a square plate with L ¼ 5h ¼ 20 and n ¼ 0:3; non-dimensional flexural frequencies listed in

Table 1 of Ref. [2] for the antisymmetric mode IA of vibration are

l1;1 ¼ 0:34207; l2;1 ¼ 0:75111; l2;2 ¼ 1:0889; ð11Þ

where l ¼ oh
ffiffiffiffiffiffiffiffiffi
r=G

p
; and subscripts 1; 1 on l signify that m ¼ 1; n ¼ 1 in Eqs. (3). For m ¼ 0 and

n ¼ 1 or m ¼ 1 and n ¼ 0; the frequency l1;0 ¼ l0;1 of the in-plane vibration mode computed from
Eq. (6) or (8) equals 0.6284 which is smaller than l2;1: Thus, the second lowest frequency is l1;0
and not l2;1:

2.1.2. Laminated isotropic plates

For a laminated plate made of two or more isotropic homogeneous lamina perfectly bonded
together, modes (7) and (9) with the corresponding frequencies (6) and (8) are feasible only if
the speed of the shear wave in each lamina is the same. Otherwise, the requirements
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of the displacements at an interface between two adjoining laminae rules out these modes of
vibration.

2.1.3. Plate made of a transversely isotropic material
When the axis of transverse isotropy is along the x3-axis, then the material is isotropic in the

x1–x2 plane. Therefore, mode shapes (7) and (9) with frequencies (6) and (8), respectively, are
admissible with the difference that the shear modulus G is replaced by the in-plane shear modulus
G12: For the case of the axis of transverse isotropy making an angle y with the x3-axis, mode
shapes (7) are inadmissible except when y ¼ 901: For y ¼ 901;

on ¼ ðG13=rÞ
1=2 np

L2
; n ¼ 1; 2;y : ð12Þ

2.1.4. Plates made of orthotropic materials
For 01 and 901 homogeneous orthotropic plates, the principal axes of the material will be

parallel to the edges of the rectangular plate, and also to the co-ordinate axes. Mode shapes (7)
and (9) with the corresponding frequencies ðG12=rÞ

1=2np=L2 and ðG12=rÞ
1=2mp=L1 are admissible.

Here G12 is the shear modulus in the x1–x2 plane of the plate. When the material principal axes in
the x1–x2 plane make an angle y with the co-ordinate axes, then frequencies of mode shapes (7)
and (9) are inadmissible.
For a rectangular plate made of Aragonite crystal with material properties listed in

Table 1 of [1] and L1 ¼ 2L2 ¼ 5h ¼ 20; l ¼ oh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=E11Þ

p
; we get from Table 5 of [1],

l1;1 ¼ 0:29690; l2;1 ¼ 0:51342 for mode IA of flexural vibration. Frequencies of in-plane modes
of vibration are l1;0 ¼ 0:32231; l0;1 ¼ 0:64462: Thus, l1;0ol2;1; and the second lowest frequency
is l1;0 and not l2;1:

2.1.5. Laminated orthotropic plates
As for laminated isotropic plates, for a laminated plate made of two or more either 01 or 901

orthotropic homogeneous lamina perfectly bonded together with co-ordinate axes parallel to the
material principal axes in each lamina, modes (7) and (9) with the corresponding frequencies listed
above are admissible only if the speeds of shear waves of the same amplitude and propagating in
the same direction in the two adjoining laminae are equal. Otherwise, these displacements are
inadmissible.

2.1.6. Functionally graded plates
For a functionally graded plate with material properties varying in the x3-direction only,

vibration modes (7) and (9) are admissible only if G=r is independent of x3; the corresponding
frequencies for an isotropic, transversely isotropic and orthotropic plate are given by the pertinent
equations listed in the corresponding subsections.

2.1.7. Plate made of a monoclinic material
Consider a rectangular plate made of a homogeneous linear elastic monoclinic material with the

x1x2-plane as the single plane of material symmetry and co-ordinate axes aligned along the
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material principal axes. Hooke’s law for this material is [6]

s11
s22
s33
s32
s13
s21

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

c11 c12 c13 0 0 c16

c21 c22 c23 0 0 c26

c31 c32 c33 0 0 c36

0 0 0 c44 c45 0

0 0 0 c45 c55 0

c16 c26 c36 0 0 c66

2
6666666664

3
7777777775

u1;1

u2;2

u3;3

ðu3;2 þ u2;3Þ

ðu1;3 þ u3;1Þ

ðu2;1 þ u1;2Þ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
: ð13Þ

The cik ¼ cki are elastic constants. The stress field obtained by substituting displacement fields (7)
or (9) into Eq. (13) does not satisfy the balance of linear momentum (1). Hence, in-plane modes of
vibration (7) and (9) are inadmissible in this monoclinic plate irrespective of boundary conditions
at the edges. When the plane of material symmetry is the x1–x3 plane, then the matrix of elastic
constants is

