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Abstract

The collocation method with multiquadrics basis functions and a first-order shear deformation theory
are used to find natural flexural frequencies of a square plate with various material symmetries and
subjected to different boundary conditions. Computed results are found to agree well with the literature
values obtained by the solution of the three-dimensional elasticity equations using the finite element
method.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Batra et al. [1] recently used the three-dimensional linear elasticity equations and the finite
element method (FEM) to find the first 10 frequencies of free vibration of thick square plates
made of orthotropic, trigonal, monoclinic, hexagonal and triclinic materials under different
boundary conditions at the edges. The domain of study was divided into a 40� 40� 4 mesh of
uniform 20-node brick elements with four elements in the thickness direction and the consistent
mass matrix was employed. Frequencies computed by the FEM are upper bounds of their
see front matter r 2004 Elsevier Ltd. All rights reserved.
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analytical counterparts. Computed results were found to match well with the analytical solution
of Srinivas and Rao [2] for a simply supported orthotropic plate. Batra et al.’s [1] analysis also
captured frequencies of in-plane pure distortional modes of vibrations of a simply supported
plate. As pointed out by Batra and Aimmanee [3] some of these modes are absent in Srinivas and
Rao’s solution as well as in several subsequent works [4–7].

Here we use the collocation method with multiquadrics basis functions and the first-order shear
deformation theory (FSDT) to find natural frequencies of square plates of various aspect ratios,
different material symmetries, and under different boundary conditions at the edges. An
advantage of this method over the FEM is that the discretization of the domain into brick
elements and the element connectivity are not needed. The present method requires only
coordinates of nodes on the midsurface of the plate. Thus the input required for the present
meshless method and the effort required to prepare the input are considerably less than that
needed for the FEM. Because of the FSDT used, frequencies of very thick plates can not be
accurately computed. Furthermore, not all through-the-thickness modes of vibration can be
captured. Qian et al. [8,9] employed the meshless local Petrov–Galerkin method (MLPG) to
analyze free and forced vibrations of thick homogeneous and functionally graded plates with the
higher-order shear and normal deformable plate theory of Batra and Vidoli [10]. The computed
frequencies were found to match well with those obtained analytically.

Details of the collocation method with multiquadrics and its application to the analysis of plate
problems are given in Refs. [11–17]. The shape parameter, c, in the expression for multiquadrics
(e.g., see Eq. (2.3) of Ref. [17]) is set equal to six times the distance between two consecutive nodes,
and the shear correction factor is taken to equal 5

6 :
2. Results

A schematic sketch of the problem studied, dimensions of the plate, and the location of the
rectangular Cartesian coordinate axes used to describe deformations of the plate are given in
Fig. 1. Displacements of a point along the x-, y- and z-axis are denoted by u; v; and w; respectively.
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Fig. 1. Schematic sketch of the problem studied.
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Table 1

For different aspect ratios, the first 10 non-dimensional natural frequencies of a SSSS orthotropic square plate

N Method h ¼ 0:1 h ¼ 0:2 h ¼ 0:3 h ¼ 0:4 h ¼ 0:5

1 Batra et al. [1] 0.0477* 0.1721* 0.3407* 0.5304* 0.7295*

(0.0474) (0.1694) (0.3320) (0.5134) (0.7034)

Present 7 � 7 0.0479 0.1739 0.3434 0.5331 0.7312

11� 11 0.0477 0.1728 0.3414 0.5305 0.7281

15� 15 0.0477 0.1725 0.3410 0.5300 0.7273

2 Batra et al. [1] 0.1021* 0.3221 0.4832 0.6443 0.8054

(0.1033) [0.3222] [0.4833] [0.6444] [0.8055]

Present 7 � 7 0.1048

11� 11 0.1033

15� 15 0.1031

3 Batra et al. [1] 0.1227* 0.3221 0.4832 0.6443 0.8054

(0.1188) [0.3222] [0.4833] [0.6444] [0.8055]

