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1. Introduction

An advantage of functionally graded materials (FGMs) over laminated composites is that
material properties vary continuously in an FGM but are discontinuous across adjoining layers in
laminated composites. Furthermore, in an FGM material, properties can be graded in all three
directions which is more difficult to achieve in laminated composites. FGMs have been used for
structural optimization, e.g., bamboo is a highly optimized naturally occurring FGM [1]. FGMs
with material properties varying only in the thickness direction can be manufactured by high-
speed centrifugal casting [2,3], or by depositing ceramic layers on a substrate [4,5], and those with
properties varying in the plane of a sheet by ultraviolet irradiation to alter the chemical
composition [6].
Plate theories used to analyze deformations of an FG plate include the first-order shear

deformation theory (FSDT) [7], the third-order shear deformation theory (TSDT) [8], and the
compatible higher-order shear and normal deformation plate theory (HOSNDPT) [9–11]. In the
FSDT and the TSDT three-dimensional constitutive relations are modified by assuming that the
transverse normal stress vanishes. After solving the plate theory equations, the transverse shear
and the transverse normal stresses are computed first by finding the in-plane stresses and then
see front matter r 2004 Elsevier Ltd. All rights reserved.
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integrating through the thickness the balance of linear momentum. The HOSNDPT accounts for
both transverse shear and transverse normal stresses and these are computed from equations of
the plate theory [12,13].
Whereas the finite element method (FEM) has often been used to find an approximate solution

of an initial-boundary-value problem and for finding frequencies, the use of meshless methods for
finding approximate solutions of these problems has been gaining popularity. Two recent books
[14,15] summarize developments in meshless methods.
Here we use the meshless local Petrov–Galerkin (MLPG) [14,15] method and the compatible

HOSNDPT to design a thick two-constituent FG cantilever plate having either the highest first
natural frequency or the highest second natural frequency; a comparison of the MLPG and the
FE methods is given in Ref. [16,17]. The volume fraction of a constituent is assumed to vary in x-
and y-directions. The two constituents and the macroscopic response of the beam are assumed to
be isotropic with effective elastic moduli deduced by the Mori–Tanaka [18] technique. The spatial
volume fractions of the two constituents are optimized so as to maximize either the first or the
second natural frequency of the structure.
The transient response of an optimized plate to uniformly distributed time-dependent loads

applied on its top surface is compared with that of two homogeneous plates comprised of each
material.
2. Formulation of the problem

2.1. Governing equations

A schematic sketch of the problem studied and the rectangular Cartesian coordinates used to
describe its deformations are given in Fig. 1. Neglecting body forces, transient deformations of a
plate are governed by

sij; j ¼ r €ui in O� ð0;TÞ; sijnj ¼ f̄ i on Gf � ½�h=2; h=2� � ð0;TÞ;

ui ¼ ūi on Gu � ½�h=2; h=2� � ð0;TÞ; sijnj ¼ q�i on S� � ð0;TÞ;

uiðx; y; z; 0Þ ¼ u0i ðx; y; zÞ in O; _ui ðx; y; z; 0Þ ¼ _u0i ðx; y; zÞ in O: (1)

Here r is the mass density, div the three-dimensional divergence operator, O ¼ ½0; ‘� � ½0; b� �
½�h=2; h=2� the region occupied by the plate in the reference configuration, and n an outward unit
Fig. 1. Schematic sketch of the problem studied.
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normal to the boundary qO of O: Sþ and S� are the top and the bottom surfaces of the plate
where surface tractions are prescribed, respectively, as qþ and q�: Gu and Gf are parts of the
boundary qS of the midsurface S. On Gu � ½�h=2; h=2� and Gf � ½�h=2; h=2� displacements and
surface tractions are prescribed as ū and f̄; respectively. A repeated index implies summation over
the range of the index, and sij;k ¼ qsij=qxk: Eq. (1)1 is the balance of linear momentum,
Eqs. (1)2–(1)4 are boundary conditions, and Eqs. (1)5 and (1)6 are initial conditions. When
studying free vibrations of a cantilever plate, we set

f̄ ¼ q� ¼ 0; ū ¼ 0 on the fixed edge; (2)

uðx; y; z; tÞ ¼ eiotUðx; y; zÞ; (3)

and neglect initial conditions (1)5 and (1)6: In Eq. (3), o is a natural frequency. Stresses r at a
point are related to infinitesimal strains e there by

sij ¼ Ke �
2
3
me

� �
�kkdij þ 2me�ij ; (4)

where Ke and me are, respectively, the effective bulk and the effective shear moduli of the two-
constituent plate, and dij is the Kronecker delta. They are related to the elastic moduli ðK1; m1Þ and
ðK2; m2Þ of the constituents by [18]