c11 c12 c13 0 c15 0

c21 c22 c23 0 c25 0

c31 c32 c33 0 c35 0

0 0 0 c44 0 c46

c15 c25 c35 0 c55 0

0 0 0 c46 0 c66

2
6666666664

3
7777777775

ð14Þ

and boundary conditions ð2Þ3 on the top and the bottom surfaces make displacements (7) and (9)
inadmissible.

2.1.8. Plate made of other anisotropic materials

Chadwick et al. [7] have shown that there are exactly eight different sets of symmetry planes
admissible for the fourth order elasticity tensor C: Besides the isotropic, transversely isotropic,
orthotropic and the monoclinic materials studied above, we analyze the other four materials
below. The displacement fields (7) and (9) are not possible modes of free vibration in a plate made
of an anisotropic material (or a triclinic material) with 21 elastic constants and a trigonal material.
However, they are possible in a tetragonal material and a cubic material for which the matrix of
elastic constants, respectively, are

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

2
6666666664

3
7777777775
;

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

2
6666666664

3
7777777775
: ð15Þ
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Frequencies corresponding to modes (7) and (9) are given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc66=rÞ

p
np=L2 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc44=rÞ

p
mp=L1:

The co-ordinate axes have been properly chosen for the matrix of elastic constants to have the
forms (15).

2.1.9. Piezoelectric plates

Free vibrations of a simply supported rectangular piezoelectric plate are governed by

Cijklul;kj þ eijkf;kj þ ro2ui ¼ 0;

ekijuj;ik � Eijf;ij ¼ 0; ð16Þ

where eijk ¼ eikj are the piezoelectric constants, Cijkl ¼ Cklij ¼ Cijlk are the elastic constants, and
Eij ¼ Eji are the dielectric constants. Boundary conditions for all bounding surfaces of the plate
grounded are

u2 ¼ u3 ¼ 0; s11 ¼ C11klul;k þ e11kf;k ¼ 0; f ¼ 0 on x1 ¼ 0; L1;

u1 ¼ u3 ¼ 0; s22 ¼ C22klul;k þ e22kf;k ¼ 0; f ¼ 0 on x2 ¼ 0; L2;

si3 ¼ Ci3klul;k þ ei3kf;k ¼ 0; f ¼ 0 on x3 ¼ 0; h: ð17Þ

Displacement fields (7) and (9) with f � 0 satisfy Eqs. (16) and (17) for a transversely isotropic
piezoelectric plate with the axis of transverse isotropy along the x3-axis, and for an orthotropic
piezoelectric plate with the material principal axes coincident with the co-ordinate axes. Thus, a
simply supported piezoelectric plate with all bounding surfaces grounded can vibrate with
frequencies given by Eqs. (6) or (8). For the square PZT plate with L ¼ 4h ¼ 0:04 m studied by
Heyliger and Savaranos [3],

o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30:6� 109

1

s
p

0:04
¼ 1:37366� 107 rad=s; ð18Þ

which is between 0:969299� 107 and 1:94255� 107 rad=s listed in Table II of Ref. [3] for the first
two flexural modes of vibration. For L ¼ h ¼ 0:01 m; Eq. (8) gives o ¼ 5:4955� 107 rad=s which
is less than the frequency 7:13061� 107 rad=s of the first flexural mode computed by Heyliger and
Savaranos [3]. These authors also computed frequencies when the top and the bottom surfaces are
electrically insulated. Frequencies in this case were at least equal to those found for the case of
grounded top and bottom surfaces. Displacement fields (7) and (9) with f ¼ 0 satisfy the
boundary condition of electrically insulated major surfaces.
Modes (7) and (9) are admissible in hybrid plates provided that the speeds of shear waves of the

same amplitude and propagating in the same direction in the adjoining layers are equal.