Present 7 � 7 0.1258

11� 11 0.1235

15� 15 0.1232

4 Batra et al. [1] 0.1611 0.3372* 0.6198* 0.8666 1.0823

[0.1611] (0.3476) (0.8667) (1.0824)

Present 7 � 7 0.3406 0.6207

11� 11 0.3391 0.6201

15� 15 0.3387 0.6195

5 Batra et al. [1] 0.1611 0.4012* 0.6504 0.9158* 1.2144*

[0.1611] (0.3707) (0.6504)

Present 7 � 7 0.4044 0.9116 1.2031

11� 11 0.4025 0.9119 1.2044

15� 15 0.4018 0.9113 1.2039

6 Batra et al. [1] 0.1721* 0.4338 0.7318* 1.0756* 1.4214*

[0.1694] (0.4338)

Present 7 � 7 0.1756 0.7325 1.0714 1.4100

11� 11 0.1732 0.7317 1.0720 1.4122

15� 15 0.1728 0.7310 1.0714 1.4112

7 Batra et al. [1] 0.1828* 0.5304* 0.9324* 1.2886 1.4924

(0.1888) (0.5134)

Present 7 � 7 0.1853 0.5349 0.9334

11� 11 0.1851 0.5315 0.9300

15� 15 0.1728 0.5305 0.9288

8 Batra et al. [1] 0.2169 0.5508* 0.9566* 1.2886 1.6107

(0.2170) [1.6110]

Present 7 � 7 0.5469 0.9396

11� 11 0.5516 0.9507

15� 15 0.5517 0.9514

9 Batra et al. [1] 0.2327* 0.6443 0.9664 1.3409* 1.6107

[0.6444] [0.9666] [1.6110]

Present 7 � 7 0.2341 1.3323

11� 11 0.2339 1.3317

15� 15 0.2335 1.3303

10 Batra et al. [1] 0.2459* 0.6443 0.9664 1.3668* 1.7119

(0.2475) [0.6444] [0.9666]

Present 7 � 7 0.2519 1.3345

11� 11 0.2480 1.3501

15� 15 0.2473 1.3514

Exact frequencies from Ref. [2] are listed in parentheses, and those from Ref. [3] in square brackets. Bending frequencies

are marked with *.

A.J.M. Ferreira, R.C. Batra / Journal of Sound and Vibration 285 (2005) 734–742736
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Boundary conditions for a simply supported (S), clamped (C) and a free (F) edge are given below:

w ¼ 0; Mxx ¼ 0; Mxy ¼ 0 on a simply supported ðSÞ edge x ¼ constant,

w ¼ 0; Myy ¼ 0; Myx ¼ 0 on a simply supported ðSÞ edge y ¼ constant,

w ¼ 0; yx ¼ 0; yy ¼ 0 on a clamped ðCÞ edge x ¼ constant or y ¼ constant,

Qx ¼ 0; Mxx ¼ 0; Mxy ¼ 0 on a free ðFÞ edge x ¼ constant,

Qy ¼ 0; Myy ¼ 0; Myx ¼ 0 on a free ðFÞ edge y ¼ constant. ð1Þ

Here Mxx; Mxy and Qx represent, respectively, the normal bending moment, the twisting moment
and the shear force on a plate edge x ¼ const:; yx and yy represent rotations about the y- and the
x-axis, respectively.

Values of material parameters used and the non-dimensionalization of frequencies are the same
as those in Ref. [1]. Tables 1–9 compare the first 10 frequencies computed by the present method
with those given in Ref. [1]. In Table 1 we have listed frequencies computed with the present
method by using 7 � 7; 11� 11 and 15� 15 collocation points distributed uniformly on the
plate’s midsurface. Here we consider a unit square plate (a ¼ b ¼ 1; see Fig. 1). For h ¼

0:1; 0:2; 0:3; 0:4 and 0:5; the 7� 7 collocation points give the first frequency within 4% of its
value for the analytical solution. With an increase in the number of collocation points from 7� 7
to 11� 11 and then to 15� 15; the presently computed first frequency approaches its analytical
value from above; the maximum difference between the first frequency obtained from the
analytical and the numerical solutions equals 3.4% for h ¼ 0:5: The FE solution of Batra et al. [1]
Table 2