Ke � K1

K2 � K1
¼

V2

1þ ð1� V2Þ½3ðK2 � K1Þ=ð3K1 þ 4m1Þ�
;

me � m1
m2 � m1

¼
V2

1þ ð1� V2Þðm2 � m1Þ=½m1 þ m1ð9K1 þ 8m1Þ=6ðK1 þ 2m1Þ�
; (5)

where V2 is the volume fraction of constituent 2. We assume that

V2ðx; y; zÞ ¼
1

2
þ

z

h

� �p
x

‘

� �q

; (6)

where parameters p and q control the volume fraction profile of the constituent 2 in the xz-plane.
2.2. Displacement field in the HOSNDPT

Let L1ðzÞ;L2ðzÞ; . . . be orthonormalized Legendre polynomials defined on ½�h=2; h=2�: That isZ h=2

�h=2
LiðzÞLjðzÞdz ¼ dij : (7)

Note that LiðzÞ has dimensions of ðlengthÞ�1=2: We expand the displacement field u as

uðx; y; z; tÞ ¼
XK

i¼0

LiðzÞd
ðiÞðx; y; tÞ; (8)

where dðiÞ denote time-dependent displacements of a point on the midsurface of the plate and have
dimensions of ðlengthÞ3=2: Previous work [9–11] with thick plates has revealed that K ¼ 5 gives
results in close agreement with the analytical solution. We refer the reader to Refs. [12,13] for a
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derivation of equations of the mixed and the compatible HOSNDPT; we adopt the latter theory
here. When studying free vibrations of a plate, we set

dðiÞðx; y; tÞ ¼ eiotDðiÞðx; yÞ: (9)

2.3. Semidiscrete formulation

Let M nodes be placed on the midsurface S of the plate, and S1;S2; . . . ;SM be smooth two-
dimensional closed regions, not necessarily disjoint and of the same shape and size, enclosing
nodes 1; 2; . . . ;M; respectively. Let f1;f2; . . . be linearly independent functions defined on one of
these regions, say Sa; these are derived by the moving least-squares approximation [19] and using
fourth-order polynomials as weight functions. For a Kth order plate theory there are 3ðK þ 1Þ
unknowns d

ð0Þ
1 ; dð0Þ

2 ; d ð0Þ
3 ; dð1Þ

1 ; d ð1Þ
2 ; dð1Þ

3 ; . . . ; d ðKÞ

1 ; d ðKÞ

2 ; dðKÞ

3 at every point in S and hence in Sa: We
write these as a 3ðK þ 1Þ dimensional array fdg; and set

fdðx; y; tÞg ¼
XN

J¼1

½fJðx; yÞ�fdJðtÞg; (10)

where, for each value of J, fdJg is a 3ðK þ 1Þ-dimensional array and ½fJ � is a square matrix of
3ðK þ 1Þ rows. Note that fdJg are functions of time t.
In the MLPG method one derives a weak formulation of the governing equations (1)1 on Sa

without requiring the test function to satisfy any conditions on qSa: Essential boundary
conditions (1)3 are satisfied either by using the penalty method, or by the method of Lagrange
multipliers, or by appropriately modifying the mass and the stiffness matrices.
There is no assembly of equations required in the MLPG method. The end result is a system of

coupled ordinary differential equations (e.g. see Refs. [9–11])

M€d þ Kd ¼ F; (11)

where M is the mass matrix, K the stiffness matrix, and F the load vector.
Eqs. (11) are integrated by the constant average acceleration method that is second-order

accurate, nondissipative and unconditionally stable; it is a member of the Newmark [20] family of
methods.
For the free vibration problem, the frequency o and the mode-shape vector d̄ are solutions of

the eigenvalue problem.

Kd̄ ¼ o2Md̄: (12)

Essential boundary conditions are imposed by modifying matricesM and K and the load vector
F; see Refs. [9–11].

2.4. Optimization of natural frequencies

Frequencies of the FG plate depend upon material properties which are functions of the volume
fractions of the two constituents given by Eq. (5). The volume fractions are controlled
by parameters p and q. Hence o ¼ oðp; qÞ: Thus the optimization problem reduces to finding
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pn 2 ½0; pmax� and qn 2 ½0; qmax� so that

oðpn; qnÞXoðp; qÞ for 0ppppmax; 0pqpqmax: (13)

Here pmax and qmax are the maximum values of p and q. Eq. (13) is solved by the genetic algorithm
[21].
3. Results and discussion