2.1.10. Plate theories

As summarized, amongst others, by Cheng and Batra [8], the displacement field for the CPT,
the FSDT [9] and the TSDT [10] can be written as

uaðxi; tÞ ¼ u0
aðxb; tÞ � x3u

0
3;a þ gðx3Þjaðxb; tÞ; u3ðxi; tÞ ¼ u0

3ðxb; tÞ; a; b ¼ 1; 2; ð19Þ

where u0
a; u03 and jg are independent of x3 and the function gðx3Þ ¼ 0 for the CPT, gðx3Þ ¼ x3 for

the FSDT and gðx3Þ ¼ x3ð1� 4x2
3=3h2Þ for the TSDT. In this subsection, Latin indices range from

1 to 3 and Greek indices from 1 to 2. Function u0 gives displacements of a point on the midsurface
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of the plate and for the FSDT ðj1 � u03;1Þ and ð�j2 þ u0
3;2Þ are, respectively, rotations of the

transverse normal to the midsurface about the x2- and x1-axis. For vibration modes (7), we set
u03 ¼ j1 ¼ j2 ¼ 0: The relevant plate equation for determining the in-plane modes of vibration is

Nab;b þ o2I0ua ¼ 0; a ¼ 1; 2; ð20Þ

where

Nab ¼
Z h

0

sab dx3; I0 ¼
Z h

0

r dx3;

sab ¼ Hablmðul;m þ um;lÞ=2; ð21Þ

and Hablm are the reduced elasticities obtained by incorporating the constraint s33 ¼ 0 into the
constitutive relation. For an isotropic material,

Hablm ¼
nE

1� n2
dabdlm þ

E

2ð1þ nÞ
ðdaldbm þ damdblÞ: ð22Þ

The boundary conditions are

u2 ¼ 0; N11 ¼ 0 on x1 ¼ 0; L1;

u1 ¼ 0; N22 ¼ 0 on x2 ¼ 0; L2: ð23Þ

For a homogeneous isotropic plate, the displacement field (7) satisfies Eqs. (20) and boundary
conditions (23) with o given by Eq. (6). Thus, any of these three plate theories as well as several
other plate theories including the first and the higher order shear and normal deformable plate
theories of Vidoli and Batra [11], and Batra and Vidoli [12] will predict frequencies (8) correctly
for isotropic as well as orthotropic homogeneous plates. Batra et al. [13] used their plate theory to
study plane waves and free vibrations of a plate. They, like other investigators, missed vibration
modes (7) and (9) since they also set m ¼ n ¼ 1 as the lower limit in summations on the right-hand
sides of Eqs. (3).
A thin-plate theory neglects u0

a and thus will not predict vibration modes (7) and (9).

2.2. Clamped plates

Displacement fields (7) and (9) do not satisfy conditions

u1 ¼ u2 ¼ u3 ¼ 0 on x1 ¼ 0; L1 and x2 ¼ 0; L2: ð24Þ

Therefore, the in-plane modes of vibration (7) and (9) with frequencies given, respectively, by
Eqs. (6) and (8) do not occur in a rectangular plate with all four edges clamped.

2.3. Clamped-simply supported plates

When m ¼ 0; then the mode shape (7) is admissible in a rectangular plate with edges x2 ¼ 0 and
x2 ¼ L2 clamped and the other two edges simply supported; a similar mode shape occurs when
edges x1 ¼ 0 and x1 ¼ L1 are clamped and the other two edges are simply supported.
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Table 1

First few non-dimensional natural frequencies, l; of a simply supported rectangular plate of different aspect ratios, numbers in parentheses indicate

values of (m,n). Frequencies of in-plane modes of vibration missing in previous solutions are in bold

Square plate Rectangular plate with L1 ¼ L2

No. L1=h ¼ 2 4 6 8 10 20 2 4 6 8 10 20

1 1.5158 0.5066 0.2457 0.143 0.0932 0.0239 0.7854 0.3349 0.1581 0.091 0.0589 0.015

(1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (0,1) (1,1) (1,1) (1,1) (1,1) (1,1)

2 1.5708 0.7854 0.5236 0.3349 0.2226 0.0589 1.0692 0.3927 0.2455 0.143 0.0931 0.0239

(1,0),(0,1) (1,0),(0,1) (1,0),(0,1) (1,2),(2,1) (1,2),(2,1) (1,2),(2,1) (1,1) (0,1) (1,2) (1,2) (1,2) (1,2)

3 2.2214 1.0692 0.5544 0.3927 0.3142 0.0932 1.5158 0.5066 0.2618 0.1963 0.1485 0.0386

(1,1) (1,2),(2,1) (1,2),(2,1) (1,0),(0,1) (1,0),(0,1) (2,2) (1,2) (1,2) (0,1) (0,1) (1,3) (1,3)