For different aspect ratios, the first 10 non-dimensional natural frequencies of a SCSC orthotropic square plate

N Method h ¼ 0:1 h ¼ 0:2 h ¼ 0:3 h ¼ 0:4 h ¼ 0:5

1 Batra et al. [1] 0.0614* 0.2041* 0.3800* 0.5699* 0.7666*

Present 0.0617 0.2040 0.3779 0.5648 0.7575

2 Batra et al. [1] 0.1281* 0.3221 0.4832 0.6443 0.8054

Present 0.1288

3 Batra et al. [1] 0.1283* 0.3823* 0.6639* 0.9531* 1.2452*

Present 0.1289 0.3802 0.6555 0.9359 1.2173

4 Batra et al. [1] 0.1611 0.4096* 0.7394* 1.0089 1.2610

Present 0.4098 0.7374

5 Batra et al. [1] 0.1869* 0.5045 0.7568 1.0821* 1.4272*

Present 0.1875 1.0758 1.4145

6 Batra et al. [1] 0.2138* 0.5493* 0.9486* 1.2886 1.6107

Present 0.2144 0.5472 0.9402

7 Batra et al. [1] 0.2351* 0.5904* 0.9664 1.3108 1.6383

Present 0.2361 0.5846

8 Batra et al. [1] 0.2522 0.6443 0.9831 1.3551* 1.7623*

Present 1.3371 1.7318

9 Batra et al. [1] 0.2667* 0.6554 0.9889* 1.3923* 1.7967*

Present 0.2670 0.9713 1.3592 1.7455

10 Batra et al. [1] 0.2831* 0.6922* 1.0923 1.4559 1.8099*

Present 0.2840 0.6915 1.8166

Bending frequencies are marked with *.
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Table 3

For different aspect ratios, the first 10 non-dimensional natural frequencies of a CCCC orthotropic square plate

N Method h ¼ 0:1 h ¼ 0:2 h ¼ 0:3 h ¼ 0:4 h ¼ 0:5

1 Batra et al. [1] 0.0804* 0.2563* 0.4593* 0.6674* 0.8755*

Present 0.0808 0.2556 0.4551 0.6573 0.8575

2 Batra et al. [1] 0.1379* 0.4053* 0.6943* 0.9850* 1.2749*

Present 0.1387 0.4030 0.6846 0.9646 1.2416

3 Batra et al. [1] 0.1650* 0.4770* 0.8097* 1.0886 1.3606

Present 0.1650 0.4731 0.7972 0.9646 1.2416

4 Batra et al. [1] 0.2120* 0.5442 0.8164 1.1441* 1.4788*

Present 0.2123 1.1195 1.4395

5 Batra et al. [1] 0.2193* 0.5921* 0.9930* 1.3631 1.7040

Present 0.2200 0.5870 0.9766 1.1195 1.4395

6 Batra et al. [1] 0.2721 0.6011* 1.0015* 1.3965 1.7937

Present 0.5951 0.9823 1.3646

7 Batra et al. [1] 0.2775* 0.6814 1.0222 1.4058* 1.8010*

Present 0.2766 1.3703 1.7504

8 Batra et al. [1] 0.2830* 0.7178 1.0765 1.4351 1.8121*

Present 0.2833 1.7563

9 Batra et al. [1] 0.3145* 0.7469* 1.2354* 1.6683* 1.8740*

Present 0.3140 0.7379 1.2118 1.6801 1.8981

10 Batra et al. [1] 0.3175* 0.7561* 1.2466* 1.7282* 2.2113

Present 0.3171 0.7478 1.2226 1.6855

Bending frequencies are marked with *.