The first and the second natural frequencies have been optimized for an FG cantilever plate
made of steel and aluminum, and ‘ ¼ 200mm; b ¼ 50mm and h ¼ 20mm: The boundary
conditions imposed are

u ¼ v ¼ w ¼ 0 on x ¼ 0;

f̄ ¼ 0 on surfaces x ¼ ‘; y ¼ 0; y ¼ b;

q� ¼ 0 on z ¼ �h=2: (14)

A computer code has been developed to analyze static deformations, and free and forced
vibrations of a thick FG plate. It has been validated by comparing computed solutions with the
analytical solution of the corresponding problems [9–11]. For simply supported homogeneous
plates it also gives inplane modes of vibration [22].
Seventeen and five equally spaced nodes in the x- and y-directions, respectively, and K ¼ 5 gave

converged results. Thus for a free plate, the total number of degrees of freedom equals 3� 6�
85 ¼ 1530: The consistent mass matrix is used to analyze dynamic problems. Material properties
assigned to steel and aluminum are as follows. Steel: Ks ¼ 166:67GPa; ms ¼ 81:40GPa; rs ¼

7806 kg=m3; aluminum: Ka ¼ 58:33GPa; ma ¼ 26:92GPa; ra ¼ 2707kg=m3: Results are pre-
sented in terms of the following nondimensional variables:

w̄ ¼
50mah3

3‘4ð1� naÞq0

w; s̄xx ¼
h2sxx

‘2q0

; ō ¼ 100oh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rað1þ naÞ=ma

p
; (15)

where q0 is the intensity of the uniformly distributed load applied on the top surface of the plate,
and an overbar signifies a nondimensional quantity.

3.1. Optimized first two frequencies

For different values of exponents p and q in Eq. (6) we have listed in Table 1 the first ten natural
frequencies of an FG cantilever plate. These results show that the first natural frequency of an FG
plate is greater than that of a steel and an aluminum plate. For pmax ¼ qmax ¼ 20; we found that
pn ¼ 0 and qn ¼ 1:23 make the first frequency largest which is 33.4% and 31% higher than the
first frequency of an aluminum and a steel plate, respectively. The first ten frequencies for p ¼ 0
and q ¼ 1:23 are also listed in Table 1. It is clear that these values of p and q do not give largest
values of the second through the tenth frequencies. The highest second nondimensional frequency
of 6.80 is attained for p ¼ 0 and q ¼ 4:70 which is 9.08% and 7.01% greater than the second
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Table 1

First ten nondimensional natural frequencies of a functionally graded cantilever plate for different compositional

profiles

No Aluminum p ¼ 0 p ¼ 2 p ¼ 5 Steel

q ¼ 1:23 q ¼ 2 q ¼ 5 q ¼ 0 q ¼ 2 q ¼ 5 q ¼ 0 q ¼ 2 q ¼ 5

1 1.0362 1.3823 1.3582 1.2384 0.9687 1.1271 1.1030 0.9766 1.0875 1.0769 1.0552

2 2.4441 3.2513 3.2022 2.9369 2.4247 2.6652 2.6146 2.4579 2.5733 2.5494 2.4914

3 6.2369 6.7124 6.7465 6.8030 5.8664 6.3583 6.4323 5.9217 6.3047 6.3752 6.3580

4 6.5334 7.8046 7.7699 7.3885 6.2482 6.9432 6.8913 6.3182 6.7897 6.7852 6.6866

5 12.4698 13.5180 13.6080 13.6369 12.3342 12.8957 12.5990 12.5572 12.8043 12.8235 12.7270

6 15.7904 16.3552 16.5274 17.0662 15.3350 16.1797 16.3820 15.4924 16.1657 16.3442 16.0997

7 16.2388 18.8895 18.7661 17.7938 15.6707 16.7901 16.5667 15.8851 16.4367 16.4546 16.5566

8 19.7945 20.0365 20.2484 20.8825 18.9626 19.8838 20.2713 19.1844 19.8946 20.1836 20.2538

9 28.1302 28.3098 28.6636 29.5482 26.5860 28.1644 28.7056 26.8798 28.1161 28.5446 28.6780

10 28.8217 29.2323 29.5013 30.2469 28.6445 29.2523 29.5349 29.0349 29.3331 29.4703 29.4288
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Fig. 2. Dependence upon the power-law index q of (a) the first and (b) the second nondimensional frequency of a

functionally graded cantilever plate: —— FGM; – 
 – 
 – 
; aluminum; – – – –, steel.
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frequency of aluminum and steel plates. Thus to maximize either the first or the second frequency,
the composition of the plate needs to be varied in the axial direction rather than in the thickness
direction. Furthermore, composition profiles for maximizing the two frequencies are different.
Figs. 2(a) and (b) depict, respectively, the variation of the first and the second bending frequencies
with the exponent q while p ¼ 0: These confirm that the search algorithm gave correct values
of qn:
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3.2. Forced transient response