4 2.8066 1.1107 0.7405 0.5066 0.3421 0.1155 1.5708 0.7606 0.3811 0.226 0.1571 0.0502

(1,2),(2,1) (1,1) (1,1) (2,2) (2,2) (1,3),(3,1) (1,0),(0,2) (1,3) (1,3) (1,3) (0,1) (2,1)

5 3.1416 1.5158 0.818 0.5554 0.4171 0.1485 1.7562 0.7854 0.4822 0.289 0.1913 0.0589

(2,0),(0,2) (2,2) (2,2) (1,1) (1,3),(3,1) (2,3),(3,2) (1,1) (1,0),(0,2) (2,1) (2,1) (2,1) (2,2),(1,4)

6 3.5124 1.5708 0.9761 0.6124 0.4445 0.1571 2.1219 0.8781 0.5236 0.3349 0.2226 0.0733

(1,2),(2,1) (2,0),(0,2) (1,3),(3,1) (1,3),(3,1) (1,1) (1,0),(0,1) (1,3) (1,1) (1,0),(0,2) (1,4),(2,2) (2,2),(1,4) (2,3)

7 3.5306 1.7562 1.0472 0.7606 0.5239 0.1913 2.2214 0.9425 0.5544 0.3927 0.2735 0.0785

(1,1) (1,3),(3,1) (2,0),(0,2) (2,3),(3,2) (2,3),(3,2) (1,4),(4,1) (1,2) (2,1) (2,2),(1,4) (1,0),(0,2) (2,3) (0,1)

8 3.7419 1.7744 1.1708 0.7854 0.6283 0.2018 2.3562 1.0692 0.5854 0.4085 0.313 0.0847

(2,2) (1,3),(3,1) (1,2),(2,1) (2,0),(0,2) (2,0),(0,2) (3,3) (0,3) (2,2),(1,4) (1,1) (2,3) (1,5) (1,5)

9 3.8477 1.8577 1.1934 0.8781 0.6571 0.2221 2.5305 1.1107 0.6686 0.4391 0.3142 0.0931

(1,1) (1,1) (2,3),(3,2) (1,2),(2,1) (1,4),(4,1) (1,1) (2,1) (1,2) (2,3) (1,1) (1,0),(0,2) (2,4)

10 4.2658 2.1219 1.2461 0.9365 0.6889 0.3142 2.8066 1.1781 0.7405 0.4652 0.3421 0.1072

(1,3),(3,1) (2,2) (1,1) (1,1) (3,3) (2,0),(0,2) (2,2),(1,4) (0,3) (1,2) (1,5) (2,4) (3,1)

11 4.4429 2.2214 1.4546 0.9425 0.7025 0.3513 2.8318 1.2656 0.7554 0.5066 0.3512 0.1183

(2,2) (2,2) (1,4),(4,1) (1,4),(4,1) (1,2),(2,1) (1,2),(2,1) (1,3) (2,3) (1,5) (2,4) (1,1) (2,5)

12 4.7124 2.3562 1.4812 0.98563 0.7498 0.3755 2.8757 1.4117 0.1571

(1,2),(2,1) (3,0),(0,3) (2,2) (3,3) (1,1) (1,1) (1,1) (1,5) (1,0),(0,2)

13 4.7124 2.4837

(3,0) (1,3),(3,1)
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2.4. Plate with a free edge

Boundary conditions at the free edge x1 ¼ 0 are

s11 ¼ s21 ¼ s31 ¼ 0: ð25Þ

For the in-plane modes of vibrations (7) and (9), s21a0: Thus, these modes are not feasible in a
rectangular plate with at least one edge surface traction free.

2.5. Cylindrical bending vibrations

For cylindrical bending vibrations in the x1–x3 plane, u2 � 0: For simply supported edges,
boundary conditions

s11 ¼ 0; u3 ¼ 0 on x1 ¼ 0; L1; ð26Þ

are satisfied by the displacement field (7). However, L2 ¼ N: Therefore, u1 ¼ 0 and we have a null
solution. For clamped edges, boundary conditions

u1 ¼ 0; u3 ¼ 0 on x1 ¼ 0; L1; ð27Þ

again give a null solution of the form (7). Thus, the assumption of cylindrical bending rules out in-
plane mode of vibration (7).