Table 4

For different aspect ratios, the first 10 non-dimensional natural frequencies of a SSSS monoclinic square plate

N Method h ¼ 0:1 h ¼ 0:2 h ¼ 0:3 h ¼ 0:4 h ¼ 0:5

1 Batra et al. [1] 0.0527 0.1972 0.4058 0.6545 0.9036

Present 0.0527 0.1989 0.4107 0.6638

2 Batra et al. [1] 0.1241 0.3627 0.5439 0.7251 0.9064

Present 0.1279

3 Batra et al. [1] 0.1424 0.3628 0.5441 0.7253 0.9299

Present 0.1434 0.9426

4 Batra et al. [1] 0.1814 0.4441 0.8745 1.2999 1.6280

Present 0.4574 0.8988 1.3505

5 Batra et al. [1] 0.1814 0.4780 0.8887 1.3494 1.7819

Present 0.4838 0.9043 1.3989 1.8062

6 Batra et al. [1] 0.1971 0.6539 0.9979 1.3587 1.7939

Present 0.1992 0.6651

7 Batra et al. [1] 0.2423 0.6662 1.0855 1.4467 1.8064

Present 0.2526

8 Batra et al. [1] 0.2782 0.7245 1.0865 1.4472 1.8810

Present 0.2817 1.9280

9 Batra et al. [1] 0.3004 0.7249 1.2129 1.7281 2.1418

Present 0.3079 1.2393

10 Batra et al. [1] 0.3211 0.8124 1.3003 1.8056 2.2511

Present 0.3247 0.8403 1.8566

Bending frequencies are marked with *.

A.J.M. Ferreira, R.C. Batra / Journal of Sound and Vibration 285 (2005) 734–742738
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Table 5

For different aspect ratios, the first 10 non-dimensional natural frequencies of a CCCC monoclinic square plate

N Method h ¼ 0:1 h ¼ 0:2 h ¼ 0:3 h ¼ 0:4 h ¼ 0:5

1 Batra et al. [1] 0.0993* 0.3382* 0.6405* 0.9694* 1.3091*

Present 0.1012 0.3435 0.6481 0.9771 1.3150

2 Batra et al. [1] 0.1835* 0.6012* 1.0465* 1.4010 1.7518

Present 0.1894 0.6059 1.0519

3 Batra et al. [1] 0.2005* 0.6061* 1.0501 1.5028* 1.9593*

Present 0.2025 0.6185 1.5079 1.9656

4 Batra et al. [1] 0.2633* 0.6994 1.1119* 1.6295* 2.0888

Present 0.2680 1.1274 1.6480

5 Batra et al. [1] 0.3133* 0.8000* 1.2602 1.6766 2.1274*

Present 0.3240 0.8105 2.1529

6 Batra et al. [1] 0.3393* 0.8408 1.3865 1.8479 2.3086

Present 0.3424

7 Batra et al. [1] 0.3492 0.9244 1.4035* 2.0116* 2.6005*

Present 1.4185 2.0329 2.6346

8 Batra et al. [1] 0.3746* 0.9336* 1.5608* 2.1029 2.6146

Present 0.3839 0.9395 1.5702

9 Batra et al. [1] 0.3875* 0.9751* 1.5828 2.1942* 2.8229*

Present 0.3923 0.9941 2.2110 2.8558

10 Batra et al. [1] 0.4210 1.0557* 1.7128* 2.4169* 2.8245*

Present 1.0937 1.7413 2.4895 3.0409

Bending frequencies are marked with *.

Table 6

For different aspect ratios, the first 10 non-dimensional natural frequencies of a SCSC monoclinic square plate