The computed transient response of the FG cantilever plate loaded on the top surface by a
uniformly distributed pressure of 100 sinð1600tÞ; where t is in seconds, is plotted in Fig. 3(a,b) for
three sets of values of p and q. The time history of the tip deflection plotted in Fig. 3(a) reveals that
there is no correlation between the first frequency and the amplitude of the tip deflection. For
example, the ratio of the first frequency of the FG plate with p ¼ 0 and q ¼ 1:23 to that of
aluminum and steel plates is about 1.3. However, the ratio of the maximum amplitude of the tip
deflection of the FG plate to that of the aluminum plate is much less than that for the steel plate;
for the latter it is close to 1.0. Frequencies of the forced response of the three plates are essentially
the same. The time history of the axial stress at point B, with coordinates ð0; b=2; h=2Þ; plotted in
Fig. 3(b) reveals that the maximum axial stress induced in the FG plate is less than that in the two
homogeneous plates.
For three sets of values of p and q, Fig. 4(a,b) shows time histories of the deflection of point A,

with coordinates ð‘; b=2; h=2Þ; and of the axial stress at point B. Recall that p ¼ 0; q ¼ 4:7
maximizes the second natural frequency of the FG plate. In general, the maximum tip deflection
and the maximum axial stress for the FG plate with p ¼ 0 and q ¼ 4:7 are lower than those for the
other two plates with ðp; qÞ ¼ ð2; 2Þ and ð5; 5Þ:
3.3. Static response

For 0ppppmax and 0pqpqmax; the steel plate has the highest value of Young’s modulus. Thus
the steel cantilever plate has the least tip deflection. However, the maximum axial stress at B is the
same for all values of p and q. Numerical results confirmed this and are omitted.
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Fig. 3. For the bidirectional functionally graded cantilever plate loaded on the top surface by a uniformly distributed

pressure of 10 sinð1600tÞ; time history of (a) the tip (point A in Fig. 1) deflection, and (b) the bending stress at point B

(see Fig. 1 for location of point B): ——, aluminum; – – – –, FGM (p ¼ 0 q ¼ 1:23); – 
 – 
 – 
; steel.
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Fig. 4. For the bidirectional functionally graded cantilever plate loaded on the top surface by a uniformly distributed

pressure of 10 sinð1600tÞ; time history of (a) the tip (point A in Fig. 1) deflection, and (b) the bending stress at point B

(see Fig. 1 for location of point B): ——, p ¼ 0 q ¼ 4:7; – – – –, p ¼ 2 q ¼ 2; – 
 – 
 –
; p ¼ 5 q ¼ 5:

L.F. Qian, R.C. Batra / Journal of Sound and Vibration 280 (2005) 415–424422
3.4. Remarks

The compositional profile obtained here for the maximum first or the second natural frequency
is from the class of profiles given by Eq. (6) and the homogenization technique (5). A different
homogenization method and another class of volume fraction variation may give results different
from those obtained here. For example, Vel and Batra [23] have found that the Mori–Tanaka [18]
and the self-consistent [24] methods of homogenizing material properties give different results for
a simply supported FG plate. Also, we have kept the cross-section of the plate constant. The
problem of finding the spatial variation of volume fractions of the two constituents and the cross-
section of the plate to optimize a frequency is more challenging than the one analyzed here.
Vel and Batra [25] have given exact frequencies of a FG plate; these can be used to compare

frequencies deduced from different plate theories. Batra and Jin [26] have analyzed the influence
of the continuous variation of the fiber orientation angle through the plate thickness upon the
natural frequencies of an anisotropic FG plate. It was found that dividing the plate into twenty
layers of equal thickness simulated well the continuous through-the-thickness variation of the
fiber orientation angle. A fully transient nonlinear coupled thermomechanical problem of the
initiation of adiabatic shear bands in a FG microporous thermo-elasto-viscoplastic body has been
scrutinized by Batra and Love [27].
4. Conclusions

We have used a higher-order shear and normal deformable plate theory and a meshless local
Petrov–Galerkin method to find the compositional profile of a two-constituent cantilever plate so
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that either the first or the second natural frequency is maximum. It is found that in each case, the
composition varies only in the axial direction. The compositional profile for maximizing the first
frequency is different from that for maximizing the second frequency. The forced transient
response of each optimal functionally graded plate has been compared with that of the two
homogeneous plates. The compositional profile that maximizes the first or the second natural
frequency neither results in extreme values of the tip deflection nor in extreme values of the axial
stress.
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