3. Conclusions

We have delineated some of the in-plane modes of free vibration of a simply supported
rectangular plate that were missed in previous exact solutions. For a homogeneous isotropic
square plate with length equal to five times the thickness and the Poisson ratio ¼ 0:3; the lowest
frequency of an in-plane mode of vibration lies between the frequencies of the first two flexural
modes.

Note added in proof

Liew et al. [14] used the Ritz method to analyze free vibrations of a thick rectangular plate.
Their numerical solution gives accurate value of l10 ¼ l01 and l20 ¼ l02 for a square plate, and of
l10; l01 for a rectangular plate with L1=L2 ¼ 2: However, Eqs. (6) through (9) cannot be deduced
from their solution. Similar remarks apply to the solution of Qian et al. [15] computed by using
the meshless local Petrov-Galerkin method. We have listed in Table 1 the first few frequencies of a
square and a rectangular isotropic plate.

References

[1] S. Srinivas, A.K. Rao, Bending, vibration and buckling of simply supported thick orthotropic rectangular plates

and laminates, International Journal of Solids and Structures 6 (1970) 1463–1481.

ARTICLE IN PRESS

R.C. Batra, S. Aimmanee / Journal of Sound and Vibration 265 (2003) 887–896 895



[2] S. Srinivas, C.V.J. Rao, A.K. Rao, An exact analysis for vibration of simply-supported homogeneous and

laminated thick rectangular plates, Journal of Sound and Vibration 12 (1970) 187–199.

[3] P. Heyliger, D.A. Saravanos, Exact free-vibration analysis of laminated plates with embedded piezoelectric layers,

Journal of the Acoustical Society of America 98 (1995) 1547–1555.

[4] R.C. Batra, X.Q. Liang, The vibration of a rectangular laminated elastic plate with embedded piezoelectric sensors

and actuators, Computers and Structures 63 (1997) 203–216.

[5] R.C. Batra, X.Q. Liang, J.S. Yang, The vibration of a simply supported rectangular elastic plate due to

piezoelectric actuators, International Journal of Solids and Structures 33 (1996) 1597–1618.

[6] I.S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956.

[7] P. Chadwick, M. Vianello, S.C. Cowin, A new proof that the number of linear elastic symmetries is eight, Journal

of the Mechanics and Physics of Solids 49 (2001) 2471–2492.

[8] Z.Q. Cheng, R.C. Batra, Exact correspondence between eigenvalues of membranes and functionally graded simply

supported polygonal plates, Journal of Sound and Vibration 229 (2000) 879–895.

[9] J.M. Whitney, N.J. Pagano, Shear deformation in heterogeneous anisotropic plates, Journal of Applied Mechanics

37 (1970) 1031–1036.

[10] J.N. Reddy, A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics 51 (1984)

745–752.

[11] S. Vidoli, R.C. Batra, Derivation of plate and rod equations for a piezoelectric body from a mixed three-

dimensional variational principle, Journal of Elasticity 59 (2000) 23–50.

[12] R.C. Batra, S. Vidoli, Higher-order piezoelectric plate theory derived from a three-dimensional variational

principle, American Institute of Aeronautics and Astronautics Journal 40 (2002) 91–104.

[13] R.C. Batra, S. Vidoli, F. Vestroni, Plane waves and modal analysis in higher-order shear and normal deformable

plate theories, Journal of Sound and Vibration 257 (2002) 63–88.

Additional references

[14] K.M. Liew, K.C. Hung, M.K. Lim, Three-dimensional vibration of rectangular plates: effects of thickness and

edge constraints, Journal of Sound and Vibration 182 (1995) 709–727.

[15] L.F. Qian, R.C. Batra, L.M. Chen, Free and forced motions of a thick plate by using a higher-order shear and

normal deformable plate theory and a meshless local Petrov-Galerkin method, Computer Modeling in Engineering

and Sciences, in press.

ARTICLE IN PRESS

R.C. Batra, S. Aimmanee / Journal of Sound and Vibration 265 (2003) 887–896896


	Missing frequencies in previous exact solutions of free vibrations of simply supported rectangular plates
	Introduction
	Analysis of the problem
	Simply supported plates
	Plate made of an isotropic material
	Laminated isotropic plates
	Plate made of a transversely isotropic material
	Plates made of orthotropic materials
	Laminated orthotropic plates
	Functionally graded plates
	Plate made of a monoclinic material
	Plate made of other anisotropic materials
	Piezoelectric plates
	Plate theories

	Clamped plates
	Clamped-simply supported plates
	Plate with a free edge
	Cylindrical bending vibrations

	Conclusions
	Note added in proof
	References