N Method h ¼ 0:1 h ¼ 0:2 h ¼ 0:3 h ¼ 0:4 h ¼ 0:5

1 Batra et al. [1] 0.0830* 0.2779* 0.5185* 0.7253 0.9064

Present 0.0835 0.2803 0.5230

2 Batra et al. [1] 0.1397* 0.3628 0.5441 0.7796* 1.0536*

Present 0.1437 0.7860 1.0618

3 Batra et al. [1] 0.1814 0.4780* 0.9150 1.3798 1.7197*

Present 0.4918 1.8354

4 Batra et al. [1] 0.1924* 0.5706* 0.9836* 1.4014* 1.8064

Present 0.1936 0.5732 0.9408 1.4073

5 Batra et al. [1] 0.2345* 0.6948 1.0406* 1.4099* 1.8363*

Present 0.2370 0.9861 1.4406 1.9675

6 Batra et al. [1] 0.2504* 0.7131* 1.0865 1.4472 1.9126*

Present 0.2609 0.7226 2.5044

7 Batra et al. [1] 0.3246* 0.7249 1.2285 1.6341 2.0353

Present 0.3368

8 Batra et al. [1] 0.3343* 0.8197 1.2669* 1.8527* 2.3649

Present 0.3368 1.2861 1.8854

9 Batra et al. [1] 0.3478 0.8273* 1.4279 1.8995 2.4506*

Present 0.8562 2.7643

10 Batra et al. [1] 0.3626 0.9132* 1.5261* 2.0471 2.5429*

Present 0.9195 1.5288 2.9318

Bending frequencies are marked with *.

A.J.M. Ferreira, R.C. Batra / Journal of Sound and Vibration 285 (2005) 734–742 739
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Table 7

For different aspect ratios, the first 10 non-dimensional natural frequencies of a SSSS hexagonal square plate

N Method h ¼ 0:1 h ¼ 0:2 h ¼ 0:3 h ¼ 0:4 h ¼ 0:5

1 Batra et al. [1] 0.0555* 0.2076* 0.4264* 0.6857* 0.9681*

Present 0.0552 0.2080 0.4285 0.6907 0.9776

2 Batra et al. [1] 0.1340* 0.4230 0.6343 0.8453 1.0558

Present 0.1345

3 Batra et al. [1] 0.1340* 0.4230 0.6343 0.8453 1.0558

Present 0.1345

4 Batra et al. [1] 0.2076* 0.4662* 0.8940* 1.1935 1.4898

Present 0.2083 0.4696 0.9035

5 Batra et al. [1] 0.2116 0.4662* 0.8940* 1.3599* 1.8379*

Present 0.4696 0.9036 1.3804 1.8756

6 Batra et al. [1] 0.2116 0.5979 0.8961 1.3599* 1.8379*

Present 1.3804 1.8757

7 Batra et al. [1] 0.2543* 0.6855* 1.2624* 1.6834 2.0983

Present 0.2562 0.6917 1.2807

8 Batra et al. [1] 0.2543* 0.8165* 1.2654 1.6834 2.0983

Present 0.2563 0.8253

9 Batra et al. [1] 0.2991 0.8165* 1.2654 1.7656 2.2003

Present 0.8256

10 Batra et al. [1] 0.3214* 0.8449 1.3273 1.8659* 2.3407

Present 0.3236 1.9059

Bending frequencies are marked with *.

Table 8

For different aspect ratios, the first 10 non-dimensional natural frequencies of a CCCC hexagonal square plate

N Method h ¼ 0:1 h ¼ 0:2 h ¼ 0:3 h ¼ 0:4 h ¼ 0:5

1 Batra et al. [1] 0.0968* 0.3325* 0.6305* 0.9510* 1.2778*

Present 0.0970 0.3330 0.6304 0.9494 1.2741

2 Batra et al. [1] 0.1878* 0.5960* 1.0639* 1.4856 1.8530

Present 0.1887 0.5970 1.0649

3 Batra et al. [1] 0.1878* 0.5960* 1.0639* 1.4856 1.8530

Present 0.1887 0.5970 1.0649

4 Batra et al. [1] 0.2660* 0.7449 1.1160 1.5370* 1.9980*

Present 0.2677 1.5386 2.0027

5 Batra et al. [1] 0.3157* 0.7449 1.1160 1.5370* 1.9980*

Present 0.3169 1.5386 2.0027

6 Batra et al. [1] 0.3183* 0.8081* 1.4089* 1.9088 2.3772

Present 0.3196 0.8111 1.4154

7 Batra et al. [1] 0.3727 0.9280* 1.4357 2.0105* 2.5981*

Present 0.9300 2.0252 2.6287

8 Batra et al. [1] 0.3727 0.9405* 1.5847* 2.1974 2.7334

Present 0.9427 1.5911

9 Batra et al. [1] 0.3840* 0.9591 1.6125* 2.2343* 2.8658*

Present 0.3864 1.6189 2.2528 2.9085

10 Batra et al. [1] 0.3840* 1.1045* 1.6542 2.2810* 2.9352*

Present 0.3864 1.1105 2.2988 2.9759

Bending frequencies are marked with *.

A.J.M. Ferreira, R.C. Batra / Journal of Sound and Vibration 285 (2005) 734–742740
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Table 9

For different aspect ratios, the first 10 non-dimensional natural frequencies of a SCSC hexagonal square plate

N Method h ¼ 0:1 h ¼ 0:2 h ¼ 0:3 h ¼ 0:4 h ¼ 0:5

1 Batra et al. [1] 0.0789* 0.2768* 0.5343* 0.8178* 1.0558

Present 0.0791 0.2772 0.5349 0.8186

2 Batra et al. [1] 0.1459* 0.4230 0.6343 0.8453 1.1128*

Present 0.1468 1.1142

3 Batra et al. [1] 0.1788* 0.4941* 0.9298* 1.3984* 1.7787

Present 0.1793 0.4975 0.9384 1.4162

4 Batra et al. [1] 0.2116 0.5717* 1.0261* 1.4258* 1.8310

Present 0.5724 1.0273 1.4942

5 Batra et al. [1] 0.2386* 0.7148 1.0710 1.4679* 1.8767*

Present 0.2399 1.9603 1.9095

6 Batra et al. [1] 0.2607* 0.7360 1.1027 1.4911* 1.9513*

Present 0.2631 2.2171 1.9597

7 Batra et al. [1] 0.3118* 0.7475* 1.2654* 1.6834 2.0983

Present 0.3126 0.7519 1.3446

8 Batra et al. [1] 0.3412* 0.8285* 1.3326* 1.9334* 2.4603

Present 0.3442 0.8375 1.5124 2.2535

9 Batra et al. [1] 0.3576 0.8449 1.4865 1.9760 2.5297*

Present 2.5794

10 Batra et al. [1] 0.3664* 0.9221* 1.4883* 2.1022 2.5356

Present 0.3682 0.9239 1.5877

Bending frequencies are marked with *.

A.J.M. Ferreira, R.C. Batra / Journal of Sound and Vibration 285 (2005) 734–742 741
has an error of 3.7% in the first frequency for h ¼ 0:5: Whereas for h ¼ 0:2; 0:3; 0:4 and 0:5; the
three-dimensional analysis by the FEM can capture the second mode of vibration corresponding
to pure distortional deformations, the present method misses it. The present collocation method
does not give frequencies of any of the pure distortional modes. This is because the in-plane
displacement components that are uniform through the plate thickness have been neglected. Vel
and Batra [18] considered these and thus captured some of the pure distortional modes of
vibration. However, the present method computes reasonably accurately frequencies of the first
few flexural modes of vibration of a simply supported orthotropic square plate. Whereas a
frequency computed with the FE solution of 3-D elasticity equations is an upper bound for the
corresponding frequency from the analytical solution, this need not be the case for the frequenies
obtained from the present method. Qian et al. [8] also found that a frequency computed with the
MLPG method did not necessarily exceed that obtained from the analytical solution. Batra and
Aimmanee [19] have used the FEM and the mixed higher-order shear and normal deformable
plate theory [7,10] to analyze vibrations of a thick isotropic plate.

In Tables 2–9, in order to save space, frequencies computed only by using 15� 15 collocation
points are listed.
3. Conclusions

It is shown that the collocation method with multiquadratics basis function and the first-order
shear deformation theory can successfully compute flexural modes of vibration of orthotropic,
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monoclinic, and hexagonal plates. Computational effort required with this approach is
considerably less than that needed with the analysis of the three-dimensional elasticity equations
by the finite element method. The present method is truly meshless and computationally less
expensive than the meshless local Petrov–Galerkin (MLPG) method employed by Qian et al. [8,9].
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